png to svg
@@ -94,7 +94,7 @@ Firegex 2.5.0 changes the way the threads are assigned to the packets, this is d
|
|||||||
|
|
||||||
The charts are labeled as follows: `[version]-[n_thread]T` eg. `2.5.0-8T` means Firegex version 2.5.0 with 8 threads.
|
The charts are labeled as follows: `[version]-[n_thread]T` eg. `2.5.0-8T` means Firegex version 2.5.0 with 8 threads.
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
|
||||||
From the benchmark above we can't see the real advantage of multithreading in 2.5.1, we can better see the advantage of multithreading in the chart below where a fake load in filtering is done.
|
From the benchmark above we can't see the real advantage of multithreading in 2.5.1, we can better see the advantage of multithreading in the chart below where a fake load in filtering is done.
|
||||||
@@ -107,7 +107,7 @@ for (int i=0; i<50000; i++){
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
In the chart above we can see that the 2.5.1 version with 8 threads has a better performance than the 2.5.1 version with 1 threads, and we can see it as much as the load increases.
|
In the chart above we can see that the 2.5.1 version with 8 threads has a better performance than the 2.5.1 version with 1 threads, and we can see it as much as the load increases.
|
||||||
|
|
||||||
@@ -118,15 +118,14 @@ The code used to test matches the following regex with the python re module:
|
|||||||
(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])
|
(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])
|
||||||
```
|
```
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
# Comparing nfproxy with nfregex
|
# Comparing nfproxy with nfregex
|
||||||
|
|
||||||
Nfproxy has obviously a worse performance than nfregex, but it is more flexible and can be used in more complex scenarios.
|
Nfproxy has obviously a worse performance than nfregex, but it is more flexible and can be used in more complex scenarios.
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
|

|
||||||
|
|||||||
|
Before Width: | Height: | Size: 302 KiB |
1550
tests/results/Benchmark-chart-with-load.svg
Normal file
|
After Width: | Height: | Size: 40 KiB |
|
Before Width: | Height: | Size: 450 KiB |
1952
tests/results/Benchmark-chart.svg
Normal file
|
After Width: | Height: | Size: 52 KiB |
|
Before Width: | Height: | Size: 176 KiB |
1893
tests/results/istogramma_nfproxy.svg
Normal file
|
After Width: | Height: | Size: 50 KiB |
|
Before Width: | Height: | Size: 243 KiB |
2288
tests/results/istrogramma_compare.svg
Normal file
|
After Width: | Height: | Size: 65 KiB |
|
Before Width: | Height: | Size: 176 KiB |
2035
tests/results/whisker_compare.svg
Normal file
|
After Width: | Height: | Size: 59 KiB |
|
Before Width: | Height: | Size: 137 KiB |
1541
tests/results/whisker_nfproxy.svg
Normal file
|
After Width: | Height: | Size: 41 KiB |
@@ -1,16 +1,15 @@
|
|||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import csv
|
import csv
|
||||||
from matplotlib.ticker import MaxNLocator
|
from matplotlib.ticker import MaxNLocator
|
||||||
from matplotlib import cm
|
from matplotlib import cm
|
||||||
|
|
||||||
plt.style.use('fivethirtyeight')
|
plt.style.use("fivethirtyeight")
