diff --git a/main_hypot/best_model_and_plots.py b/main_hypot/best_model_and_plots.py
index 7114769..1be2f16 100644
--- a/main_hypot/best_model_and_plots.py
+++ b/main_hypot/best_model_and_plots.py
@@ -1,43 +1,66 @@
import sqlite3
from pathlib import Path
import sys
+from typing import Tuple
import matplotlib.pyplot as plt
+from scipy.signal import savgol_filter
import pandas as pd
import seaborn as sns
from statsmodels.nonparametric.smoothers_lowess import lowess
+import numpy as np
sns.set_theme(style="whitegrid")
-plt.rcParams["figure.figsize"] = (10, 6)
+plt.rcParams["figure.figsize"] = (8, 8)
project_root = Path(__file__).resolve().parent.parent
-sys.path.append(str(project_root / "preanalysis_old_bad"))
-import eda_utils as eda # noqa: E402
-
DB_PATH = project_root / "dataset" / "ds.sqlite"
-OUT_DIR = project_root / "main_hypot"
-X_COL = "avg_imp_per_day"
-Y_COL = "orders_amt_total"
-X_MAX = 18 # обрезаем длинный хвост по показам, чтобы облака было легче читать
-SCATTER_COLOR = "#2c7bb6"
+BASE_OUT_DIR = project_root / "main_hypot"
+
+# Константы данных
+CATEGORIES = ["ent", "super", "transport", "shopping", "hotel", "avia"]
+ACTIVE_IMP_COLS = [f"active_imp_{c}" for c in CATEGORIES]
+PASSIVE_IMP_COLS = [f"passive_imp_{c}" for c in CATEGORIES]
+ORDER_COLS = [f"orders_amt_{c}" for c in CATEGORIES]
+
+# Константы визуализации/очистки
+X_COL = "avg_imp_per_day" # x всегда фиксирован
+DEFAULT_X_MAX = 18
+DEFAULT_SCATTER_COLOR = "#2c7bb6"
+DEFAULT_POINT_SIZE = 20
+DEFAULT_ALPHA = 0.08
+DEFAULT_TREND_ALPHA = 0.1
+DEFAULT_TREND_FRAC = 0.3
+DEFAULT_TREND_COLOR = "red"
+DEFAULT_TREND_LINEWIDTH = 2.5
+DEFAULT_IQR_K = 1.5
+DEFAULT_Q_LOW = 0.05
+DEFAULT_Q_HIGH = 0.95
+DEFAULT_ALPHA_MIN = 0.04
+DEFAULT_ALPHA_MAX = 0.7
+DEFAULT_BINS_X = 60
+DEFAULT_BINS_Y = 60
+DEFAULT_Y_MIN = -0.5
+DEFAULT_Y_MAX = 10
+DEFAULT_TREND_METHOD = "savgol" # options: lowess, rolling, savgol
+DEFAULT_ROLLING_WINDOW = 200
+DEFAULT_SAVGOL_WINDOW = 501
+DEFAULT_SAVGOL_POLY = 2
+
+
+def safe_divide(numerator: pd.Series, denominator: pd.Series) -> pd.Series:
+ denom = denominator.replace(0, pd.NA)
+ return numerator / denom
def load_client_level(db_path: Path) -> pd.DataFrame:
- """Собирает агрегаты по клиентам без усреднения по x."""
+ """Собирает агрегаты по клиентам без зависимостей от eda_utils."""
conn = sqlite3.connect(db_path)
df = pd.read_sql_query("select * from communications", conn, parse_dates=["business_dt"])
conn.close()
- for cols, name in [
- (eda.ACTIVE_IMP_COLS, "active_imp_total"),
- (eda.PASSIVE_IMP_COLS, "passive_imp_total"),
- (eda.ACTIVE_CLICK_COLS, "active_click_total"),
- (eda.PASSIVE_CLICK_COLS, "passive_click_total"),
- (eda.ORDER_COLS, "orders_amt_total"),
- ]:
- df[name] = df[cols].sum(axis=1)
-
- df["imp_total"] = df["active_imp_total"] + df["passive_imp_total"]
+ df["imp_total"] = df[ACTIVE_IMP_COLS + PASSIVE_IMP_COLS].sum(axis=1)
+ df["orders_amt_total"] = df[ORDER_COLS].sum(axis=1)
client = (
df.groupby("id")
@@ -49,94 +72,503 @@ def load_client_level(db_path: Path) -> pd.DataFrame:
.reset_index()
)
- client[X_COL] = eda.safe_divide(client["imp_total"], client["contact_days"])
- client[Y_COL] = client["orders_amt_total"]
- client = client[["id", X_COL, Y_COL]].dropna()
-
- in_range = client[client[X_COL] <= X_MAX].copy()
- print(f"Loaded {len(client)} clients; {len(in_range)} within x<={X_MAX} kept for plotting.")
- return in_range
+ client[X_COL] = safe_divide(client["imp_total"], client["contact_days"])
+ print(f"Loaded {len(client)} clients with {X_COL} computed.")
+ return client
-def remove_outliers(df: pd.DataFrame, iqr_k: float = 1.5) -> pd.DataFrame:
+def _bounds(series: pd.Series, q_low: float, q_high: float, iqr_k: float) -> Tuple[float, float]:
+ q1, q3 = series.quantile([q_low, q_high])
+ iqr = q3 - q1
+ return q1 - iqr_k * iqr, q3 + iqr_k * iqr
+
+
+def remove_outliers(
+ df: pd.DataFrame,
+ y_col: str,
+ x_col: str = X_COL,
+ iqr_k: float = DEFAULT_IQR_K,
+ q_low: float = DEFAULT_Q_LOW,
+ q_high: float = DEFAULT_Q_HIGH,
+) -> pd.DataFrame:
"""Убирает выбросы по IQR отдельно по x и y."""
- def bounds(series: pd.Series) -> tuple[float, float]:
- q1, q3 = series.quantile([0.05, 0.95])
- iqr = q3 - q1
- return q1 - iqr_k * iqr, q3 + iqr_k * iqr
-
- x_low, x_high = bounds(df[X_COL])
- y_low, y_high = bounds(df[Y_COL])
+ x_low, x_high = _bounds(df[x_col], q_low, q_high, iqr_k)
+ y_low, y_high = _bounds(df[y_col], q_low, q_high, iqr_k)
filtered = df[
- df[X_COL].between(max(0, x_low), x_high)
- & df[Y_COL].between(max(0, y_low), y_high)
+ df[x_col].between(max(0, x_low), x_high)
+ & df[y_col].between(max(0, y_low), y_high)
].copy()
- print(f"Outlier cleaning: {len(df)} -> {len(filtered)} points (IQR k={iqr_k}).")
+ print(f"Outlier cleaning: {len(df)} -> {len(filtered)} points (IQR k={iqr_k}, q=({q_low},{q_high})).")
return filtered
+def compute_density_alpha(
+ df: pd.DataFrame,
+ x_col: str,
+ y_col: str,
+ x_max: float,
+ *,
+ bins_x: int = DEFAULT_BINS_X,
+ bins_y: int = DEFAULT_BINS_Y,
+ alpha_min: float = DEFAULT_ALPHA_MIN,
+ alpha_max: float = DEFAULT_ALPHA_MAX,
+ y_min: float = DEFAULT_Y_MIN,
+ y_max_limit: float = DEFAULT_Y_MAX,
+) -> np.ndarray:
+ """Считает насыщенность цвета как квадратичный скейл по плотности в 2D бинах."""
+ x_vals = df[x_col].to_numpy()
+ y_vals = df[y_col].to_numpy()
+
+ if len(x_vals) == 0:
+ return np.array([])
+
+ x_edges = np.linspace(min(x_vals.min(), 0), x_max, bins_x + 1)
+ y_upper = max(min(y_vals.max(), y_max_limit), 1e-9)
+ y_edges = np.linspace(y_min, y_upper, bins_y + 1)
+
+ x_bins = np.digitize(x_vals, x_edges) - 1
+ y_bins = np.digitize(y_vals, y_edges) - 1
+
+ valid = (
+ (x_bins >= 0) & (x_bins < bins_x) &
+ (y_bins >= 0) & (y_bins < bins_y)
+ )
+ counts = np.zeros((bins_x, bins_y), dtype=int)
+ for xb, yb in zip(x_bins[valid], y_bins[valid]):
+ counts[xb, yb] += 1
+
+ bin_counts = counts[
+ np.clip(x_bins, 0, bins_x - 1),
+ np.clip(y_bins, 0, bins_y - 1),
+ ]
+ max_count = bin_counts.max() if len(bin_counts) else 1
+ if max_count == 0:
+ weight = np.zeros_like(bin_counts, dtype=float)
+ else:
+ weight = (bin_counts / max_count) ** np.sqrt(1.5)
+ weight = np.clip(weight, 0, 1)
+ return alpha_min + (alpha_max - alpha_min) * weight
+
+
+def compute_trend(
+ df: pd.DataFrame,
+ y_col: str,
+ *,
+ x_col: str = X_COL,
+ method: str = DEFAULT_TREND_METHOD,
+ lowess_frac: float = DEFAULT_TREND_FRAC,
+ rolling_window: int = DEFAULT_ROLLING_WINDOW,
+ savgol_window: int = DEFAULT_SAVGOL_WINDOW,
+ savgol_poly: int = DEFAULT_SAVGOL_POLY,
+) -> Tuple[np.ndarray, np.ndarray]:
+ """Возвращает (x_sorted, trend_y) по выбранному методу."""
+ d = df[[x_col, y_col]].dropna().sort_values(x_col)
+ x_vals = d[x_col].to_numpy()
+ y_vals = d[y_col].to_numpy()
+
+ if len(x_vals) == 0:
+ return np.array([]), np.array([])
+
+ m = method.lower()
+ if m == "lowess":
+ trend = lowess(y_vals, x_vals, frac=lowess_frac, return_sorted=True)
+ return trend[:, 0], trend[:, 1]
+ if m == "rolling":
+ w = max(3, rolling_window)
+ if w % 2 == 0:
+ w += 1
+ y_trend = pd.Series(y_vals).rolling(window=w, center=True, min_periods=1).mean().to_numpy()
+ return x_vals, y_trend
+ if m == "savgol":
+ w = max(5, savgol_window)
+ if w % 2 == 0:
+ w += 1
+ poly = min(savgol_poly, w - 1)
+ y_trend = savgol_filter(y_vals, window_length=w, polyorder=poly, mode="interp")
+ return x_vals, y_trend
+
+ # fallback to lowess
+ trend = lowess(y_vals, x_vals, frac=lowess_frac, return_sorted=True)
+ return trend[:, 0], trend[:, 1]
+
+
+def filter_x_range(df: pd.DataFrame, x_col: str, x_max: float) -> pd.DataFrame:
+ subset = df[df[x_col] <= x_max].copy()
+ print(f"{len(df)} points; {len(subset)} within x<={x_max}.")
+ return subset
+
+
def plot_density_scatter(
df: pd.DataFrame,
+ y_col: str,
title: str,
- out_name: str,
+ out_path: Path,
+ *,
+ x_col: str = X_COL,
+ x_max: float = DEFAULT_X_MAX,
+ scatter_color: str = DEFAULT_SCATTER_COLOR,
+ point_size: int = DEFAULT_POINT_SIZE,
+ alpha: float = DEFAULT_ALPHA,
+ alpha_min: float = DEFAULT_ALPHA_MIN,
+ alpha_max: float = DEFAULT_ALPHA_MAX,
+ bins_x: int = DEFAULT_BINS_X,
+ bins_y: int = DEFAULT_BINS_Y,
+ y_min: float = DEFAULT_Y_MIN,
+ y_max: float = DEFAULT_Y_MAX,
with_trend: bool = False,
- alpha: float = 0.08,
+ trend_method: str = DEFAULT_TREND_METHOD,
+ trend_frac: float = DEFAULT_TREND_FRAC,
+ trend_color: str = DEFAULT_TREND_COLOR,
+ trend_linewidth: float = DEFAULT_TREND_LINEWIDTH,
+ rolling_window: int = DEFAULT_ROLLING_WINDOW,
+ savgol_window: int = DEFAULT_SAVGOL_WINDOW,
+ savgol_poly: int = DEFAULT_SAVGOL_POLY,
) -> None:
- fig, ax = plt.subplots(figsize=(10, 6))
- sns.scatterplot(
- data=df,
- x=X_COL,
- y=Y_COL,
- color=SCATTER_COLOR,
- s=20,
- alpha=alpha,
- linewidth=0,
- ax=ax,
+ fig, ax = plt.subplots(figsize=(8, 8))
+ alpha_values = compute_density_alpha(
+ df,
+ x_col=x_col,
+ y_col=y_col,
+ x_max=x_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ y_min=y_min,
+ y_max_limit=y_max,
+ )
+ ax.scatter(
+ df[x_col],
+ df[y_col],
+ color=scatter_color,
+ s=point_size,
+ alpha=alpha_values if len(alpha_values) else alpha,
+ linewidths=0,
)
if with_trend:
- trend = lowess(df[Y_COL], df[X_COL], frac=0.3, return_sorted=True)
- ax.plot(trend[:, 0], trend[:, 1], color="red", linewidth=2.5, label="LOWESS тренд")
- ax.legend()
+ tx, ty = compute_trend(
+ df,
+ y_col=y_col,
+ x_col=x_col,
+ method=trend_method,
+ lowess_frac=trend_frac,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
+ if len(tx):
+ ax.plot(tx, ty, color=trend_color, linewidth=trend_linewidth, label=f"{trend_method} тренд")
+ ax.legend()
- ax.set_xlim(0, X_MAX)
- ax.set_ylim(bottom=0)
+ ax.set_xlim(0, x_max)
+ ax.set_ylim(y_min, y_max)
+ ax.set_yticks(range(0, int(y_max) + 1, 2))
ax.set_xlabel("Среднее число показов в день")
- ax.set_ylabel("Число заказов за период (сумма)")
+ ax.set_ylabel(y_col)
ax.set_title(title)
ax.grid(alpha=0.3)
- OUT_DIR.mkdir(parents=True, exist_ok=True)
- out_path = OUT_DIR / out_name
+ out_path.parent.mkdir(parents=True, exist_ok=True)
fig.tight_layout()
fig.savefig(out_path, dpi=150)
plt.close(fig)
print(f"Saved {out_path}")
+def plot_raw_scatter(
+ df: pd.DataFrame,
+ y_col: str,
+ out_dir: Path,
+ *,
+ x_col: str = X_COL,
+ x_max: float = DEFAULT_X_MAX,
+ scatter_color: str = DEFAULT_SCATTER_COLOR,
+ point_size: int = DEFAULT_POINT_SIZE,
+ alpha: float = DEFAULT_ALPHA,
+ alpha_min: float = DEFAULT_ALPHA_MIN,
+ alpha_max: float = DEFAULT_ALPHA_MAX,
+ bins_x: int = DEFAULT_BINS_X,
+ bins_y: int = DEFAULT_BINS_Y,
+ y_min: float = DEFAULT_Y_MIN,
+ y_max: float = DEFAULT_Y_MAX,
+ trend_method: str = DEFAULT_TREND_METHOD,
+ trend_frac: float = DEFAULT_TREND_FRAC,
+ trend_color: str = DEFAULT_TREND_COLOR,
+ trend_linewidth: float = DEFAULT_TREND_LINEWIDTH,
+ rolling_window: int = DEFAULT_ROLLING_WINDOW,
+ savgol_window: int = DEFAULT_SAVGOL_WINDOW,
+ savgol_poly: int = DEFAULT_SAVGOL_POLY,
+) -> None:
+ in_range = filter_x_range(df[[x_col, y_col]].dropna(), x_col, x_max)
+ plot_density_scatter(
+ in_range,
+ y_col=y_col,
+ title=f"Облако: {y_col} vs {x_col} (все клиенты)",
+ out_path=out_dir / "scatter.png",
+ x_col=x_col,
+ x_max=x_max,
+ scatter_color=scatter_color,
+ point_size=point_size,
+ alpha=alpha,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ y_min=y_min,
+ y_max=y_max,
+ trend_method=trend_method,
+ trend_frac=trend_frac,
+ trend_color=trend_color,
+ trend_linewidth=trend_linewidth,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
+
+
+def plot_clean_scatter(
+ df: pd.DataFrame,
+ y_col: str,
+ out_dir: Path,
+ *,
+ x_col: str = X_COL,
+ x_max: float = DEFAULT_X_MAX,
+ scatter_color: str = DEFAULT_SCATTER_COLOR,
+ point_size: int = DEFAULT_POINT_SIZE,
+ alpha: float = DEFAULT_ALPHA,
+ iqr_k: float = DEFAULT_IQR_K,
+ q_low: float = DEFAULT_Q_LOW,
+ q_high: float = DEFAULT_Q_HIGH,
+ alpha_min: float = DEFAULT_ALPHA_MIN,
+ alpha_max: float = DEFAULT_ALPHA_MAX,
+ bins_x: int = DEFAULT_BINS_X,
+ bins_y: int = DEFAULT_BINS_Y,
+ y_min: float = DEFAULT_Y_MIN,
+ y_max: float = DEFAULT_Y_MAX,
+ trend_method: str = DEFAULT_TREND_METHOD,
+ trend_frac: float = DEFAULT_TREND_FRAC,
+ trend_color: str = DEFAULT_TREND_COLOR,
+ trend_linewidth: float = DEFAULT_TREND_LINEWIDTH,
+ rolling_window: int = DEFAULT_ROLLING_WINDOW,
+ savgol_window: int = DEFAULT_SAVGOL_WINDOW,
+ savgol_poly: int = DEFAULT_SAVGOL_POLY,
+) -> None:
+ in_range = filter_x_range(df[[x_col, y_col]].dropna(), x_col, x_max)
+ cleaned = remove_outliers(
+ in_range,
+ y_col=y_col,
+ x_col=x_col,
+ iqr_k=iqr_k,
+ q_low=q_low,
+ q_high=q_high,
+ )
+ plot_density_scatter(
+ cleaned,
+ y_col=y_col,
+ title=f"Облако без выбросов (IQR) {y_col} vs {x_col}",
+ out_path=out_dir / "scatter_clean.png",
+ x_col=x_col,
+ x_max=x_max,
+ scatter_color=scatter_color,
+ point_size=point_size,
+ alpha=alpha,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ y_min=y_min,
+ y_max=y_max,
+ trend_method=trend_method,
+ trend_frac=trend_frac,
+ trend_color=trend_color,
+ trend_linewidth=trend_linewidth,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
+
+
+def plot_clean_trend_scatter(
+ df: pd.DataFrame,
+ y_col: str,
+ out_dir: Path,
+ *,
+ x_col: str = X_COL,
+ x_max: float = DEFAULT_X_MAX,
+ scatter_color: str = DEFAULT_SCATTER_COLOR,
+ point_size: int = DEFAULT_POINT_SIZE,
+ alpha: float = DEFAULT_TREND_ALPHA,
+ iqr_k: float = DEFAULT_IQR_K,
+ q_low: float = DEFAULT_Q_LOW,
+ q_high: float = DEFAULT_Q_HIGH,
+ trend_frac: float = DEFAULT_TREND_FRAC,
+ trend_color: str = DEFAULT_TREND_COLOR,
+ trend_linewidth: float = DEFAULT_TREND_LINEWIDTH,
+ alpha_min: float = DEFAULT_ALPHA_MIN,
+ alpha_max: float = DEFAULT_ALPHA_MAX,
+ bins_x: int = DEFAULT_BINS_X,
+ bins_y: int = DEFAULT_BINS_Y,
+ y_min: float = DEFAULT_Y_MIN,
+ y_max: float = DEFAULT_Y_MAX,
+ trend_method: str = DEFAULT_TREND_METHOD,
+ rolling_window: int = DEFAULT_ROLLING_WINDOW,
+ savgol_window: int = DEFAULT_SAVGOL_WINDOW,
+ savgol_poly: int = DEFAULT_SAVGOL_POLY,
+ return_components: bool = False,
+) -> None:
+ in_range = filter_x_range(df[[x_col, y_col]].dropna(), x_col, x_max)
+ cleaned = remove_outliers(
+ in_range,
+ y_col=y_col,
+ x_col=x_col,
+ iqr_k=iqr_k,
+ q_low=q_low,
+ q_high=q_high,
+ )
+ plot_density_scatter(
+ cleaned,
+ y_col=y_col,
+ title=f"Облако без выбросов + тренд {y_col} vs {x_col}",
+ out_path=out_dir / "scatter_trend.png",
+ x_col=x_col,
+ x_max=x_max,
+ scatter_color=scatter_color,
+ point_size=point_size,
+ alpha=alpha,
+ with_trend=True,
+ trend_frac=trend_frac,
+ trend_color=trend_color,
+ trend_linewidth=trend_linewidth,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ y_min=y_min,
+ y_max=y_max,
+ trend_method=trend_method,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
+ if return_components:
+ return fig, ax, cleaned
+
+
+def generate_scatter_set(
+ df: pd.DataFrame,
+ y_col: str,
+ *,
+ base_out_dir: Path = BASE_OUT_DIR,
+ x_col: str = X_COL,
+ x_max: float = DEFAULT_X_MAX,
+ scatter_color: str = DEFAULT_SCATTER_COLOR,
+ point_size: int = DEFAULT_POINT_SIZE,
+ alpha: float = DEFAULT_ALPHA,
+ trend_alpha: float = DEFAULT_TREND_ALPHA,
+ trend_frac: float = DEFAULT_TREND_FRAC,
+ trend_color: str = DEFAULT_TREND_COLOR,
+ trend_linewidth: float = DEFAULT_TREND_LINEWIDTH,
+ iqr_k: float = DEFAULT_IQR_K,
+ q_low: float = DEFAULT_Q_LOW,
+ q_high: float = DEFAULT_Q_HIGH,
+ alpha_min: float = DEFAULT_ALPHA_MIN,
+ alpha_max: float = DEFAULT_ALPHA_MAX,
+ bins_x: int = DEFAULT_BINS_X,
+ bins_y: int = DEFAULT_BINS_Y,
+ y_min: float = DEFAULT_Y_MIN,
+ y_max: float = DEFAULT_Y_MAX,
+ trend_method: str = DEFAULT_TREND_METHOD,
+ rolling_window: int = DEFAULT_ROLLING_WINDOW,
+ savgol_window: int = DEFAULT_SAVGOL_WINDOW,
+ savgol_poly: int = DEFAULT_SAVGOL_POLY,
+) -> None:
+ """Генерирует три облака (все, без выбросов, без выбросов + тренд) в папку y_col."""
+ out_dir = base_out_dir / str(y_col).replace("/", "_")
+ plot_raw_scatter(
+ df,
+ y_col=y_col,
+ out_dir=out_dir,
+ x_col=x_col,
+ x_max=x_max,
+ scatter_color=scatter_color,
+ point_size=point_size,
+ alpha=alpha,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ y_min=y_min,
+ y_max=y_max,
+ trend_method=trend_method,
+ trend_frac=trend_frac,
+ trend_color=trend_color,
+ trend_linewidth=trend_linewidth,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
+ plot_clean_scatter(
+ df,
+ y_col=y_col,
+ out_dir=out_dir,
+ x_col=x_col,
+ x_max=x_max,
+ scatter_color=scatter_color,
+ point_size=point_size,
+ alpha=alpha,
+ iqr_k=iqr_k,
+ q_low=q_low,
+ q_high=q_high,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ y_min=y_min,
+ y_max=y_max,
+ trend_method=trend_method,
+ trend_frac=trend_frac,
+ trend_color=trend_color,
+ trend_linewidth=trend_linewidth,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
+ plot_clean_trend_scatter(
+ df,
+ y_col=y_col,
+ out_dir=out_dir,
+ x_col=x_col,
+ x_max=x_max,
+ scatter_color=scatter_color,
+ point_size=point_size,
+ alpha=trend_alpha,
+ iqr_k=iqr_k,
+ q_low=q_low,
+ q_high=q_high,
+ trend_frac=trend_frac,
+ trend_color=trend_color,
+ trend_linewidth=trend_linewidth,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ y_min=y_min,
+ y_max=y_max,
+ trend_method=trend_method,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
+
+
def main() -> None:
client = load_client_level(DB_PATH)
-
- plot_density_scatter(
- client,
- title="Облако: заказы vs средние показы в день (все клиенты)",
- out_name="orders_vs_avg_imp_scatter.png",
- )
-
- cleaned = remove_outliers(client)
- plot_density_scatter(
- cleaned,
- title="Облако без выбросов (IQR) заказы vs средние показы в день",
- out_name="orders_vs_avg_imp_scatter_clean.png",
- )
-
- plot_density_scatter(
- cleaned,
- title="Облако без выбросов + тренд",
- out_name="orders_vs_avg_imp_scatter_trend.png",
- with_trend=True,
- alpha=0.1,
- )
+ zero_orders = (client["orders_amt_total"] == 0).sum()
+ non_zero = len(client) - zero_orders
+ if len(client):
+ print(f"orders=0: {zero_orders} ({zero_orders / len(client):.2%}); orders>0: {non_zero} ({non_zero / len(client):.2%})")
+ generate_scatter_set(client, y_col="orders_amt_total")
if __name__ == "__main__":
diff --git a/main_hypot/quadreg.py b/main_hypot/quadreg.py
index 7863537..1f164b5 100644
--- a/main_hypot/quadreg.py
+++ b/main_hypot/quadreg.py
@@ -1,240 +1,352 @@
-import sqlite3
-from pathlib import Path
-import sys
import numpy as np
import pandas as pd
-import matplotlib.pyplot as plt
-import seaborn as sns
-
import statsmodels.api as sm
+from pathlib import Path
+from typing import Tuple, Optional
-sns.set_theme(style="whitegrid")
-plt.rcParams["figure.figsize"] = (10, 6)
+from sklearn.metrics import r2_score, roc_auc_score
-# -----------------------------
-# Load + feature engineering (как у тебя)
-# -----------------------------
-project_root = Path(__file__).resolve().parent.parent
-sys.path.append(str(project_root / "preanalysis_old_bad"))
-import eda_utils as eda # noqa: E402
+import best_model_and_plots as bmp
-db_path = project_root / "dataset" / "ds.sqlite"
-conn = sqlite3.connect(db_path)
-df = pd.read_sql_query("select * from communications", conn, parse_dates=["business_dt"])
-conn.close()
+# Наследуем константы/визуальные настройки из scatter-скрипта
+X_COL = bmp.X_COL
+DEFAULT_X_MAX = bmp.DEFAULT_X_MAX
+DEFAULT_Y_MIN = bmp.DEFAULT_Y_MIN
+DEFAULT_Y_MAX = bmp.DEFAULT_Y_MAX
+DEFAULT_SCATTER_COLOR = bmp.DEFAULT_SCATTER_COLOR
+DEFAULT_POINT_SIZE = bmp.DEFAULT_POINT_SIZE
+DEFAULT_ALPHA = bmp.DEFAULT_ALPHA
+DEFAULT_ALPHA_MIN = bmp.DEFAULT_ALPHA_MIN
+DEFAULT_ALPHA_MAX = bmp.DEFAULT_ALPHA_MAX
+DEFAULT_BINS_X = bmp.DEFAULT_BINS_X
+DEFAULT_BINS_Y = bmp.DEFAULT_BINS_Y
+DEFAULT_IQR_K = bmp.DEFAULT_IQR_K
+DEFAULT_Q_LOW = bmp.DEFAULT_Q_LOW
+DEFAULT_Q_HIGH = bmp.DEFAULT_Q_HIGH
+DEFAULT_TREND_FRAC = bmp.DEFAULT_TREND_FRAC
+DEFAULT_TREND_COLOR = bmp.DEFAULT_TREND_COLOR
+DEFAULT_TREND_LINEWIDTH = bmp.DEFAULT_TREND_LINEWIDTH
+BASE_OUT_DIR = bmp.BASE_OUT_DIR
-for cols, name in [
- (eda.ACTIVE_IMP_COLS, "active_imp_total"),
- (eda.PASSIVE_IMP_COLS, "passive_imp_total"),
- (eda.ACTIVE_CLICK_COLS, "active_click_total"),
- (eda.PASSIVE_CLICK_COLS, "passive_click_total"),
- (eda.ORDER_COLS, "orders_amt_total"),
-]:
- df[name] = df[cols].sum(axis=1)
-df["imp_total"] = df["active_imp_total"] + df["passive_imp_total"]
-df["click_total"] = df["active_click_total"] + df["passive_click_total"]
-
-contact_days = df.groupby("id")["business_dt"].nunique().rename("contact_days")
-
-client = (
- df.groupby("id")
- .agg(
- imp_total=("imp_total", "sum"),
- click_total=("click_total", "sum"),
- orders_amt_total=("orders_amt_total", "sum"),
- age=("age", "median"),
- gender_cd=("gender_cd", lambda s: s.mode().iat[0]),
- device_platform_cd=("device_platform_cd", lambda s: s.mode().iat[0]),
+def prepare_clean_data(
+ y_col: str,
+ *,
+ x_col: str = X_COL,
+ x_max: float = DEFAULT_X_MAX,
+ iqr_k: float = DEFAULT_IQR_K,
+ q_low: float = DEFAULT_Q_LOW,
+ q_high: float = DEFAULT_Q_HIGH,
+) -> Tuple[np.ndarray, np.ndarray, pd.DataFrame]:
+ """Готовит очищенные данные: фильтр по x и IQR, возвращает x, y и DataFrame."""