|
||||||
colors = cm.Set1.colors # Use a different strong color palette
|
colors = cm.Set1.colors # Use a different strong color palette
|
||||||
plt.rcParams['figure.facecolor'] = 'white'
|
plt.rcParams["figure.facecolor"] = "white"
|
||||||
plt.rcParams['axes.edgecolor'] = 'white'
|
plt.rcParams["axes.edgecolor"] = "white"
|
||||||
plt.rcParams['axes.linewidth'] = 1.5
|
plt.rcParams["axes.linewidth"] = 1.5
|
||||||
plt.rcParams['legend.facecolor'] = 'white'
|
plt.rcParams["legend.facecolor"] = "white"
|
||||||
|
|
||||||
files = [
|
files = [
|
||||||
("2.5.1 1T", "results/2.5.1-1T.csv"),
|
("2.5.1 1T", "results/2.5.1-1T.csv"),
|
||||||
@@ -21,30 +20,30 @@ files = [
|
|||||||
("2.4.0 8T", "results/2.4.0-8T.csv"),
|
("2.4.0 8T", "results/2.4.0-8T.csv"),
|
||||||
]
|
]
|
||||||
|
|
||||||
output = "results/Benchmark-chart.png"
|
output = "results/Benchmark-chart.svg"
|
||||||
|
|
||||||
data_dict = {}
|
data_dict = {}
|
||||||
|
|
||||||
for label, file in files:
|
for label, file in files:
|
||||||
with open(file, 'r') as csvfile:
|
with open(file, "r") as csvfile:
|
||||||
reader = csv.reader(csvfile)
|
reader = csv.reader(csvfile)
|
||||||
data = [list(map(float, row)) for row in reader]
|
data = [list(map(float, row)) for row in reader]
|
||||||
data_dict[label] = data
|
data_dict[label] = data
|
||||||
|
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_facecolor('white')
|
ax.set_facecolor("white")
|
||||||
|
|
||||||
for label in data_dict.keys():
|
for label in data_dict.keys():
|
||||||
data = data_dict[label]
|
data = data_dict[label]
|
||||||
ax.plot(
|
ax.plot(
|
||||||
list(map(lambda d: int(d[0]), data)),
|
list(map(lambda d: int(d[0]), data)),
|
||||||
list(map(lambda d: d[1], data)),
|
list(map(lambda d: d[1], data)),
|
||||||
label=label
|
label=label,
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_xlabel("N. of regex", fontname="Roboto", fontsize=12)
|
ax.set_xlabel("N. of regex", fontname="Roboto", fontsize=12)
|
||||||
ax.set_ylabel("MB/s", fontname="Roboto", fontsize=12)
|
ax.set_ylabel("MB/s", fontname="Roboto", fontsize=12)
|
||||||
ax.legend(prop={'family': 'Roboto', 'size': 10})
|
ax.legend(prop={"family": "Roboto", "size": 10})
|
||||||
ax.legend(
|
ax.legend(
|
||||||
title_fontsize=12,
|
title_fontsize=12,
|
||||||
loc="upper center",
|
loc="upper center",
|
||||||
@@ -54,16 +53,16 @@ ax.legend(
|
|||||||
borderpad=1,
|
borderpad=1,
|
||||||
fontsize=10,
|
fontsize=10,
|
||||||
fancybox=True,
|
fancybox=True,
|
||||||
ncol=len(data_dict.keys()) # Make the legend horizontal
|
ncol=len(data_dict.keys()), # Make the legend horizontal
|
||||||
)
|
)
|
||||||
ax.set_xticks(np.arange(0, max(map(lambda d: int(d[0]), data)), step=3))
|
ax.set_xticks(np.arange(0, max(map(lambda d: int(d[0]), data)), step=3))
|
||||||
ax.set_yticks(np.arange(0, max(map(lambda d: d[1], data)), step=300))
|
ax.set_yticks(np.arange(0, max(map(lambda d: d[1], data)), step=300))
|
||||||
plt.subplots_adjust(bottom=0.2) # Adjust the bottom margin to make space for the legend
|
plt.subplots_adjust(bottom=0.2) # Adjust the bottom margin to make space for the legend
|
||||||
ax.set_title("Firegex benchmark (nfregex)", fontweight='bold', fontname="Roboto", pad=20)
|
ax.set_title("Firegex benchmark (nfregex)", fontweight="bold", fontname="Roboto", pad=20)
|
||||||
fig.set_size_inches(12, 8) # Set the figure size to make the image larger
|
fig.set_size_inches(12, 8) # Set the figure size to make the image larger
|
||||||
|
|
||||||
# plt.show()
|
# plt.show()
|
||||||
plt.savefig(output, dpi=300, bbox_inches='tight')
|
plt.savefig(output, dpi=300, bbox_inches="tight")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
files = [
|
files = [
|
||||||
@@ -71,30 +70,30 @@ files = [
|
|||||||
("2.5.1 8T", "results/2.5.1-8T-withload.csv"),
|
("2.5.1 8T", "results/2.5.1-8T-withload.csv"),
|
||||||
]
|
]
|
||||||
|
|
||||||
output = "results/Benchmark-chart-with-load.png"
|
output = "results/Benchmark-chart-with-load.svg"
|
||||||
|
|
||||||
data_dict = {}
|
data_dict = {}
|
||||||
|
|
||||||
for label, file in files:
|
for label, file in files:
|
||||||
with open(file, 'r') as csvfile:
|
with open(file, "r") as csvfile:
|
||||||
reader = csv.reader(csvfile)
|
reader = csv.reader(csvfile)
|
||||||
data = [list(map(float, row)) for row in reader]
|
data = [list(map(float, row)) for row in reader]
|
||||||
data_dict[label] = data
|
data_dict[label] = data
|
||||||
|
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_facecolor('white')
|
ax.set_facecolor("white")
|
||||||
|
|
||||||
for label in data_dict.keys():
|
for label in data_dict.keys():
|
||||||
data = data_dict[label]
|
data = data_dict[label]
|
||||||
ax.plot(
|
ax.plot(
|
||||||
list(map(lambda d: int(d[0]), data)),
|
list(map(lambda d: int(d[0]), data)),
|
||||||
list(map(lambda d: d[1], data)),
|
list(map(lambda d: d[1], data)),
|
||||||
label=label
|
label=label,
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_xlabel("N. of regex", fontname="Roboto", fontsize=12)
|
ax.set_xlabel("N. of regex", fontname="Roboto", fontsize=12)
|
||||||
ax.set_ylabel("MB/s", fontname="Roboto", fontsize=12)
|
ax.set_ylabel("MB/s", fontname="Roboto", fontsize=12)
|
||||||
ax.legend(prop={'family': 'Roboto', 'size': 10})
|
ax.legend(prop={"family": "Roboto", "size": 10})
|
||||||
ax.legend(
|
ax.legend(
|
||||||
title_fontsize=12,
|
title_fontsize=12,
|
||||||
loc="upper center",
|
loc="upper center",
|
||||||
@@ -104,12 +103,12 @@ ax.legend(
|
|||||||
borderpad=1,
|
borderpad=1,
|
||||||
fontsize=10,
|
fontsize=10,
|
||||||
fancybox=True,
|
fancybox=True,
|
||||||
ncol=len(data_dict.keys())
|
ncol=len(data_dict.keys()),
|
||||||
)
|
)
|
||||||
ax.set_xticks(np.arange(0, max(map(lambda d: int(d[0]), data)), step=3))
|
ax.set_xticks(np.arange(0, max(map(lambda d: int(d[0]), data)), step=3))
|
||||||
ax.set_yticks(np.arange(0, max(map(lambda d: d[1], data)), step=150))
|
ax.set_yticks(np.arange(0, max(map(lambda d: d[1], data)), step=150))
|
||||||
plt.subplots_adjust(bottom=0.2)
|
plt.subplots_adjust(bottom=0.2)
|
||||||
ax.set_title("Load test firegex (nfregex)", fontweight='bold', fontname="Roboto", pad=20)
|
ax.set_title("Load test firegex (nfregex)", fontweight="bold", fontname="Roboto", pad=20)
|
||||||
fig.set_size_inches(12, 8)
|
fig.set_size_inches(12, 8)
|
||||||
|
|
||||||
# Calculate the minimum and maximum y values across all data
|