+ df = bmp.load_client_level(bmp.DB_PATH)
+ base = df[[x_col, y_col]].dropna()
+ in_range = bmp.filter_x_range(base, x_col, x_max)
+ cleaned = bmp.remove_outliers(
+ in_range,
+ y_col=y_col,
+ x_col=x_col,
+ iqr_k=iqr_k,
+ q_low=q_low,
+ q_high=q_high,
)
- .merge(contact_days, on="id", how="left")
- .reset_index()
-)
+ x = cleaned[x_col].to_numpy()
+ y = cleaned[y_col].to_numpy()
+ return x, y, cleaned
-client["order_rate"] = eda.safe_divide(client["orders_amt_total"], client["imp_total"])
-client["order_rate_pct"] = 100 * client["order_rate"]
-client["avg_imp_per_day"] = eda.safe_divide(client["imp_total"], client["contact_days"])
-# -----------------------------
-# Aggregate curve points (как у тебя)
-# -----------------------------
-stats_imp = (
- client.groupby("avg_imp_per_day", as_index=False)
- .agg(
- orders_mean=("orders_amt_total", "mean"),
- n_clients=("id", "count"),
+def fit_quadratic(
+ x: np.ndarray,
+ y_target: np.ndarray,
+ weights: Optional[np.ndarray] = None,
+) -> Tuple[sm.regression.linear_model.RegressionResultsWrapper, np.ndarray]:
+ """Фитим квадратику по x -> y_target (WLS), предсказываем на тех же x."""
+ X_design = np.column_stack([x, x**2])
+ X_design = sm.add_constant(X_design)
+ if weights is not None:
+ model = sm.WLS(y_target, X_design, weights=weights).fit(cov_type="HC3")
+ else:
+ model = sm.OLS(y_target, X_design).fit(cov_type="HC3")
+
+ y_hat = model.predict(X_design)
+ return model, y_hat
+
+
+def compute_metrics(y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[Optional[float], Optional[float]]:
+ """Возвращает (R2, AUC по метке y>0)."""
+ r2 = r2_score(y_true, y_pred)
+ auc = None
+ try:
+ auc = roc_auc_score((y_true > 0).astype(int), y_pred)
+ except ValueError:
+ auc = None
+ return r2, auc
+
+
+def map_trend_to_points(x_points: np.ndarray, trend_x: np.ndarray, trend_y: np.ndarray) -> np.ndarray:
+ """Интерполирует значения тренда в точках x_points."""
+ if len(trend_x) == 0:
+ return np.zeros_like(x_points)
+ # гарантируем отсортированность
+ order = np.argsort(trend_x)
+ tx = trend_x[order]
+ ty = trend_y[order]
+ return np.interp(x_points, tx, ty, left=ty[0], right=ty[-1])
+
+
+def density_weights(
+ df: pd.DataFrame,
+ y_col: str,
+ *,
+ x_col: str = X_COL,
+ x_max: float = DEFAULT_X_MAX,
+ alpha_min: float = DEFAULT_ALPHA_MIN,
+ alpha_max: float = DEFAULT_ALPHA_MAX,
+ bins_x: int = DEFAULT_BINS_X,
+ bins_y: int = DEFAULT_BINS_Y,
+ y_min: float = DEFAULT_Y_MIN,
+ y_max: float = DEFAULT_Y_MAX,
+) -> np.ndarray:
+ """Строит веса из плотности (та же схема, что и альфы на графике)."""
+ alphas = bmp.compute_density_alpha(
+ df,
+ x_col=x_col,
+ y_col=y_col,
+ x_max=x_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ y_min=y_min,
+ y_max_limit=y_max,
)
- .sort_values("avg_imp_per_day")
-).reset_index(drop=True)
+ if len(alphas) == 0:
+ return np.ones(len(df))
+ denom = max(alpha_max - alpha_min, 1e-9)
+ weights = (alphas - alpha_min) / denom
+ weights = np.clip(weights, 0, None)
+ return weights
-# -----------------------------
-# Filtering / outlier logic (как у тебя)
-# -----------------------------
-K_MULT = 2
-ABS_DY_MIN = 1
-X_MAX = 16
-stats_f = stats_imp[stats_imp["avg_imp_per_day"] <= X_MAX].copy().reset_index(drop=True)
+def plot_quadratic_overlay(
+ df: pd.DataFrame,
+ model: sm.regression.linear_model.RegressionResultsWrapper,
+ y_col: str,
+ out_path: Path,
+ *,
+ x_col: str = X_COL,
+ x_max: float = DEFAULT_X_MAX,
+ y_min: float = DEFAULT_Y_MIN,
+ y_max: float = DEFAULT_Y_MAX,
+ scatter_color: str = DEFAULT_SCATTER_COLOR,
+ point_size: int = DEFAULT_POINT_SIZE,
+ alpha: float = DEFAULT_ALPHA,
+ alpha_min: float = DEFAULT_ALPHA_MIN,
+ alpha_max: float = DEFAULT_ALPHA_MAX,
+ bins_x: int = DEFAULT_BINS_X,
+ bins_y: int = DEFAULT_BINS_Y,
+ trend_frac: float = DEFAULT_TREND_FRAC,
+ trend_color: str = DEFAULT_TREND_COLOR,
+ trend_linewidth: float = DEFAULT_TREND_LINEWIDTH,
+ trend_method: str = bmp.DEFAULT_TREND_METHOD,
+ rolling_window: int = bmp.DEFAULT_ROLLING_WINDOW,
+ savgol_window: int = bmp.DEFAULT_SAVGOL_WINDOW,
+ savgol_poly: int = bmp.DEFAULT_SAVGOL_POLY,
+) -> None:
+ """Рисует облако + LOWESS-тренд + линию квадр. регрессии."""
+ fig, ax = bmp.plt.subplots(figsize=(8, 8))
+ alpha_values = bmp.compute_density_alpha(
+ df,
+ x_col=x_col,
+ y_col=y_col,
+ x_max=x_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ y_min=y_min,
+ y_max_limit=y_max,
+ )
+ ax.scatter(
+ df[x_col],
+ df[y_col],
+ color=scatter_color,
+ s=point_size,
+ alpha=alpha_values if len(alpha_values) else alpha,
+ linewidths=0,
+ label="Точки (очищено)",
+ )
-before = len(stats_f)
-y = stats_f["orders_mean"]
-abs_dy = y.diff().abs()
+ # Тренд по выбранному методу
+ tx, ty = bmp.compute_trend(
+ df,
+ y_col=y_col,
+ x_col=x_col,
+ method=trend_method,
+ lowess_frac=trend_frac,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
+ if len(tx):
+ ax.plot(tx, ty, color=trend_color, linewidth=trend_linewidth, label=f"{trend_method} тренд")
-prev3_mean = abs_dy.shift(1).rolling(window=3, min_periods=3).mean()
-ratio = abs_dy / (prev3_mean.replace(0, np.nan))
+ # Квадратичная регрессия
+ x_grid = np.linspace(0, x_max, 400)
+ X_grid = sm.add_constant(np.column_stack([x_grid, x_grid**2]))
+ y_grid = model.predict(X_grid)
+ ax.plot(x_grid, y_grid, color="blue", linewidth=2.3, linestyle="--", label="Квадр. регрессия")
-is_outlier = ((abs_dy >= ABS_DY_MIN) & (ratio >= K_MULT)) | (y > 5)
-is_outlier = is_outlier.fillna(False)
+ ax.set_xlim(0, x_max)
+ ax.set_ylim(y_min, y_max)
+ ax.set_yticks(range(0, int(y_max) + 1, 2))
+ ax.set_xlabel("Среднее число показов в день")
+ ax.set_ylabel(y_col)
+ ax.set_title(f"Квадратичная регрессия: {y_col} vs {x_col}")
+ ax.grid(alpha=0.3)
+ ax.legend()
-stats_f = stats_f.loc[~is_outlier].copy().reset_index(drop=True)
-after = len(stats_f)
-print(f"Фильтрация: было {before}, стало {after}, убрали {before-after} точек")
+ out_path.parent.mkdir(parents=True, exist_ok=True)
+ fig.tight_layout()
+ fig.savefig(out_path, dpi=150)
+ bmp.plt.close(fig)
+ print(f"Saved {out_path}")
-# -----------------------------
-# Smoothing (оставим для визуалки, но регрессию делаем по orders_mean)
-# -----------------------------
-w = max(7, int(len(stats_f) * 0.05))
-if w % 2 == 0:
- w += 1
-stats_f["orders_smooth"] = (
- stats_f["orders_mean"]
- .rolling(window=w, center=True, min_periods=1)
- .mean()
-)
+def report_model(
+ model: sm.regression.linear_model.RegressionResultsWrapper,
+ r2: Optional[float],
+ auc: Optional[float],
+ *,
+ r2_trend: Optional[float] = None,
+) -> None:
+ params = model.params
+ pvals = model.pvalues
+ fmt_p = lambda p: f"<1e-300" if p < 1e-300 else f"{p:.4g}"
+ print("\n=== Квадратичная регрессия (y ~ 1 + x + x^2) ===")
+ print(f"const: {params[0]:.6f} (p={fmt_p(pvals[0])})")
+ print(f"beta1 x: {params[1]:.6f} (p={fmt_p(pvals[1])})")
+ print(f"beta2 x^2: {params[2]:.6f} (p={fmt_p(pvals[2])})")
+ print(f"R2: {r2:.4f}" if r2 is not None else "R2: n/a")
+ if r2_trend is not None:
+ print(f"R2 vs trend target: {r2_trend:.4f}")
+ print(f"AUC (target y>0): {auc:.4f}" if auc is not None else "AUC: n/a (один класс)")
-# -----------------------------
-# Cost line (как у тебя, нормировка "в единицах заказов")
-# -----------------------------
-c = stats_f["orders_smooth"].max() / stats_f["avg_imp_per_day"].max()
-stats_f["cost_line"] = c * stats_f["avg_imp_per_day"]
-# -----------------------------
-# Quadratic regression: orders_mean ~ 1 + x + x^2
-# WLS with weights = n_clients
-# -----------------------------
-x = stats_f["avg_imp_per_day"].to_numpy()
-y = stats_f["orders_mean"].to_numpy()
-wts = stats_f["n_clients"].to_numpy().astype(float)
+def generate_quadratic_analysis(
+ y_col: str,
+ *,
+ x_col: str = X_COL,
+ base_out_dir: Path = BASE_OUT_DIR,
+ config_name: str = "default",
+ x_max: float = DEFAULT_X_MAX,
+ y_min: float = DEFAULT_Y_MIN,
+ y_max: float = DEFAULT_Y_MAX,
+ scatter_color: str = DEFAULT_SCATTER_COLOR,
+ point_size: int = DEFAULT_POINT_SIZE,
+ alpha: float = DEFAULT_ALPHA,
+ alpha_min: float = DEFAULT_ALPHA_MIN,
+ alpha_max: float = DEFAULT_ALPHA_MAX,
+ bins_x: int = DEFAULT_BINS_X,
+ bins_y: int = DEFAULT_BINS_Y,
+ trend_frac: float = DEFAULT_TREND_FRAC,
+ trend_color: str = DEFAULT_TREND_COLOR,
+ trend_linewidth: float = DEFAULT_TREND_LINEWIDTH,
+ iqr_k: float = DEFAULT_IQR_K,
+ q_low: float = DEFAULT_Q_LOW,
+ q_high: float = DEFAULT_Q_HIGH,
+ trend_method: str = bmp.DEFAULT_TREND_METHOD,
+ rolling_window: int = bmp.DEFAULT_ROLLING_WINDOW,
+ savgol_window: int = bmp.DEFAULT_SAVGOL_WINDOW,
+ savgol_poly: int = bmp.DEFAULT_SAVGOL_POLY,
+) -> dict:
+ x, y, cleaned_df = prepare_clean_data(
+ y_col,
+ x_col=x_col,
+ x_max=x_max,
+ iqr_k=iqr_k,
+ q_low=q_low,
+ q_high=q_high,
+ )
+ w = density_weights(
+ cleaned_df,
+ y_col=y_col,
+ x_col=x_col,
+ x_max=x_max,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ y_min=y_min,
+ y_max=y_max,
+ )
+ # тренд по выбранному методу
+ tx, ty = bmp.compute_trend(
+ cleaned_df,
+ y_col=y_col,
+ x_col=x_col,
+ method=trend_method,
+ lowess_frac=trend_frac,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
-X = np.column_stack([x, x**2])
-X = sm.add_constant(X) # [1, x, x^2]
+ trend_target = map_trend_to_points(x, tx, ty)
+ model, y_hat = fit_quadratic(x, trend_target, weights=w)
+ r2_actual, auc = compute_metrics(y, y_hat)
+ r2_trend = r2_score(trend_target, y_hat) if len(trend_target) else None
+ report_model(model, r2_actual, auc, r2_trend=r2_trend)
-model = sm.WLS(y, X, weights=wts)
-res = model.fit(cov_type="HC3") # робастные ошибки
+ out_dir = base_out_dir / config_name / str(y_col).replace("/", "_")
+ plot_quadratic_overlay(
+ cleaned_df,
+ model,
+ y_col=y_col,
+ out_path=out_dir / "quad_regression.png",
+ x_col=x_col,
+ x_max=x_max,
+ y_min=y_min,
+ y_max=y_max,
+ scatter_color=scatter_color,
+ point_size=point_size,
+ alpha=alpha,
+ alpha_min=alpha_min,
+ alpha_max=alpha_max,
+ bins_x=bins_x,
+ bins_y=bins_y,
+ trend_frac=trend_frac,
+ trend_color=trend_color,
+ trend_linewidth=trend_linewidth,
+ trend_method=trend_method,
+ rolling_window=rolling_window,
+ savgol_window=savgol_window,
+ savgol_poly=savgol_poly,
+ )
-b0, b1, b2 = res.params
-p_b1_two = res.pvalues[1]
-p_b2_two = res.pvalues[2]
+ return {
+ "config": config_name,
+ "y_col": y_col,
+ "r2": r2_actual,
+ "r2_trend": r2_trend,
+ "auc": auc,
+ "params": {
+ "trend_method": trend_method,
+ "trend_frac": trend_frac,
+ "rolling_window": rolling_window,
+ "savgol_window": savgol_window,
+ "savgol_poly": savgol_poly,
+ "x_max": x_max,
+ "weights_alpha_range": (alpha_min, alpha_max),
+ },
+ "coeffs": model.params.tolist(),
+ "pvalues": model.pvalues.tolist(),
+ }
-# one-sided p-values for directional hypotheses
-p_b1_pos = (p_b1_two / 2) if (b1 > 0) else (1 - p_b1_two / 2)
-p_b2_neg = (p_b2_two / 2) if (b2 < 0) else (1 - p_b2_two / 2)
-# turning point (if concave)
-x_star = None
-y_star = None
-if b2 < 0:
- x_star = -b1 / (2 * b2)
- y_star = b0 + b1 * x_star + b2 * x_star**2
+def main() -> None:
+ generate_quadratic_analysis("orders_amt_total")
-# Intersection with cost line: b0 + b1 x + b2 x^2 = c x -> b2 x^2 + (b1 - c) x + b0 = 0
-x_cross = None
-roots = np.roots([b2, (b1 - c), b0]) # may be complex
-roots = [r.real for r in roots if abs(r.imag) < 1e-8]
-roots_in_range = [r for r in roots if (stats_f["avg_imp_per_day"].min() <= r <= stats_f["avg_imp_per_day"].max())]
-if roots_in_range:
- # берём корень ближе к "правой" части (обычно пересечение интереснее там, где начинается невыгодно)
- x_cross = max(roots_in_range)
-# -----------------------------
-# Print results + interpretation (по-человечески)
-# -----------------------------
-print("\n=== Квадратичная регрессия (WLS, веса = n_clients, SE = HC3) ===")
-print(res.summary())
-
-print("\n=== Проверка гипотезы убывающей отдачи / спада ===")
-print(f"β1 (линейный эффект): {b1:.6f}, двусторонний p={p_b1_two:.4g}, односторонний p(β1>0)={p_b1_pos:.4g}")
-print(f"β2 (кривизна): {b2:.6f}, двусторонний p={p_b2_two:.4g}, односторонний p(β2<0)={p_b2_neg:.4g}")
-
-alpha = 0.05
-support = (b1 > 0) and (b2 < 0) and (p_b1_pos < alpha) and (p_b2_neg < alpha)
-
-if support:
- print("\nВывод: данные поддерживают гипотезу нелинейности.")