# Calculate the minimum and maximum y values across all data
|
||||||
@@ -123,7 +122,7 @@ ax.set_ylim(y_min - (y_max - y_min) * 0.1, y_max + (y_max - y_min) * 0.1)
|
|||||||
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
||||||
|
|
||||||
# plt.show()
|
# plt.show()
|
||||||
plt.savefig(output, dpi=300, bbox_inches='tight')
|
plt.savefig(output, dpi=300, bbox_inches="tight")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
files_nfproxy = [
|
files_nfproxy = [
|
||||||
@@ -131,13 +130,13 @@ files_nfproxy = [
|
|||||||
("NfProxy 8T", "results/comparemark_nfproxy_8T.csv"),
|
("NfProxy 8T", "results/comparemark_nfproxy_8T.csv"),
|
||||||
]
|
]
|
||||||
|
|
||||||
output_whisker = "results/whisker_nfproxy.png"
|
output_whisker = "results/whisker_nfproxy.svg"
|
||||||
output_histogram = "results/istogramma_nfproxy.png"
|
output_histogram = "results/istogramma_nfproxy.svg"
|
||||||
|
|
||||||
# Read and process data for nfproxy
|
# Read and process data for nfproxy
|
||||||
data_nfproxy = {}
|
data_nfproxy = {}
|
||||||
for label, file in files_nfproxy:
|
for label, file in files_nfproxy:
|
||||||
with open(file, 'r') as csvfile:
|
with open(file, "r") as csvfile:
|
||||||
reader = csv.reader(csvfile)
|
reader = csv.reader(csvfile)
|
||||||
next(reader) # Skip the header
|
next(reader) # Skip the header
|
||||||
data = [(float(row[0]), float(row[1])) for row in reader]
|
data = [(float(row[0]), float(row[1])) for row in reader]
|
||||||
@@ -146,7 +145,7 @@ for label, file in files_nfproxy:
|
|||||||
|
|
||||||
# Generate whisker plot for nfproxy
|
# Generate whisker plot for nfproxy
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_facecolor('white')
|
ax.set_facecolor("white")
|
||||||
|
|
||||||
y_max = max([max(data) for data in data_nfproxy.values()])
|
y_max = max([max(data) for data in data_nfproxy.values()])
|
||||||
y_min = min([min(data) for data in data_nfproxy.values()])
|
y_min = min([min(data) for data in data_nfproxy.values()])
|
||||||
@@ -161,15 +160,17 @@ for i, (label, data) in enumerate(data_nfproxy.items()):
|
|||||||
capprops=dict(color="black", linewidth=1.3),
|
capprops=dict(color="black", linewidth=1.3),
|
||||||
medianprops=dict(color="black", linewidth=1.3),
|
medianprops=dict(color="black", linewidth=1.3),
|
||||||
patch_artist=True, # Enable filling the box with color
|
patch_artist=True, # Enable filling the box with color
|
||||||
widths=0.35 # Increase the width of the boxes
|
widths=0.35, # Increase the width of the boxes
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_yticks(np.arange(0, int(y_max) + 100, step=100)) # Ensure the range includes y_max
|
ax.set_yticks(
|
||||||
|
np.arange(0, int(y_max) + 100, step=100)
|
||||||
|
) # Ensure the range includes y_max
|
||||||
|
|
||||||
# Set the y-axis limits to skip unused parts
|
# Set the y-axis limits to skip unused parts
|
||||||
ax.set_ylim(y_min - (y_max - y_min) * 0.1, y_max + (y_max - y_min) * 0.1)
|
ax.set_ylim(y_min - (y_max - y_min) * 0.1, y_max + (y_max - y_min) * 0.1)
|
||||||
|
|
||||||
ax.set_title("NFProxy Benchmarks", fontweight='bold', fontname="Roboto", pad=20)
|
ax.set_title("NFProxy Benchmarks", fontweight="bold", fontname="Roboto", pad=20)
|
||||||
ax.set_ylabel("MB/s", fontname="Roboto", fontsize=12)
|
ax.set_ylabel("MB/s", fontname="Roboto", fontsize=12)
|
||||||
fig.set_size_inches(12, 8)
|
fig.set_size_inches(12, 8)
|
||||||
|
|
||||||
@@ -181,7 +182,7 @@ plt.close()
|
|||||||
average_data = {label: np.mean(data) for label, data in data_nfproxy.items()}
|
average_data = {label: np.mean(data) for label, data in data_nfproxy.items()}
|
||||||
|
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_facecolor('white')
|
ax.set_facecolor("white")
|
||||||
y_max = max(average_data.values())
|
y_max = max(average_data.values())
|
||||||
|
|
||||||
bars = ax.bar(
|
bars = ax.bar(
|
||||||
@@ -189,11 +190,13 @@ bars = ax.bar(
|
|||||||
average_data.values(),
|
average_data.values(),
|
||||||
color=[colors[i % len(colors)] for i in range(len(average_data))],
|
color=[colors[i % len(colors)] for i in range(len(average_data))],
|
||||||
edgecolor="black",
|
edgecolor="black",
|
||||||
width=0.4 # Make the bars narrower
|
width=0.4, # Make the bars narrower
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_yticks(np.arange(0, int(y_max) + 100, step=100)) # Ensure the range includes y_max
|
ax.set_yticks(
|
||||||
ax.set_title("NFProxy Benchmarks", fontweight='bold', fontname="Roboto", pad=20)
|
np.arange(0, int(y_max) + 100, step=100)
|
||||||
|
) # Ensure the range includes y_max
|
||||||
|
ax.set_title("NFProxy Benchmarks", fontweight="bold", fontname="Roboto", pad=20)
|
||||||
ax.set_ylabel("Average MB/s", fontname="Roboto", fontsize=12)
|
ax.set_ylabel("Average MB/s", fontname="Roboto", fontsize=12)
|
||||||
ax.set_xticklabels(average_data.keys(), fontname="Roboto", fontsize=12)
|
ax.set_xticklabels(average_data.keys(), fontname="Roboto", fontsize=12)
|
||||||
|
|
||||||
@@ -201,21 +204,21 @@ ax.set_xticklabels(average_data.keys(), fontname="Roboto", fontsize=12)
|
|||||||
for bar in bars:
|
for bar in bars:
|
||||||
height = bar.get_height()
|
height = bar.get_height()
|
||||||
ax.annotate(
|
ax.annotate(
|
||||||
f'{height:.2f}',
|
f"{height:.2f}",
|
||||||
xy=(bar.get_x() + bar.get_width() / 2, height),
|
xy=(bar.get_x() + bar.get_width() / 2, height),
|
||||||
xytext=(0, 3), # Offset text above the bar
|
xytext=(0, 3), # Offset text above the bar
|
||||||
textcoords="offset points",
|
textcoords="offset points",
|
||||||
ha='center',
|
ha="center",
|
||||||
va='bottom',
|
va="bottom",
|
||||||
fontsize=10,
|
fontsize=10,
|
||||||
fontname="Roboto"
|
fontname="Roboto",
|
||||||
)
|
)
|
||||||
|
|
||||||
fig.set_size_inches(12, 8)
|
fig.set_size_inches(12, 8)
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
|
|
||||||
# plt.show()
|
# plt.show()
|
||||||
plt.savefig(output_histogram, dpi=300, bbox_inches='tight')
|
plt.savefig(output_histogram, dpi=300, bbox_inches="tight")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
files_nfregex = [
|
files_nfregex = [
|
||||||
@@ -223,13 +226,13 @@ files_nfregex = [
|
|||||||
("NfRegex 8T", "results/comparemark_nfregex_8T.csv"),
|
("NfRegex 8T", "results/comparemark_nfregex_8T.csv"),
|
||||||
]
|
]
|
||||||
|
|
||||||
output_whisker = "results/whisker_compare.png"
|
output_whisker = "results/whisker_compare.svg"
|
||||||