- print("Есть статистически значимый рост на малых x (β1>0) и насыщение/спад (β2<0).")
-else:
- print("\nВывод: строгого статистического подтверждения по знакам/значимости может не хватить.")
- print("Но знак коэффициентов и форма кривой всё равно могут быть согласованы с гипотезой.")
- print("На защите говори аккуратно: 'наблюдается тенденция/согласуется с гипотезой'.")
-
-if x_star is not None:
- print(f"\nОценка 'порога насыщения' (вершина параболы): x* = {x_star:.3f} показов/день")
- print(f"Прогноз среднего числа заказов в x*: y(x*) ≈ {y_star:.3f}")
- if not (stats_f["avg_imp_per_day"].min() <= x_star <= stats_f["avg_imp_per_day"].max()):
- print("Внимание: x* вне диапазона наблюдений, интерпретация как 'оптимума' сомнительная.")
-else:
- print("\nВершина не считается как максимум: β2 >= 0 (нет выпуклости вниз).")
-
-if x_cross is not None:
- y_cross = b0 + b1 * x_cross + b2 * x_cross**2
- print(f"\nТочка пересечения с линейными расходами (в нормировке c={c:.4f}): x≈{x_cross:.3f}, y≈{y_cross:.3f}")
-else:
- print("\nПересечение с линией расходов в выбранной нормировке не найдено (или вне диапазона).")
-
-# -----------------------------
-# Plot: points + smooth + quadratic fit + cost + markers
-# -----------------------------
-x_grid = np.linspace(stats_f["avg_imp_per_day"].min(), stats_f["avg_imp_per_day"].max(), 300)
-y_hat = b0 + b1 * x_grid + b2 * x_grid**2
-cost_hat = c * x_grid
-
-plt.figure(figsize=(10, 8))
-
-plt.plot(
- stats_f["avg_imp_per_day"], stats_f["orders_mean"],
- marker="o", linestyle="-", linewidth=1, alpha=0.3,
- label="Среднее число заказов (по точкам)"
-)
-
-plt.plot(
- stats_f["avg_imp_per_day"], stats_f["orders_smooth"],
- color="red", linewidth=2.2,
- label="Сглаженный тренд (rolling mean)"
-)
-
-plt.plot(
- x_grid, y_hat,
- color="blue", linewidth=2.5,
- label="Квадратичная регрессия (WLS)"
-)
-
-plt.plot(
- x_grid, cost_hat,
- color="black", linestyle="--", linewidth=2,
- label="Линейные расходы на показы"
-)
-
-if x_star is not None and (stats_f["avg_imp_per_day"].min() <= x_star <= stats_f["avg_imp_per_day"].max()):
- plt.axvline(x_star, color="blue", linestyle=":", linewidth=2)
- plt.scatter([x_star], [y_star], color="blue", zorder=5)
- plt.text(x_star, y_star, f" x*={x_star:.2f}", va="bottom")
-
-if x_cross is not None:
- y_cross = b0 + b1 * x_cross + b2 * x_cross**2
- plt.axvline(x_cross, color="black", linestyle=":", linewidth=2, alpha=0.8)
- plt.scatter([x_cross], [y_cross], color="black", zorder=5)
- plt.text(x_cross, y_cross, f" пересечение≈{x_cross:.2f}", va="top")
-
-plt.xlabel("Среднее число показов в день")
-plt.ylabel("Среднее число заказов")
-plt.title("Нелинейный эффект интенсивности коммуникаций: квадратичная регрессия")
-plt.legend()
-plt.grid(alpha=0.3)
-plt.tight_layout()
-
-out_dir = project_root / "main_hypot"
-out_dir.mkdir(parents=True, exist_ok=True)
-out_path = out_dir / "quad_regression_with_costs.png"
-plt.savefig(out_path, dpi=150)
-print(f"\nSaved: {out_path}")
+if __name__ == "__main__":
+ main()
diff --git a/main_hypot/best_bins.png b/old_generated_plots/best_bins.png
similarity index 100%
rename from main_hypot/best_bins.png
rename to old_generated_plots/best_bins.png
diff --git a/main_hypot/best_model_prob.png b/old_generated_plots/best_model_prob.png
similarity index 100%
rename from main_hypot/best_model_prob.png
rename to old_generated_plots/best_model_prob.png
diff --git a/main_hypot/orders_vs_avg_imp_per_day.png b/old_generated_plots/orders_vs_avg_imp_per_day.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_per_day.png
rename to old_generated_plots/orders_vs_avg_imp_per_day.png
diff --git a/main_hypot/orders_vs_avg_imp_per_day_filtered_smoothed.png b/old_generated_plots/orders_vs_avg_imp_per_day_filtered_smoothed.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_per_day_filtered_smoothed.png
rename to old_generated_plots/orders_vs_avg_imp_per_day_filtered_smoothed.png
diff --git a/main_hypot/orders_vs_avg_imp_per_day_smoothed.png b/old_generated_plots/orders_vs_avg_imp_per_day_smoothed.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_per_day_smoothed.png
rename to old_generated_plots/orders_vs_avg_imp_per_day_smoothed.png
diff --git a/main_hypot/orders_vs_avg_imp_per_day_smoothed_clean.png b/old_generated_plots/orders_vs_avg_imp_per_day_smoothed_clean.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_per_day_smoothed_clean.png
rename to old_generated_plots/orders_vs_avg_imp_per_day_smoothed_clean.png
diff --git a/main_hypot/orders_vs_avg_imp_scatter.png b/old_generated_plots/orders_vs_avg_imp_scatter.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_scatter.png
rename to old_generated_plots/orders_vs_avg_imp_scatter.png
diff --git a/main_hypot/orders_vs_avg_imp_scatter_clean.png b/old_generated_plots/orders_vs_avg_imp_scatter_clean.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_scatter_clean.png
rename to old_generated_plots/orders_vs_avg_imp_scatter_clean.png
diff --git a/main_hypot/orders_vs_avg_imp_scatter_trend.png b/old_generated_plots/orders_vs_avg_imp_scatter_trend.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_scatter_trend.png
rename to old_generated_plots/orders_vs_avg_imp_scatter_trend.png
diff --git a/main_hypot/orders_vs_avg_imp_with_costs.png b/old_generated_plots/orders_vs_avg_imp_with_costs.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_with_costs.png
rename to old_generated_plots/orders_vs_avg_imp_with_costs.png
diff --git a/main_hypot/orders_vs_avg_imp_without_costs.png b/old_generated_plots/orders_vs_avg_imp_without_costs.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_without_costs.png
rename to old_generated_plots/orders_vs_avg_imp_without_costs.png
diff --git a/main_hypot/orders_vs_avg_imp_without_costs_no_filter.png b/old_generated_plots/orders_vs_avg_imp_without_costs_no_filter.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_without_costs_no_filter.png
rename to old_generated_plots/orders_vs_avg_imp_without_costs_no_filter.png
diff --git a/main_hypot/orders_vs_avg_imp_without_costs_no_filter_no_dropouts.png b/old_generated_plots/orders_vs_avg_imp_without_costs_no_filter_no_dropouts.png
similarity index 100%
rename from main_hypot/orders_vs_avg_imp_without_costs_no_filter_no_dropouts.png
rename to old_generated_plots/orders_vs_avg_imp_without_costs_no_filter_no_dropouts.png
diff --git a/main_hypot/quad_regression_with_costs.png b/old_generated_plots/quad_regression_with_costs.png
similarity index 100%
rename from main_hypot/quad_regression_with_costs.png
rename to old_generated_plots/quad_regression_with_costs.png
diff --git a/main_hypot/stat_bins.png b/old_generated_plots/stat_bins.png
similarity index 100%
rename from main_hypot/stat_bins.png
rename to old_generated_plots/stat_bins.png
diff --git a/preanalysis/eda_utils.py b/preanalysis/eda_utils.py
new file mode 100644
index 0000000..802a6d8
--- /dev/null
+++ b/preanalysis/eda_utils.py
@@ -0,0 +1,154 @@
+from __future__ import annotations
+
+from pathlib import Path
+from typing import Dict, Iterable, List
+
+import numpy as np
+import pandas as pd
+
+# Paths and column groups
+DATA_PATH = Path("dataset/ds.csv")
+CATEGORIES: List[str] = ["ent", "super", "transport", "shopping", "hotel", "avia"]
+
+ACTIVE_IMP_COLS = [f"active_imp_{c}" for c in CATEGORIES]
+PASSIVE_IMP_COLS = [f"passive_imp_{c}" for c in CATEGORIES]
+ACTIVE_CLICK_COLS = [f"active_click_{c}" for c in CATEGORIES]
+PASSIVE_CLICK_COLS = [f"passive_click_{c}" for c in CATEGORIES]
+ORDER_COLS = [f"orders_amt_{c}" for c in CATEGORIES]
+
+NUMERIC_COLS = (
+ ACTIVE_IMP_COLS
+ + PASSIVE_IMP_COLS
+ + ACTIVE_CLICK_COLS
+ + PASSIVE_CLICK_COLS
+ + ORDER_COLS
+ + ["age"]
+)
+CAT_COLS = ["gender_cd", "device_platform_cd"]
+
+
+def safe_divide(numerator: pd.Series | float, denominator: pd.Series | float) -> pd.Series:
+ """Divide with protection against zero (works for Series and scalars)."""
+ if isinstance(denominator, pd.Series):
+ denom = denominator.replace(0, np.nan)
+ else:
+ denom = np.nan if float(denominator) == 0 else denominator
+ return numerator / denom
+
+
+def normalize_gender(series: pd.Series) -> pd.Series:
+ cleaned = series.fillna("UNKNOWN").astype(str).str.strip().str.upper()
+ mapping = {"M": "M", "MALE": "M", "F": "F", "FEMALE": "F"}
+ return cleaned.map(mapping).fillna("UNKNOWN")
+
+
+def normalize_device(series: pd.Series) -> pd.Series:
+ cleaned = series.fillna("unknown").astype(str).str.strip()
+ lowered = cleaned.str.lower().str.replace(" ", "").str.replace("_", "")
+ mapping = {"android": "Android", "ios": "iOS", "ipados": "iPadOS", "ipad": "iPadOS"}
+ mapped = lowered.map(mapping)
+ fallback = cleaned.str.title()
+ return mapped.fillna(fallback)
+
+
+def add_age_group(df: pd.DataFrame) -> pd.DataFrame:
+ bins = [0, 25, 35, 45, 55, np.inf]
+ labels = ["<25", "25-34", "35-44", "45-54", "55+"]
+ df["age_group"] = pd.cut(df["age"], bins=bins, labels=labels, right=False)
+ return df
+
+
+def add_totals(df: pd.DataFrame) -> pd.DataFrame:
+ df["active_imp_total"] = df[ACTIVE_IMP_COLS].sum(axis=1)
+ df["passive_imp_total"] = df[PASSIVE_IMP_COLS].sum(axis=1)
+ df["active_click_total"] = df[ACTIVE_CLICK_COLS].sum(axis=1)
+ df["passive_click_total"] = df[PASSIVE_CLICK_COLS].sum(axis=1)
+ df["orders_amt_total"] = df[ORDER_COLS].sum(axis=1)
+ df["click_total"] = df["active_click_total"] + df["passive_click_total"]
+ df["imp_total"] = df["active_imp_total"] + df["passive_imp_total"]
+ df["active_ctr"] = safe_divide(df["active_click_total"], df["active_imp_total"])
+ df["passive_ctr"] = safe_divide(df["passive_click_total"], df["passive_imp_total"])
+ df["ctr_all"] = safe_divide(df["click_total"], df["imp_total"])
+ df["cr_click2order"] = safe_divide(df["orders_amt_total"], df["click_total"])
+ df["cr_imp2order"] = safe_divide(df["orders_amt_total"], df["imp_total"])
+ return df
+
+
+def add_flags(df: pd.DataFrame) -> pd.DataFrame:
+ df["has_active_comm"] = (df[ACTIVE_IMP_COLS + ACTIVE_CLICK_COLS].sum(axis=1) > 0).astype(int)
+ df["has_passive_comm"] = (df[PASSIVE_IMP_COLS + PASSIVE_CLICK_COLS].sum(axis=1) > 0).astype(int)
+ df["has_any_order"] = (df[ORDER_COLS].sum(axis=1) > 0).astype(int)
+ df["order_categories_count"] = (df[ORDER_COLS] > 0).sum(axis=1)
+ return df
+
+
+def load_data(path: Path | str = DATA_PATH) -> pd.DataFrame:
+ df = pd.read_csv(path)
+ df["business_dt"] = pd.to_datetime(df["business_dt"])
+ df["gender_cd"] = normalize_gender(df["gender_cd"])
+ df["device_platform_cd"] = normalize_device(df["device_platform_cd"])
+ df = add_age_group(df)
+ df = add_totals(df)
+ df = add_flags(df)
+ return df
+
+
+def describe_zero_share(df: pd.DataFrame, cols: Iterable[str]) -> pd.DataFrame:
+ stats = []
+ for col in cols:
+ series = df[col]
+ stats.append(
+ {
+ "col": col,
+ "count": series.count(),
+ "mean": series.mean(),
+ "median": series.median(),
+ "std": series.std(),
+ "min": series.min(),
+ "q25": series.quantile(0.25),
+ "q75": series.quantile(0.75),
+ "max": series.max(),
+ "share_zero": (series == 0).mean(),
+ "p95": series.quantile(0.95),
+ "p99": series.quantile(0.99),
+ }
+ )
+ return pd.DataFrame(stats)
+
+
+def build_daily(df: pd.DataFrame) -> pd.DataFrame:
+ agg_cols = ACTIVE_IMP_COLS + PASSIVE_IMP_COLS + ACTIVE_CLICK_COLS + PASSIVE_CLICK_COLS + ORDER_COLS
+ daily = df.groupby("business_dt")[agg_cols].sum().reset_index()
+ daily = add_totals(daily)
+ daily["day_of_week"] = daily["business_dt"].dt.day_name()
+ return daily
+
+
+def build_client(df: pd.DataFrame) -> pd.DataFrame:
+ agg_spec: Dict[str, str] = {col: "sum" for col in ACTIVE_IMP_COLS + PASSIVE_IMP_COLS + ACTIVE_CLICK_COLS + PASSIVE_CLICK_COLS + ORDER_COLS}
+ meta_spec: Dict[str, str | callable] = {
+ "age": "median",
+ "gender_cd": lambda s: s.mode().iat[0] if not s.mode().empty else "UNKNOWN",
+ "age_group": lambda s: s.mode().iat[0] if not s.mode().empty else np.nan,
+ "device_platform_cd": lambda s: s.mode().iat[0] if not s.mode().empty else "Other",
+ }
+ agg_spec.update(meta_spec)
+ client = df.groupby("id").agg(agg_spec).reset_index()
+ contact_days = df.groupby("id")["business_dt"].nunique().rename("contact_days")
+ imp_day = df.copy()
+ imp_day["imp_day_total"] = imp_day[ACTIVE_IMP_COLS + PASSIVE_IMP_COLS].sum(axis=1)
+ max_imp_day = imp_day.groupby("id")["imp_day_total"].max().rename("max_impressions_per_day")
+ client = add_totals(client)