output_histogram = "results/istrogramma_compare.png"
|
output_histogram = "results/istrogramma_compare.svg"
|
||||||
|
|
||||||
# Read and process data for nfregex
|
# Read and process data for nfregex
|
||||||
data_nfregex = {}
|
data_nfregex = {}
|
||||||
for label, file in files_nfregex:
|
for label, file in files_nfregex:
|
||||||
with open(file, 'r') as csvfile:
|
with open(file, "r") as csvfile:
|
||||||
reader = csv.reader(csvfile)
|
reader = csv.reader(csvfile)
|
||||||
next(reader) # Skip the header
|
next(reader) # Skip the header
|
||||||
data = [(float(row[0]), float(row[1])) for row in reader]
|
data = [(float(row[0]), float(row[1])) for row in reader]
|
||||||
@@ -241,7 +244,7 @@ combined_data = {**data_nfproxy, **data_nfregex}
|
|||||||
|
|
||||||
# Generate whisker plot for combined data
|
# Generate whisker plot for combined data
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_facecolor('white')
|
ax.set_facecolor("white")
|
||||||
|
|
||||||
y_max = max([max(data) for data in combined_data.values()])
|
y_max = max([max(data) for data in combined_data.values()])
|
||||||
y_min = min([min(data) for data in combined_data.values()])
|
y_min = min([min(data) for data in combined_data.values()])
|
||||||
@@ -255,64 +258,79 @@ for i, (label, data) in enumerate(combined_data.items()):
|
|||||||
capprops=dict(color="black", linewidth=1.3),
|
capprops=dict(color="black", linewidth=1.3),
|
||||||
medianprops=dict(color="black", linewidth=1.3),
|
medianprops=dict(color="black", linewidth=1.3),
|
||||||
patch_artist=True, # Enable filling the box with color
|
patch_artist=True, # Enable filling the box with color
|
||||||
widths=0.6 # Increase the width of the boxes
|
widths=0.6, # Increase the width of the boxes
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_xticks(range(len(combined_data.keys())))
|
ax.set_xticks(range(len(combined_data.keys())))
|
||||||
ax.set_xticklabels(combined_data.keys(), fontname="Roboto", fontsize=10)
|
ax.set_xticklabels(combined_data.keys(), fontname="Roboto", fontsize=10)
|
||||||
ax.set_yticks(np.arange(0, int(y_max) + 100, step=250)) # Ensure the range includes y_max
|
ax.set_yticks(
|
||||||
|
np.arange(0, int(y_max) + 100, step=250)
|
||||||
|
) # Ensure the range includes y_max
|
||||||
plt.subplots_adjust(bottom=0.12)
|
plt.subplots_adjust(bottom=0.12)
|
||||||
|
|
||||||
# Set the y-axis limits to skip unused parts
|
# Set the y-axis limits to skip unused parts
|
||||||
ax.set_ylim(y_min - (y_max - y_min) * 0.1, y_max + (y_max - y_min) * 0.1)
|
ax.set_ylim(y_min - (y_max - y_min) * 0.1, y_max + (y_max - y_min) * 0.1)
|
||||||
|
|
||||||
ax.set_title("Combined Benchmarks (NFProxy vs NFRegex)", fontweight='bold', fontname="Roboto", pad=20)
|
ax.set_title(
|
||||||
|
"Combined Benchmarks (NFProxy vs NFRegex)",
|
||||||
|
fontweight="bold",
|
||||||
|
fontname="Roboto",
|
||||||
|
pad=20,
|
||||||
|
)
|
||||||
ax.set_ylabel("MB/s", fontname="Roboto", fontsize=12)
|
ax.set_ylabel("MB/s", fontname="Roboto", fontsize=12)
|
||||||
fig.set_size_inches(14, 8)
|
fig.set_size_inches(14, 8)
|
||||||
|
|
||||||
# plt.show()
|
# plt.show()
|
||||||
plt.savefig(output_whisker, dpi=300, bbox_inches='tight')
|
plt.savefig(output_whisker, dpi=300, bbox_inches="tight")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
# Generate bar chart with average data for combined data
|
# Generate bar chart with average data for combined data
|
||||||
average_combined_data = {label: np.mean(data) for label, data in combined_data.items()}
|
average_combined_data = {label: np.mean(data) for label, data in combined_data.items()}
|
||||||
|
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_facecolor('white')
|
ax.set_facecolor("white")
|
||||||
y_max = max(average_combined_data.values())
|
y_max = max(average_combined_data.values())
|
||||||
|
|
||||||
bars = ax.bar(
|
bars = ax.bar(
|
||||||
average_combined_data.keys(),
|
average_combined_data.keys(),
|
||||||
average_combined_data.values(),
|
average_combined_data.values(),
|
||||||
color=[colors[0 if "nfregex" in ele.lower() else 1] for ele in average_combined_data],
|
color=[
|
||||||
|
colors[0 if "nfregex" in ele.lower() else 1] for ele in average_combined_data
|
||||||
|
],
|
||||||
edgecolor="black",
|
edgecolor="black",
|
||||||
width=0.4 # Make the bars narrower
|
width=0.4, # Make the bars narrower
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_xticks(range(len(average_combined_data.keys())))
|
ax.set_xticks(range(len(average_combined_data.keys())))
|
||||||
ax.set_xticklabels(average_combined_data.keys(), fontname="Roboto", fontsize=10)
|
ax.set_xticklabels(average_combined_data.keys(), fontname="Roboto", fontsize=10)
|
||||||
ax.set_yticks(np.arange(0, int(y_max) + 100, step=200)) # Ensure the range includes y_max
|
ax.set_yticks(
|
||||||
ax.set_title("Combined Benchmarks (NFProxy vs NFRegex)", fontweight='bold', fontname="Roboto", pad=20)
|
np.arange(0, int(y_max) + 100, step=200)
|
||||||
|
) # Ensure the range includes y_max
|
||||||
|
ax.set_title(
|
||||||
|
"Combined Benchmarks (NFProxy vs NFRegex)",
|
||||||
|
fontweight="bold",
|
||||||
|
fontname="Roboto",
|
||||||
|
pad=20,
|
||||||
|
)
|
||||||
ax.set_ylabel("Average MB/s", fontname="Roboto", fontsize=12)
|
ax.set_ylabel("Average MB/s", fontname="Roboto", fontsize=12)
|
||||||
|
|
||||||
# Annotate bars with their values
|
# Annotate bars with their values
|
||||||
for bar in bars:
|
for bar in bars:
|
||||||
height = bar.get_height()
|
height = bar.get_height()
|
||||||
ax.annotate(
|
ax.annotate(
|
||||||
f'{height:.2f}',
|
f"{height:.2f}",
|
||||||
xy=(bar.get_x() + bar.get_width() / 2, height),
|
xy=(bar.get_x() + bar.get_width() / 2, height),
|
||||||
xytext=(0, 3), # Offset text above the bar
|
xytext=(0, 3), # Offset text above the bar
|
||||||
textcoords="offset points",
|
textcoords="offset points",
|
||||||
ha='center',
|
ha="center",
|
||||||
va='bottom',
|
va="bottom",
|
||||||
fontsize=10,
|
fontsize=10,
|
||||||
fontname="Roboto"
|
fontname="Roboto",
|
||||||
)
|
)
|
||||||
|
|
||||||
fig.set_size_inches(14, 8)
|
fig.set_size_inches(14, 8)
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
|
|
||||||
# plt.show()
|
# plt.show()
|
||||||
plt.savefig(output_histogram, dpi=300, bbox_inches='tight')
|
plt.savefig(output_histogram, dpi=300, bbox_inches="tight")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
|
|||||||