+ client = add_flags(client)
+ client = client.merge(contact_days, on="id", how="left")
+ client = client.merge(max_imp_day, on="id", how="left")
+ client = add_contact_density(client)
+ return client
+
+
+def add_contact_density(df: pd.DataFrame) -> pd.DataFrame:
+ # contact_days must already be present
+ if "contact_days" in df.columns:
+ df["avg_impressions_per_contact_day"] = safe_divide(df["imp_total"], df["contact_days"])
+ return df
+ return df
diff --git a/preanalysis/first_stage.ipynb b/preanalysis/first_stage.ipynb
index 47013c5..609c77f 100644
--- a/preanalysis/first_stage.ipynb
+++ b/preanalysis/first_stage.ipynb
@@ -42,19 +42,33 @@
"Requirement already satisfied: tzdata>=2022.7 in /opt/homebrew/Cellar/jupyterlab/4.4.3_2/libexec/lib/python3.13/site-packages (from pandas>=1.5.0->fastparquet) (2025.2)\n",
"Requirement already satisfied: six>=1.5 in /opt/homebrew/Cellar/jupyterlab/4.4.3_2/libexec/lib/python3.13/site-packages (from python-dateutil>=2.8.2->pandas>=1.5.0->fastparquet) (1.17.0)\n",
"Downloading fastparquet-2024.11.0-cp313-cp313-macosx_11_0_arm64.whl (683 kB)\n",
- "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m683.8/683.8 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hDownloading cramjam-2.11.0-cp313-cp313-macosx_11_0_arm64.whl (1.7 MB)\n",
- "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m:01\u001b[0m\n",
- "\u001b[?25hDownloading fsspec-2025.12.0-py3-none-any.whl (201 kB)\n",
+ "\u001B[2K \u001B[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m683.8/683.8 kB\u001B[0m \u001B[31m5.0 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n",
+ "\u001B[?25hDownloading cramjam-2.11.0-cp313-cp313-macosx_11_0_arm64.whl (1.7 MB)\n",
+ "\u001B[2K \u001B[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m1.7/1.7 MB\u001B[0m \u001B[31m2.5 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m:01\u001B[0m\n",
+ "\u001B[?25hDownloading fsspec-2025.12.0-py3-none-any.whl (201 kB)\n",
"Installing collected packages: fsspec, cramjam, fastparquet\n",
- "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3/3\u001b[0m [fastparquet]\n",
- "\u001b[1A\u001b[2KSuccessfully installed cramjam-2.11.0 fastparquet-2024.11.0 fsspec-2025.12.0\n",
+ "\u001B[2K \u001B[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m3/3\u001B[0m [fastparquet]\n",
+ "\u001B[1A\u001B[2KSuccessfully installed cramjam-2.11.0 fastparquet-2024.11.0 fsspec-2025.12.0\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
- "pip install fastparquet"
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import seaborn as sns\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "from pathlib import Path\n",
+ "from eda_utils import (\n",
+ " load_data, DATA_PATH, CATEGORIES, ACTIVE_IMP_COLS, PASSIVE_IMP_COLS,\n",
+ " ACTIVE_CLICK_COLS, PASSIVE_CLICK_COLS, ORDER_COLS, NUMERIC_COLS, CAT_COLS,\n",
+ " describe_zero_share, safe_divide, build_daily, build_client, add_contact_density\n",
+ ")\n",
+ "pd.set_option(\"display.max_columns\", None)\n",
+ "pd.options.display.float_format = '{:,.3f}'.format\n",
+ "sns.set_theme(style=\"ticks\", palette=\"deep\")\n"
]
},
{
@@ -69,17 +83,8 @@
},
"outputs": [],
"source": [
- "\n",
- "import pandas as pd\n",
- "import numpy as np\n",
- "import seaborn as sns\n",
- "import math\n",
- "import matplotlib.pyplot as plt\n",
- "from pathlib import Path\n",
- "\n",
- "pd.set_option(\"display.max_columns\", None)\n",
- "pd.options.display.float_format = '{:,.3f}'.format\n",
- "sns.set_theme(style=\"ticks\", palette=\"deep\")\n"
+ "df = pd.read_csv(\"../dataset/ds.csv\")\n",
+ "print(f'Raw shape: {df.shape}')"
]
},
{
@@ -102,8 +107,10 @@
}
],
"source": [
- "df = pd.read_csv(\"../dataset/ds.csv\")\n",
- "print(f'Raw shape: {df.shape}')"
+ "import io\n",
+ "buf = io.StringIO()\n",
+ "df.info(buf=buf)\n",
+ "print('Raw info:\\n', buf.getvalue())"
]
},
{
@@ -168,16 +175,10 @@
]
}
],
- "source": [
- "import io\n",
- "buf = io.StringIO()\n",
- "df.info(buf=buf)\n",
- "print('Raw info:\\n', buf.getvalue())"
- ]
+ "source": "df.head(5)"
},
{
- "cell_type": "code",
- "execution_count": 5,
+ "cell_type": "markdown",
"id": "0d18c485",
"metadata": {
"ExecuteTime": {
@@ -185,352 +186,23 @@
"start_time": "2025-12-05T18:56:35.440402Z"
}
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " id | \n",
- " business_dt | \n",
- " active_imp_ent | \n",
- " active_click_ent | \n",
- " active_imp_super | \n",
- " active_click_super | \n",
- " active_imp_transport | \n",
- " active_click_transport | \n",
- " active_imp_shopping | \n",
- " active_click_shopping | \n",
- " active_imp_hotel | \n",
- " active_click_hotel | \n",
- " active_imp_avia | \n",
- " active_click_avia | \n",
- " passive_imp_ent | \n",
- " passive_click_ent | \n",
- " passive_imp_super | \n",
- " passive_click_super | \n",
- " passive_imp_transport | \n",
- " passive_click_transport | \n",
- " passive_imp_shopping | \n",
- " passive_click_shopping | \n",
- " passive_imp_hotel | \n",
- " passive_click_hotel | \n",
- " passive_imp_avia | \n",
- " passive_click_avia | \n",
- " orders_amt_ent | \n",
- " orders_amt_super | \n",
- " orders_amt_transport | \n",
- " orders_amt_shopping | \n",
- " orders_amt_hotel | \n",
- " orders_amt_avia | \n",
- " gender_cd | \n",
- " age | \n",
- " device_platform_cd | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 7119 | \n",
- " 2025-04-02 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 3.000 | \n",
- " 1.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 2 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " F | \n",
- " 40 | \n",
- " iOS | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 1797 | \n",
- " 2025-08-27 | \n",
- " 1.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0 | \n",
- " 0 | \n",
- " 3 | \n",
- " 0 | \n",
- " 2.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 2.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 0 | \n",
- " 0 | \n",
- " 5 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " M | \n",
- " 38 | \n",
- " IOS | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 8010 | \n",
- " 2025-07-10 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " M | \n",
- " 51 | \n",
- " Android | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 2360 | \n",
- " 2025-08-10 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " M | \n",
- " 37 | \n",
- " IOS | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 3457 | \n",
- " 2025-05-23 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 3.000 | \n",
- " 1.000 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 2 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " F | \n",
- " 27 | \n",
- " iOS | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " id business_dt active_imp_ent active_click_ent active_imp_super \\\n",
- "0 7119 2025-04-02 0.000 0.000 3.000 \n",
- "1 1797 2025-08-27 1.000 1.000 0.000 \n",
- "2 8010 2025-07-10 0.000 0.000 1.000 \n",
- "3 2360 2025-08-10 0.000 0.000 0.000 \n",
- "4 3457 2025-05-23 0.000 0.000 1.000 \n",
- "\n",
- " active_click_super active_imp_transport active_click_transport \\\n",
- "0 1.000 1.000 0.000 \n",
- "1 0.000 0.000 0.000 \n",
- "2 1.000 0.000 0.000 \n",
- "3 0.000 0.000 1.000 \n",
- "4 0.000 0.000 0.000 \n",
- "\n",
- " active_imp_shopping active_click_shopping active_imp_hotel \\\n",
- "0 1.000 0.000 0 \n",
- "1 0.000 0.000 0 \n",
- "2 0.000 0.000 0 \n",
- "3 0.000 0.000 0 \n",
- "4 3.000 1.000 0 \n",
- "\n",
- " active_click_hotel active_imp_avia active_click_avia passive_imp_ent \\\n",
- "0 0 0 0 0.000 \n",
- "1 0 3 0 2.000 \n",
- "2 0 0 0 1.000 \n",
- "3 0 0 0 0.000 \n",
- "4 0 0 0 0.000 \n",
- "\n",
- " passive_click_ent passive_imp_super passive_click_super \\\n",
- "0 0.000 0.000 0.000 \n",
- "1 0.000 1.000 0.000 \n",
- "2 0.000 1.000 0.000 \n",
- "3 0.000 0.000 0.000 \n",
- "4 0.000 0.000 0.000 \n",
- "\n",
- " passive_imp_transport passive_click_transport passive_imp_shopping \\\n",
- "0 0.000 0.000 0.000 \n",
- "1 2.000 0.000 1.000 \n",
- "2 1.000 0.000 1.000 \n",
- "3 1.000 0.000 0.000 \n",
- "4 0.000 0.000 0.000 \n",
- "\n",
- " passive_click_shopping passive_imp_hotel passive_click_hotel \\\n",
- "0 0.000 2 0 \n",
- "1 0.000 0 0 \n",
- "2 0.000 0 0 \n",
- "3 0.000 1 0 \n",
- "4 0.000 2 0 \n",
- "\n",
- " passive_imp_avia passive_click_avia orders_amt_ent orders_amt_super \\\n",
- "0 0 0 0 0 \n",
- "1 5 0 0 0 \n",
- "2 1 0 0 0 \n",
- "3 1 0 0 0 \n",
- "4 0 0 0 0 \n",
- "\n",
- " orders_amt_transport orders_amt_shopping orders_amt_hotel \\\n",
- "0 0 0 0 \n",
- "1 0 0 0 \n",
- "2 0 0 0 \n",
- "3 0 0 0 \n",
- "4 0 0 0 \n",
- "\n",
- " orders_amt_avia gender_cd age device_platform_cd \n",
- "0 0 F 40 iOS \n",
- "1 0 M 38 IOS \n",
- "2 0 M 51 Android \n",
- "3 0 M 37 IOS \n",
- "4 0 F 27 iOS "
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.head(5)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b35ad277-a07b-44a2-8c7b-da5e47ef5435",
- "metadata": {},
- "source": [
- "# Анализ"
- ]
+ "source": "# Анализ"
},
{
"cell_type": "code",
- "execution_count": 6,
+ "id": "b35ad277-a07b-44a2-8c7b-da5e47ef5435",
+ "metadata": {},
+ "source": [
+ "n_rows, n_cols = df.shape\n",
+ "n_unique_clients = df['id'].nunique()\n",
+ "min_dt, max_dt = df['business_dt'].min(), df['business_dt'].max()\n",
+ "print({'rows': n_rows, 'cols': n_cols, 'unique_clients': n_unique_clients, 'min_dt': min_dt, 'max_dt': max_dt})"
+ ],
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "cell_type": "markdown",
"id": "78a7f3d2",
"metadata": {
"ExecuteTime": {
@@ -538,26 +210,6 @@
"start_time": "2025-12-05T18:56:35.556685Z"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'rows': 118189, 'cols': 35, 'unique_clients': 8339, 'min_dt': '2025-01-09', 'max_dt': '2025-11-04'}\n"
- ]
- }
- ],
- "source": [
- "n_rows, n_cols = df.shape\n",
- "n_unique_clients = df['id'].nunique()\n",
- "min_dt, max_dt = df['business_dt'].min(), df['business_dt'].max()\n",
- "print({'rows': n_rows, 'cols': n_cols, 'unique_clients': n_unique_clients, 'min_dt': min_dt, 'max_dt': max_dt})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f691bec5-e203-4bcc-8645-333178708a66",
- "metadata": {},
"source": [
"Всего в датасете 118189 записей и 35 полей данных\n",
"8339 уникальных клиентов\n",
@@ -566,7 +218,18 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "id": "f691bec5-e203-4bcc-8645-333178708a66",
+ "metadata": {},
+ "source": [
+ "dup_table = df.groupby(['id', 'business_dt']).size().value_counts().reset_index()\n",
+ "dup_table.columns = ['rows_per_key', 'n_pairs']\n",
+ "dup_table.head()"
+ ],
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "cell_type": "markdown",
"id": "a40091f6",
"metadata": {
"ExecuteTime": {
@@ -574,69 +237,18 @@
"start_time": "2025-12-05T18:56:35.602181Z"
}
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " rows_per_key | \n",
- " n_pairs | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 1 | \n",
- " 118189 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " rows_per_key n_pairs\n",
- "0 1 118189"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dup_table = df.groupby(['id', 'business_dt']).size().value_counts().reset_index()\n",
- "dup_table.columns = ['rows_per_key', 'n_pairs']\n",
- "dup_table.head()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c1c33a2f-6ad9-476a-9b62-ba5511189527",
- "metadata": {},
- "source": [
- "Датасет не содержит дублирования по паре id + дата"
- ]
+ "source": "Датасет не содержит дублирования по паре id + дата"
},
{
"cell_type": "code",
- "execution_count": 8,
+ "id": "c1c33a2f-6ad9-476a-9b62-ba5511189527",
+ "metadata": {},
+ "source": "df.groupby('id').size().describe()",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "cell_type": "markdown",
"id": "43cbdc8a",
"metadata": {
"ExecuteTime": {
@@ -644,41 +256,18 @@
"start_time": "2025-12-05T18:56:35.680252Z"
}
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "count 8,339.000\n",
- "mean 14.173\n",
- "std 4.762\n",
- "min 4.000\n",
- "25% 11.000\n",
- "50% 13.000\n",
- "75% 16.000\n",
- "max 52.000\n",
- "dtype: float64"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.groupby('id').size().describe()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4a0eba3c-fe71-456e-84f6-8e672c7110b5",
- "metadata": {},
- "source": [
- "В среднем каждый клиент содержит по 14 записей, всего кол-во записей распределено на промежутке от 4 до 52."
- ]
+ "source": "В среднем каждый клиент содержит по 14 записей, всего кол-во записей распределено на промежутке от 4 до 52."
},
{
"cell_type": "code",
- "execution_count": 9,
+ "id": "4a0eba3c-fe71-456e-84f6-8e672c7110b5",
+ "metadata": {},
+ "source": "df.isna().sum().to_frame('missing')",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "cell_type": "markdown",
"id": "84b726d3",
"metadata": {
"ExecuteTime": {
@@ -686,730 +275,26 @@
"start_time": "2025-12-05T18:56:35.783710Z"
}
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " missing | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | id | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | business_dt | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_imp_ent | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_click_ent | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_imp_super | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_click_super | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_imp_transport | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_click_transport | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_imp_shopping | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_click_shopping | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_imp_hotel | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_click_hotel | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_imp_avia | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | active_click_avia | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_imp_ent | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_click_ent | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_imp_super | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_click_super | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_imp_transport | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_click_transport | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_imp_shopping | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_click_shopping | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_imp_hotel | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_click_hotel | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_imp_avia | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | passive_click_avia | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | orders_amt_ent | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | orders_amt_super | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | orders_amt_transport | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | orders_amt_shopping | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | orders_amt_hotel | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | orders_amt_avia | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | gender_cd | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | age | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | device_platform_cd | \n",
- " 0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " missing\n",
- "id 0\n",
- "business_dt 0\n",
- "active_imp_ent 0\n",
- "active_click_ent 0\n",
- "active_imp_super 0\n",
- "active_click_super 0\n",
- "active_imp_transport 0\n",
- "active_click_transport 0\n",
- "active_imp_shopping 0\n",
- "active_click_shopping 0\n",
- "active_imp_hotel 0\n",
- "active_click_hotel 0\n",
- "active_imp_avia 0\n",
- "active_click_avia 0\n",
- "passive_imp_ent 0\n",
- "passive_click_ent 0\n",
- "passive_imp_super 0\n",
- "passive_click_super 0\n",
- "passive_imp_transport 0\n",
- "passive_click_transport 0\n",
- "passive_imp_shopping 0\n",
- "passive_click_shopping 0\n",
- "passive_imp_hotel 0\n",
- "passive_click_hotel 0\n",
- "passive_imp_avia 0\n",
- "passive_click_avia 0\n",
- "orders_amt_ent 0\n",
- "orders_amt_super 0\n",
- "orders_amt_transport 0\n",
- "orders_amt_shopping 0\n",
- "orders_amt_hotel 0\n",
- "orders_amt_avia 0\n",
- "gender_cd 0\n",
- "age 0\n",
- "device_platform_cd 0"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.isna().sum().to_frame('missing')"
- ]
+ "source": "В датасете отсуствуют пропущенные значения"
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
"id": "16acc953-c151-43b8-b923-aab2c3a25ffb",
"metadata": {},
- "source": [
- "В датасете отсуствуют пропущенные значения"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "4a5160f3-f243-478e-b793-db857eefb053",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " count | \n",
- " mean | \n",
- " std | \n",
- " min | \n",
- " 25% | \n",
- " 50% | \n",
- " 75% | \n",
- " max | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | id | \n",
- " 118,189.000 | \n",
- " 4,131.899 | \n",
- " 2,408.258 | \n",
- " 1.000 | \n",
- " 2,038.000 | \n",
- " 4,121.000 | \n",
- " 6,219.000 | \n",
- " 8,339.000 | \n",
- "
\n",
- " \n",
- " | active_imp_ent | \n",
- " 118,189.000 | \n",
- " 0.314 | \n",
- " 0.614 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 9.000 | \n",
- "
\n",
- " \n",
- " | active_click_ent | \n",
- " 118,189.000 | \n",
- " 0.240 | \n",
- " 0.483 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 6.000 | \n",
- "
\n",
- " \n",
- " | active_imp_super | \n",
- " 118,189.000 | \n",
- " 0.380 | \n",
- " 0.809 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 11.000 | \n",
- "
\n",
- " \n",
- " | active_click_super | \n",
- " 118,189.000 | \n",
- " 0.276 | \n",
- " 0.542 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 9.000 | \n",
- "
\n",
- " \n",
- " | active_imp_transport | \n",
- " 118,189.000 | \n",
- " 0.574 | \n",
- " 0.944 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 24.000 | \n",
- "
\n",
- " \n",
- " | active_click_transport | \n",
- " 118,189.000 | \n",
- " 0.443 | \n",
- " 0.645 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 11.000 | \n",
- "
\n",
- " \n",
- " | active_imp_shopping | \n",
- " 118,189.000 | \n",
- " 0.255 | \n",
- " 0.565 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 6.000 | \n",
- "
\n",
- " \n",
- " | active_click_shopping | \n",
- " 118,189.000 | \n",
- " 0.199 | \n",
- " 0.450 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 5.000 | \n",
- "
\n",
- " \n",
- " | active_imp_hotel | \n",
- " 118,189.000 | \n",
- " 0.141 | \n",
- " 0.483 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 7.000 | \n",
- "
\n",
- " \n",
- " | active_click_hotel | \n",
- " 118,189.000 | \n",
- " 0.035 | \n",
- " 0.185 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 2.000 | \n",
- "
\n",
- " \n",
- " | active_imp_avia | \n",
- " 118,189.000 | \n",
- " 0.193 | \n",
- " 0.523 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 6.000 | \n",
- "
\n",
- " \n",
- " | active_click_avia | \n",
- " 118,189.000 | \n",
- " 0.054 | \n",
- " 0.227 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 2.000 | \n",
- "
\n",
- " \n",
- " | passive_imp_ent | \n",
- " 118,189.000 | \n",
- " 0.552 | \n",
- " 1.256 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 42.000 | \n",
- "
\n",
- " \n",
- " | passive_click_ent | \n",
- " 118,189.000 | \n",
- " 0.027 | \n",
- " 0.190 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 11.000 | \n",
- "
\n",
- " \n",
- " | passive_imp_super | \n",
- " 118,189.000 | \n",
- " 0.280 | \n",
- " 0.859 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 26.000 | \n",
- "
\n",
- " \n",
- " | passive_click_super | \n",
- " 118,189.000 | \n",
- " 0.009 | \n",
- " 0.118 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 5.000 | \n",
- "
\n",
- " \n",
- " | passive_imp_transport | \n",
- " 118,189.000 | \n",
- " 0.794 | \n",
- " 1.472 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 43.000 | \n",
- "
\n",
- " \n",
- " | passive_click_transport | \n",
- " 118,189.000 | \n",
- " 0.020 | \n",
- " 0.155 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 7.000 | \n",
- "
\n",
- " \n",
- " | passive_imp_shopping | \n",
- " 118,189.000 | \n",
- " 0.689 | \n",
- " 1.768 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 83.000 | \n",
- "
\n",
- " \n",
- " | passive_click_shopping | \n",
- " 118,189.000 | \n",
- " 0.011 | \n",
- " 0.128 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 7.000 | \n",
- "
\n",
- " \n",
- " | passive_imp_hotel | \n",
- " 118,189.000 | \n",
- " 0.987 | \n",
- " 1.811 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 44.000 | \n",
- "
\n",
- " \n",
- " | passive_click_hotel | \n",
- " 118,189.000 | \n",
- " 0.058 | \n",
- " 0.242 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 8.000 | \n",
- "
\n",
- " \n",
- " | passive_imp_avia | \n",
- " 118,189.000 | \n",
- " 0.702 | \n",
- " 1.400 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 1.000 | \n",
- " 52.000 | \n",
- "
\n",
- " \n",
- " | passive_click_avia | \n",
- " 118,189.000 | \n",
- " 0.028 | \n",
- " 0.182 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 8.000 | \n",
- "
\n",
- " \n",
- " | orders_amt_ent | \n",
- " 118,189.000 | \n",
- " 0.010 | \n",
- " 0.115 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 11.000 | \n",
- "
\n",
- " \n",
- " | orders_amt_super | \n",
- " 118,189.000 | \n",
- " 0.022 | \n",
- " 0.155 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 4.000 | \n",
- "
\n",
- " \n",
- " | orders_amt_transport | \n",
- " 118,189.000 | \n",
- " 0.053 | \n",
- " 0.242 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 5.000 | \n",
- "
\n",
- " \n",
- " | orders_amt_shopping | \n",
- " 118,189.000 | \n",
- " 0.008 | \n",
- " 0.114 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 11.000 | \n",
- "
\n",
- " \n",
- " | orders_amt_hotel | \n",
- " 118,189.000 | \n",
- " 0.004 | \n",
- " 0.067 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 3.000 | \n",
- "
\n",
- " \n",
- " | orders_amt_avia | \n",
- " 118,189.000 | \n",
- " 0.009 | \n",
- " 0.109 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 0.000 | \n",
- " 6.000 | \n",
- "
\n",
- " \n",
- " | age | \n",
- " 118,189.000 | \n",
- " 42.360 | \n",
- " 9.930 | \n",
- " 15.000 | \n",
- " 36.000 | \n",
- " 41.000 | \n",
- " 48.000 | \n",
- " 80.000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " count mean std min 25% \\\n",
- "id 118,189.000 4,131.899 2,408.258 1.000 2,038.000 \n",
- "active_imp_ent 118,189.000 0.314 0.614 0.000 0.000 \n",
- "active_click_ent 118,189.000 0.240 0.483 0.000 0.000 \n",
- "active_imp_super 118,189.000 0.380 0.809 0.000 0.000 \n",
- "active_click_super 118,189.000 0.276 0.542 0.000 0.000 \n",
- "active_imp_transport 118,189.000 0.574 0.944 0.000 0.000 \n",
- "active_click_transport 118,189.000 0.443 0.645 0.000 0.000 \n",
- "active_imp_shopping 118,189.000 0.255 0.565 0.000 0.000 \n",
- "active_click_shopping 118,189.000 0.199 0.450 0.000 0.000 \n",
- "active_imp_hotel 118,189.000 0.141 0.483 0.000 0.000 \n",
- "active_click_hotel 118,189.000 0.035 0.185 0.000 0.000 \n",
- "active_imp_avia 118,189.000 0.193 0.523 0.000 0.000 \n",
- "active_click_avia 118,189.000 0.054 0.227 0.000 0.000 \n",
- "passive_imp_ent 118,189.000 0.552 1.256 0.000 0.000 \n",
- "passive_click_ent 118,189.000 0.027 0.190 0.000 0.000 \n",
- "passive_imp_super 118,189.000 0.280 0.859 0.000 0.000 \n",
- "passive_click_super 118,189.000 0.009 0.118 0.000 0.000 \n",
- "passive_imp_transport 118,189.000 0.794 1.472 0.000 0.000 \n",
- "passive_click_transport 118,189.000 0.020 0.155 0.000 0.000 \n",
- "passive_imp_shopping 118,189.000 0.689 1.768 0.000 0.000 \n",
- "passive_click_shopping 118,189.000 0.011 0.128 0.000 0.000 \n",
- "passive_imp_hotel 118,189.000 0.987 1.811 0.000 0.000 \n",
- "passive_click_hotel 118,189.000 0.058 0.242 0.000 0.000 \n",
- "passive_imp_avia 118,189.000 0.702 1.400 0.000 0.000 \n",
- "passive_click_avia 118,189.000 0.028 0.182 0.000 0.000 \n",
- "orders_amt_ent 118,189.000 0.010 0.115 0.000 0.000 \n",
- "orders_amt_super 118,189.000 0.022 0.155 0.000 0.000 \n",
- "orders_amt_transport 118,189.000 0.053 0.242 0.000 0.000 \n",
- "orders_amt_shopping 118,189.000 0.008 0.114 0.000 0.000 \n",
- "orders_amt_hotel 118,189.000 0.004 0.067 0.000 0.000 \n",
- "orders_amt_avia 118,189.000 0.009 0.109 0.000 0.000 \n",
- "age 118,189.000 42.360 9.930 15.000 36.000 \n",
- "\n",
- " 50% 75% max \n",
- "id 4,121.000 6,219.000 8,339.000 \n",
- "active_imp_ent 0.000 0.000 9.000 \n",
- "active_click_ent 0.000 0.000 6.000 \n",
- "active_imp_super 0.000 0.000 11.000 \n",
- "active_click_super 0.000 0.000 9.000 \n",
- "active_imp_transport 0.000 1.000 24.000 \n",
- "active_click_transport 0.000 1.000 11.000 \n",
- "active_imp_shopping 0.000 0.000 6.000 \n",
- "active_click_shopping 0.000 0.000 5.000 \n",
- "active_imp_hotel 0.000 0.000 7.000 \n",
- "active_click_hotel 0.000 0.000 2.000 \n",
- "active_imp_avia 0.000 0.000 6.000 \n",
- "active_click_avia 0.000 0.000 2.000 \n",
- "passive_imp_ent 0.000 1.000 42.000 \n",
- "passive_click_ent 0.000 0.000 11.000 \n",
- "passive_imp_super 0.000 0.000 26.000 \n",
- "passive_click_super 0.000 0.000 5.000 \n",
- "passive_imp_transport 0.000 1.000 43.000 \n",
- "passive_click_transport 0.000 0.000 7.000 \n",
- "passive_imp_shopping 0.000 1.000 83.000 \n",
- "passive_click_shopping 0.000 0.000 7.000 \n",
- "passive_imp_hotel 0.000 1.000 44.000 \n",
- "passive_click_hotel 0.000 0.000 8.000 \n",
- "passive_imp_avia 0.000 1.000 52.000 \n",
- "passive_click_avia 0.000 0.000 8.000 \n",
- "orders_amt_ent 0.000 0.000 11.000 \n",
- "orders_amt_super 0.000 0.000 4.000 \n",
- "orders_amt_transport 0.000 0.000 5.000 \n",
- "orders_amt_shopping 0.000 0.000 11.000 \n",
- "orders_amt_hotel 0.000 0.000 3.000 \n",
- "orders_amt_avia 0.000 0.000 6.000 \n",
- "age 41.000 48.000 80.000 "
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.describe().T"
- ]
+ "source": "describe_zero_share(df, ACTIVE_IMP_COLS + PASSIVE_IMP_COLS + ACTIVE_CLICK_COLS + PASSIVE_CLICK_COLS + ORDER_COLS)",
+ "outputs": [],
+ "execution_count": null
},
{
"cell_type": "markdown",
- "id": "4a2e8f9f-e9af-4bf9-bc69-cf12979ef359",
+ "id": "4a5160f3-f243-478e-b793-db857eefb053",
"metadata": {},
- "source": [
- "Достаточно странные минимальные/максимальные значения некоторых полей, относительно средних значений, построим boxplots"
- ]
+ "source": "Достаточно странные минимальные/максимальные значения некоторых полей, относительно средних значений, построим boxplots"
},
{
"cell_type": "code",
- "execution_count": 13,
- "id": "7c2b1102-0114-48de-a88b-f442812b70d6",
+ "id": "4a2e8f9f-e9af-4bf9-bc69-cf12979ef359",
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAA9SCAYAAADdAb4lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QeUVdXZP+ANIh17gUQRS1RUrGCLLaLoZ8cSYyzRaMQeBcQudlFRNIgFRU1iwagEY0VFjYmxgC1RUaMC0YhiRyli4b/e/X13/jMwM0yDO9x5nrVm3bnnnHvmzLlc9pzz2/vdzebMmTMnAQAAAAAAAMAirnmxDwAAAAAAAAAAGoIAHAAAAAAAAICSIAAHAAAAAAAAoCQIwAEAAAAAAAAoCQJwAAAAAAAAAEqCABwAAAAAAACAkiAABwAAAAAAAKAkCMABAAAAAAAAKAkCcAAAAGpszpw5zhYAAADQaAnAAQAAKjFq1Ki01lprzfO19tprp0033TTtu+++6YYbbkizZ89u9OevcOzfffddvfZz//33p759+zbYcQFVi/9b1l9//fT73/++bNnDDz+cP8sfffSRUwcAAFCFFlWtAAAAIKVll102bbnllmWn4ocffkhffvll+te//pUGDx6cxo4dm/7whz+kli1blvTpGjduXOrXr1/aeOONi30o0CTE/yn/8z//ky655JL01FNPpRYtWqR//OMfafPNN08rrrhisQ8PAACg0RKAAwAAVGP11VfPQffcvv7663TEEUekl156KQfg8X0pi+AfWLjOOuusHHw//vjj6fvvv0/bb799OvPMM70NAAAA1RCAAwAA1EH79u3TMccck37zm9+kxx57rOQDcKA4/89ceOGFTj0AAEAtmAMcAACgjjp27Jgfp0+fPs+6WbNmpWuvvTbtvvvueR7fKB3+y1/+Mv3lL3+psN2UKVNS9+7d87y+9957b4V1M2fOTDvttFNe98c//jEve+655/Lz8847L02YMCEddthhaaONNkpbbLFFDuRfe+21Gh//559/ni677LL8M9Zbb708t/nhhx+e/vrXv1bY7tRTT02HHHJI/v7FF1/MP//ggw+udt/vv//+PPOnd+3aNf+uv/jFL9Kjjz46z2vmzJmT7r777nTAAQekHj165OOJbWPu8Vg3tygHHR0QNttss9StW7dcLnro0KFpxowZZdtEifr42fEeTJ48ucLr//3vf+fXxe/+6quvzvd32WabbSpdH+ci1sfxVLes4Kijjsrr4vecW7x//fv3T9tuu23aYIMN0s4775xLYMd7Nb/zW9lXXf9dhlGjRs2zvzhX8W8tfoc333xznn8nsc1dd92V5id+99g2/j031PtU1THP/VXZeY9KDscdd1z+3eLn/OxnP0sDBw7Mn8+6/IzKPh+TJk3K5yj+HcXPiMczzjgj/fe//51n2xjpHfuZ+1xEJYa99torr4t/JwAAAMzLCHAAAIA6KoTNG264YYXlEVZGYPzWW2+lpZZaKm299dY5eHz++efTCy+8kJ5++uk0aNCg1KxZs9SpU6d02mmnpdNPPz0vi+AzXhMinI7QbKuttkoHHXRQhZ/x9ttv5+Ay5gmO9R988EEOEf/+97/nEDj2U5333nsv7/PDDz/M8wlH4BbH/cwzz+R9HH300enEE0/M20bA/tFHH+Uwd5lllkk//elPc2n4mmjTpk3aYYcd8vfffPNN+s9//pPDxuOPPz5df/31ZccZ5Z1jWfwObdu2zQF4iIA05h6Pc33KKaeU7Xf48OHp8ssvT4svvngOE5dffvn08ssvp6uvvjrv4/e//31acsklU8+ePXNgOHr06HTOOeekm2++Ob/+22+/TQMGDEizZ89Offv2zftYGP72t7+lJ554otJ1EfRHQBrHFscTAXgEvjfddFMugf2nP/0p/05Vnd+C6CwQ+5pbbf5dlrfSSivlfwOF0v8RfMfvEO9jBOcNMR91Q79P5Y+54NNPP620Q8Idd9yRO5REuBznPDq2vPHGG2nkyJHp4YcfTjfccEMO5mvyMz755JP8GZpbLIsOKtE5Y80118z/Z0ycODF3+IgKEiNGjKjR7xb/BqLjCwAAAFUTgAMAANRCBLXTpk3LgVaEhREk9unTp8I2Z599dg4ZI1SO+cPbtWuXl8dozhhhHSFfhF2FUaL77LNPeuSRR9KTTz6ZLr300nTRRRfloO7222/P+7/44ovnCSUjGI7wLULkQigagV2MWo1RpWPGjCn7uXOLgPS3v/1tDr/333//PM9wBMnhn//8Zx5VHaOEI/SL3yG26dKlSz6meKxsTvSqLLHEEvNsH4FujGqOkLMQgMcI9wiuIxy88cYby0LVCOpjFHi8ZrfddkvrrrtuevbZZ9MVV1yRg8r4/ddee+28bYSk8fvHCN3zzz+/7OfG+Yj3K44/zn0ErcOGDUuvv/56HpEev29NVDYKvTYizI33tjIx0jjeh/gZEeLvuOOOefl3332Xg/8ItKNjw9zzP1d2fuM1lQXgtf13WRD/zsr/jDjG6CARIfg999yTg92G0FDvU2XHXPjMzB2AR9Ad4Xd0JInzHp0CQoTh11xzTT7n0TEjPk+tW7ee78+I/c8dgEfHg+hMEh1ArrzyylypoODOO+/M70usf/DBB/NxVCX+34nXAwAAUD0l0AEAAKoRo2PLlzZeZ5110uabb55OOumkHLhGWBsjQQuinHGE2R06dMgjuMuH0KusskpZABqvKy8C2wiyI7yNEuQxIjyCxpj/d4UVVpjnuFq0aJFD4PIjgiMojkD5448/rrTEeMH48ePziOo4ngjfCuF3iNA7RiFXdowNZcstt8yPMaq8/CjcEL9v+RHFK6+8ci63HcH4u+++W3ZccW4iMC2E3yHCwwjAl1tuuRwmFvYfIfEFF1yQv48OBjHSOUb1xnsUz5s3r/7SuHB+4v2uj9tuuy3/DhHkzy0C3xgdvN9++5WF34X3OSoExHn44osv6vyz6/rvsjLRGSNKhc/9HtZXfd+nuohKARF2R7heCL9D/KwoiR5l+KOjyH333VfnnxEl4eO9i4oN5cPvEJ1Lotx6dPSo7jMbfve73+UwvbJ/PwAAAPx/AnAAAIBqLLvssnm+5MJXhE8RWEXoHYFlzMEdI7cLxo0bVxbytm/ffp79RaAW5bojVIty4AURcsfo3sLo2hgRvO+++85T3rr86NMf/ehH8ywvhKeFuZWrCvULZacjYJ1bzDu92GKLpVdeeaXeoW9lYqR3KITXEaJGqfcIrisrNR0jkiOAjPMfI/AjwA8x9/fcYpRujBYuv12I+ZYjXI4y2BF2xijpGHH94x//eL7Hu/TSS+cQ/Msvv8wlwOvis88+yyOMYwR7vK9VvScxOntucV6iTHZtRt7Pra7/LisT57YwT3z5DggNoT7vU33Oy0477VTp+l133bXC+1MXhc9iZf9eQyF4r+4zG1MeRCeR+MzGFAQAAABUTQl0AACAasRc11UFj3/+85/zSO1CieQIpKdOnZrXVRfYRXgeo7Rj286dO5ct32OPPfKcyjFPdIx6jX1XJUbtVibKgofCcVSmsK78yPW555WOub7jGCO4LeyzLqJsc//+/cuC0wj2Y+7oOFcxp3P544n50OcnRtLOnDmzLLStTvys8mJke4Tv8TvFCOY999yzRr9DjCzfZJNNcun1CLGjJHmhJH2E4l999dV89xGj9SM8j04OUQp9bnGuQ2WdGhpCff5dxvtVeA+jQ0TMAR4dFqISQpTvn1v8joVS7a1atcrva5zvI444osp/cw3xPi2I81I43sL7UxeFf4cxorw60fmgKlEZITqlRDWAQmgPAABA5QTgAAAAddS7d+8cfMdcyBFcR6numoggOMw9328EflGaPESoGiWRYx7kykQYVt081VWtL79NdaIsdGXHWFsRVldWPjoC5BjlG6W9C+ejtueuqlG7VXUSiHMbJaQLoW6UI19ttdVq9HP79euXDjnkkDxveXRQiI4REWzG/NQxSrk68XNjruwYwb7xxhtXOtJ3fvtYGKr6d/n+++/nr8q2j1A/OkuUt+GGG+b3tfD+F0Yvx7zkt95663xHjdfnfaqt+X0WqjontVHYR1SOqGz0fcEaa6xR6fIY/R9zi0dliDivAnAAAIDqCcABAADqIUKrCMALozwL83XHnMtVKYSJUdq6vHPOOSeH4BHsxgjYGPUZI2DLz4ldUNXcyx988EF+rG7UduEYKws1Q4SacRwRoi+11FKpPuLYn3rqqbJQPYL9hx56KM/VHSNiH3/88Vx6u7oRsJ988kk+HxGcdu3aNZcjj8A45q2uaTAZv1OMno3AM+ZhjmOIkcYRzFbXWaAgSrPHHN5DhgxJL7/8cj7PcY5j1H6Ux67qXIaY1zpG1Z988slVbhPnYOLEifkcVBaE3nvvvXkfMcd7jKouKIxEn5/6/LuM4L5QBSHOe3RcGDp0aJ7bOuaQj1Hx5UWJ9yhjXt4ll1ySbrrppnTllVem6667boG9T7UV5yV+7zgvP/nJT6o8JzEVwtxqc+5jxHx0oIgS9LURI+4HDRqUR9H36dOnVq8FAABoqswBDgAAUA+TJ0+uUL47SmVHMPb0009XOl90lNGOcDlKK5cvdx2jpGM0eYxavvTSS9OvfvWrXD78jDPOqPTnxijQyvYfo8YLcylXpUePHvkxQuXKRh7HcUQAGXNpN2/evFZhX3ViX0suuWT6xS9+kdZcc81cVvqtt97K5acjKI/nEyZMqPR3iqA1RhBH4B0jjCNMj5HYc4vjjjnD42f885//rBDARsgZc7hHOfLYR8xxPmLEiBoff8zffeONN+a5xWNkcoSzF198cbVly+N9ffHFF/Po3UIIXZkYGR4Kc2uXF+9z/DuIubALc7bXZKR/eXX9dzm3+PnxXhVKosf+aiLOe4iQvzoN8T7VRuGzEP/mKxPv8dzzdxeqI9T03Bd+RmXvbYjPe1R6+NOf/jTPuug08N5776UBAwbkDhAAAADMnwAcAACgjqI0cXxFKBijVUOUKO7Zs2cOGWPE7/Tp08u2jyCrMDfyQQcdVGEe4hglHM4999zUunXrPK947CtC3jvvvHOenx37jVA4RogWRHnpv//972nVVVetNgCPubPXWWedHN6ff/75FeakfvXVV3MgN/cxFkYdVxae1lYErYXR3oX9Fn5WnJ9YX/6cDRs2LIfnMRI5HHroofkxjj1KkJcPJmOEcWFEdqHUdpzDCBdjNHsEybGv8847L48k/93vfpdD+AUl5onv0qVL7tBQnRgxHeciRjrHe1gQ72/8m4j3aNdddy0LXQvvQ/xbqYm6/LusTuG8lx+NXp3ovBDiXFSlGO9T/L5xTm+44YYK5z06GMTI9uhoEoH/DjvsULautud+//33T23bts2fzwceeKDCuqiA8Ic//CG98cYbqVu3bpX++4nP6y677FKP3xIAAKBpUQIdAACgGu+8807ZaNeCGDUd8xK/+eab+XmMziw/33SEdlHyOMKtCB1jJHXMhRzBbASaMbq1fCAaI3u/+OKLtM8+++SS5yFGe0bw+etf/zqPiv3pT3+aR+cWxLzLjzzySB5dHOW5I8SMUDLCwwiwqysNHiOBY3RtHMPIkSPTk08+mTbYYIN8DDG6OeYs/s1vfpN69epV9pr42REURggZr1trrbXS6aefPt9/OzGKvXD+IlSM8DBKiMfy9dZbr6zcd/yeETZGufQdd9wxh35xruJ4Zs2alU444YT8e4YII2P7GB0bwXGMzI7R1REixnmIcxeBaZyD8qPoo7R2Yb7qOP7DDz88l+M+5ZRTcvAaQWtDi985ztP8SrXH+Y1/N7HtEUcckUc+R1n06JAQ5dZjxHwE1/E85iGPx+rmja5Mbf9dFsRo9/LvYYzUj393oXfv3vNsf/fdd+d5zmPbGTNm5M9JjOqOc3DsscdWemzFep/i32D8vJhuIH5OnPcobR//luJcxecpyt7H3N1Rhj4+KzEfd23OfQTo8Rnu27dv/ooOHTGneUybUHgf432P8v5zi04A8f8DAAAANScABwAAqEbMdxxlrMuLUa8RakVgeMABB+QgsbyYLzhGbd9yyy25hHKEuhHKbrTRRrk0d/nRnPfcc08O1WLe5Qj4yovQO0ojjx49Ood0MVK0IEbSRigZQXaUVl5iiSVygB6ltmO07/zEKPEYXRojX6MUeoSisY+tt946z1UcP3vu3ylCwhgV+8ILL+RQtiYBeASs5c9fjISNc/fzn/88B46F0uoxiv7aa6/NgfyoUaPSM888kwPUGMUdJc0LJbQL4lxFaemYl/tf//pXLp0eZehj/ukjjzyyrENCHHPMl77VVlvlc1neMccckx5++OHccSB+doTsDe1nP/tZnre7JuL44n2N9ySC//i94lxF2B/HGv+G4neJUcQRAse/u+h8UVO1+XdZXoymLz/HeZSxj2B67733zq+bW3RwiK8QnSaWXnrp3Jki5rCOwLkyxXyf4t9XhM9RZj2C/fg5EYJHZ4A49/F9iOUPPvhgateuXT7G+DdcU/H7x2c9SuhHufn4zMf7Ef8+DjvssAol1suL/1+i8wMAAAA112xOYeIwAAAAGr0YWRsBdcwZHeWyAQAAAPj/zAEOAAAAAAAAQEkQgAMAAAAAAABQEgTgAAAAAAAAAJQEc4ADAAAAAAAAUBKMAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAAAASoIAHAAAAAAAAICSIAAHAAAAAAAAoCQIwAEAAAAAAAAoCQJwAAAAAAAAAEqCABwAAAAAAACAkiAABwAAAAAAAKAkCMABAAAAAAAAKAkCcAAAAAAAAABKggAcAAAAAAAAgJIgAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAAAASoIAHAAAAAAAAICSIAAHAAAAAAAAoCQIwAEAAAAAAAAoCQJwAAAAAAAAAEqCABwAAAAAAACAkiAABwAAAAAAAKAkCMABAAAAAAAAKAkCcAAAAAAAAABKggAcAAAAAAAAgJIgAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAAAASoIAHAAAAAAAAICSIAAHAAAAAAAAoCQIwAEAAAAAAAAoCQJwAAAAAAAAAEqCABwAAAAAAACAkiAABwAAAAAAAKAkCMABAAAAAAAAKAkCcAAAAAAAAABKggAcAAAAAAAAgJIgAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAAAASoIAHAAAAAAAAICSIAAHAAAAAAAAoCQIwAEAAAAAAAAoCQJwAAAAAAAAAEqCABwAAAAAAACAkiAABwAAAAAAAKAkCMABAAAAAAAAKAkCcAAAAAAAAABKggAcAAAAAAAAgJIgAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAAAASoIAHAAAAAAAAICSIAAHAAAAAAAAoCQIwAEAAAAAAAAoCQJwAAAAAAAAAEqCABwAAAAAAACAkiAABwAAAAAAAKAkCMABAAAAAAAAKAkCcAAAAAAAAABKggAcAAAAAAAAgJIgAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAAAASoIAHAAAAAAAAICSIAAHAAAAAAAAoCQIwAEAAAAAAAAoCQJwAAAAAAAAAEqCABwAAAAAAACAkiAABwAAAAAAAKAkCMABAAAAAAAAKAkCcAAAAAAAAABKggAcAAAAAAAAgJIgAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAAAASoIAHAAAAAAAAICSIAAHAAAAAAAAoCQIwAEAAAAAAAAoCQJwAABYgObMmeP8LgTOMwDakUWTNhwAbQTQ0ATgQK1sv/326dRTT61yfayLbQCgqZs2bVoaMGBAGj9+fNmygw8+OH8tbO+//35aa6210qhRo1JTOM8AsCi21zUR7fnQoUPz988991x+Ho81UdvtF4ZrrrkmjRgxotiHAUAj05ja51K+noZS1qLYBwAsWq6++urUvn37Yh8GADR6EyZMSPfee2/aZ599ypYNHDiwKMeywgorpDvvvDN17tw5NYXzDACLYntdW+uuu25u39dYY420qLrqqqvScccdV+zDAKCRaUztcylfT0MpE4ADtbLOOus4YwBQR8W6Qd2yZcu04YYbFuVnA8CiZlEJlKNzuvYdgKbC9TRQG0qgA3Uugf7ll1+m0047LW266aapR48e6bLLLks//PCDMwpASZg1a1a6/PLLU69evdJ6662XNt5443TYYYflnugFf/3rX9MvfvGLfPN5q622SmeffXYu1RalRQ855JC8TTwWyrSVL9n261//Ou29997z/Nxjjjkm7bHHHmXPo+TbQQcdlDbYYIPc5p5yyinps88+q1fJtnjs1q1b3nf0qI/vd9ppp/T444+nd999N/3qV7/KP2/HHXdMDzzwQNl+4nWxn1deeSX17t07rb/++mn33XdPDz/8cKqLu+66K+266675/G633Xa5pOv3339ftj7+5jj00EPTPffck48vtttzzz3TU089lddXdZ4BaDpKqb0OX3/9dTr//PPT1ltvnY832uknn3yyxiXNX3755XzMcR4233zz1Ldv3/TRRx9V+vrZs2fnbTfbbLMK56sm5vf7xt8M0YE+/mbYf//9898aP/vZzyqUO49jL1SaK3wPQGkopfa5MV5Pv/rqq/nnbLLJJmmjjTbK183xN0B15eLn/ruhpsfzzTffpEsvvTRtu+22+b2MbR588MF5MoOLLrooH1Ps54wzzqj17wQNTQAO1EkE3UcccUT+QyX+cBg0aFB68cUX52n8AGBRFfONRfB65JFHpptuuil3+vr3v/+d+vXrl+bMmZOeeOKJ1KdPn7TsssumK6+8MvXv3z899thj6aSTTsolSePiPcRjZaXa4qL8tddeS5MnTy5bFhf7Ee5GyBvGjRuXL2Rbt26df8bpp5+enn/++XwTIG4o1Md3332Xf5e44XDttdemNm3a5N/hqKOOymH0ddddl0u9RTv/4YcfVnht/N49e/bMN6xXXXXVdOKJJ+a/CWrj+uuvT2eddVbaYost8s868MAD0w033JCXzX1hHzfLTzjhhDRs2LC02GKLpeOPPz53xKvJeQagtJVSex2dwOKG/n333ZePOebHXm211dKxxx5bYQ7Uqrz++uv5Jn/hRvW5556b29HDDz88t/vlxfM4B7E+zlvXrl1rfJw1/X3jvkH8jbDLLruk4cOH5/Ajjutvf/tbXh/lZMO+++5b9j0ApaGU2ufGdj0dneXivvzSSy+dO5EPGTIkzZw5M7f3X331Va1/l+qOJ96r+Dtk5MiRuQND/K4RuMf7NHr06Ar7ue2223JngPj7Jdp2KDYl0IE6iT8m/vnPf+Yb1dtss01eFjewo7cXACzqYkTU9OnT05lnnplv2oboLR4XmtHp65NPPskXmnGzOC4SmzVrVlZqPOayjIvpQnm2eKysVFv0hI8b0/fff3++oAyPPPJIvvm922675efRYz4uQCMsjuA3RE/yGDUdNxMiNK6ruCkdF+f77bdf2c2CuIiNHttxYRs6dOiQe7THzfGOHTuWvTZ6kheOOUaoRW/xCKejR3hNxEV5XBTHiLA4xyF6/C+11FL5efz8n/zkJ2XbRs/0wnxrbdu2zTf3n3322dzLfn7nGYDSVWrtdVxnxyisaFN32GGHvCxGcb/33nu53evevXu1r4+b7dGWRtDQqlWrvCxuvscN+ggdyv8NEFVWYgTYzTffnIOG2qjp7xs3zWMkXuFvjRil9uijj+YR7YUR7iH+xlDKHaB0lFr73Niup99+++30+eef5yA/OpeF6DAXncnivMfPrY3qjucf//hH7rgWIXvhvYxtInAfPHhwPtctWvxvzPijH/0odwKAxsIIcKBOovf54osvnhu8grghXdOGGgAas7jwjlHHcYEXZUPjpnP0eI5e6oUL+hhlFTenCxfrIbYfM2ZMWm655eb7M6LdjNeXr54S5dGiQ9mKK66YLyjjJni0rXEDOXqYx9fKK6+cVl999fT000/X+/eMntsF0fO+cEOgIG6iFy7my4sL4oL4/aO0W3SMq2kv+pdeeilvGx3nCr9XfBU60pX/3ZZZZpmy8DsUbhzE+QGgaSu19vqFF17I19nlO5Y3b948/07HHXdcjV4fHdQL4XehrY+SrOVHeMcN6xhlHjfOY6RWbdT29y3/t0a8X9Guz5gxo1Y/E4BFS6m1z43tejo6i0d7GgF8jJCPzmVxzk4++eQKQXtNVXc8zzzzTF4W53Hua/ePP/64Qge72lSTgYXBCHCgTqLsaDTi5f9ICcsvv7wzCkBJiF7OMYdVzOHVrl27tPbaa+eL7BAlzOIiunCRW1dRmu0vf/lLeuONN/IFa4zEip9ZuEiOXuVRbSW+5lb+5nZdtW/ffp5lUbptfmI0WXlxHuJ8xDFHebn5+eKLL/JjlMOrzNSpU6s8nsLfHnFuAKCU2utoH+M6O0LvuojX1+R3nThxYurRo0f6/e9/n6uxRFBQU7X9fef+uyB+t3hPAChtpdQ+N7br6TifUW48ypE/9NBDeeR3vC7OR4y6jw4ItVHd8cTfFvF9YaR5ZdfuheC78P5CYyEAB+ok5hiJUitRVqZQQqb8DW0AWJT95z//ySXAokd5lEuLXuIRvMZFZlzIR0mxeP7ZZ59VeF3MuRm928v3+q5O9E6PzmNx0RqPcREepdwKF7XxM2LOsijRVpcL6wUl2vvyvfKjhF38PVDo4T4/SyyxRNkItC5dusyzviY9/gGg1NrrON7Cjebync1jlFwsm1+p8nj93L9riHk8y4/KOv/883Mp2v/5n//J5WNjWpKaasx/nwDQOJRa+9zYrqcLJc8vu+yyfG8+Rmvfe++96Y477sjV02J+8BDryquqAkt1xxPvVQTbf/jDHyp97SqrrFLjY4aFTQl0oE7iD4wod/LYY4+VLYvyNQ1RPgYAii3m6IqL7xihHBeQhZvQcbFeuFiOG8mFEm7l5+6M10Qv6PIdxKoS2+y+++55Pw8//HC+QVDoNR29yddZZ53cYz7Kkxa+otxZzJcWvduLpXz7HzfkY661mNezpj3N44ZGlHiNcnjlf7eYO+yKK65I77//fo2PpSbnGYDSVGrtdczx/e233+bjK9/OnnbaaTlAqMnr45o8rs3Lh+fxu7722mtly+ImdwQFffv2TWPHjs3BQU019N8ndR3tDkDjVWrtc2O7no7fdfPNN88lyOMcRCn2c845J3c0/+CDD8p+/xhpP/dUKbU9nugwF8F5LC9/Ht966608T3jkA9BYGQEO1DkA32qrrXJZlU8//TT9+Mc/zj3BoudefcvXAECxxQirCGOjR/Wvf/3rfCN51KhR6cknn8zr4wLwhBNOSEcffXS+ebzXXnvlXtIR3sZF95prrpnefPPNvG28Zskll8wl3yoTZcpuuummfAN47tJsse+4AdCvX7+0xx575B7csW3MZXbMMcekYrn00kvzDY1VV1013XXXXemdd97JZVRrU0kmeqVfddVV6euvv06bbbZZDsPjedwcqepcVSZ6pNfkPANQekqtvd5uu+3yTexTTz01nXjiiXnEXIzoinY2Rm3PT/ysKGnep0+fPL93zN155ZVXpvXXXz/99Kc/TS+99FKF7X/xi1+k0aNHpwsvvDBtueWW+feviYb8+yRu1r/44otp3LhxOcCfe5o1ABY9pdY+N7br6ShHHuXdY5R9/H4x2j06s3311VdlI+B/9rOfpccffzxdfPHFeb7u8ePH5za/tscTc3/HtClxvuIr5k+PEee/+93v0tZbb53nIofGSjdLoM6uvvrq/MdDNHhxcd6xY8f085//3BkFYJEXZbwuv/zyHMrGRfnZZ5+dl//xj3/MN2bj4jEuKK+77rqy8m4R3kbv87jID9GzfLfddstl3vr371/lz4oL+bjAjw5k0cGsvOhsNmLEiNxzO24QDBgwIPfwvvnmm9OGG26YiiV6l//pT39Kxx13XO51HjcR4qZ1bcTfDnGD/9FHH02/+c1v8nmLXua33nprWahdEzU9zwCUnlJrr+M1cfM+bl7HccbxTp48ObezEWLPT4x0i989RmNFO3vBBRfktjVGj1c2qizCgvPOOy9Pb3bJJZfU+Dgb8u+To446Ko8UjL8FpkyZUqvXAtA4lVr73Niup2PO7htvvDFfN59xxhm541tUeomR7TEyPOyzzz65bb3//vtzSB6d4OIefm2PJ/5WGD58eC4jH39PHH744WnkyJHpsMMOS0OGDGmgMwILRrM5UbsAAABgPqLXfpRhjXKpK620kvMFAAAAi+D1dGM7HmhoSqADAMAiKkq4za8/a/SwX1jzZEcZtvianyiHBwBNRWNrrysTxxfHOT9xjMqUA1AKGlv77HoaGpY7TwAAsIg69NBD0/PPP1/tNj/+8Y/z3F8Lw7Bhw/IUKfOjhzkATUlja68rE8cX84bPT8wluvfeey+UYwKAptQ+u56GhqUEOgAALKLefffdNH369Gq3iTk/11prrYVyPDHH29SpU+e7XRxPZXORAkApamztdWW+/vrrNHHixPluFyVSl1566YVyTADQlNpn19PQsATgAAAAAAAAAJSE5sU+AAAAAAAAAABoCAJwAAAAAAAAAEpCi1TiunfvnmbPnp2WX375Yh8KANTaxx9/nOcbGj9+fJM5e9puABZV2m0AWLRouwGgNNvtkg/Av/nmm/T9998X+zCgZM2ZMyd3Mon/dJo1a1bsw4GS89133+XPWVOi7YYFR7sNC5Z2G2ho2m5YsLTdQEPSbkPjabdLPgBfYYUV8uPYsWOLfShQkmbMmJEmTJiQunbtmtq2bVvsw4GS07Nnz9TUaLthwdFuw4Kl3QYamrYbFixtN9CQtNvQeNptc4ADAAAAAAAAUBIE4AAAAAAAAACUBAE4AAAAAAAAACVBAA4AAAAAAABASRCAAwAAAAAAAFASBOAAAAAAAAAAlAQBOAAAAAAAAAAlQQAOAABNwPfff5+eeuqp9PDDD+fHeA40XaNHj0677LJL6tatW9p1113TQw89VOxDAuby5Zdfpp49e+bPajzGcwCgcZo9e3a6+uqr0yWXXJIf4zlQPAJwAAAocaNGjUprrLFG+p//+Z905pln5sd4HsuBpufee+9NZ5xxRjrwwAPTAw88kHbbbbfUt2/f9NJLLxX70ID/E+30UkstlZ599tk0derU/BjPYzkA0LgMGDAgtWvXLp1yyinprrvuyo/xPJYDxSEABwCAEhYh97777ptHeT7xxBN59Hc8xvNYLgSHpmXOnDnpqquuSoccckgOwDt37pyOPvrotOWWW6bnn3++2IcH/F/4/c477+Rz0atXr3TTTTflxxDLheAA0HhEyH3ZZZelZZddNg0bNixXXYvHeB7LheBQHC2K9HMBAIAFLMqc9+vXL4/ujHLHs2bNShMmTEhdu3bNz/faa6/Uv3//tOeee6bFFlvM+wFNwMSJE9N///vftPvuu1dYPmLEiKIdE/D/RZnzQvg9ffr0/Bht9/7775+/j9FksT62W3LJJZ06ACiiKHM+ZMiQtOKKK6b3338/P492e+utt05HHnlkWmmllfL6Cy64ILVs2dJ7BQuRABxIkydPTtOmTavTmYgb6a+//nr64YcfUuvWreu0jyWWWCKtssoq3gkAaGB/+9vf0qRJk9Idd9yRmjevWPwpnp922ml51Gdst9122zn/0EQC8DBjxox0+OGH57/l48ZcjALffvvtK31NzD1clSlTpqSOHTvm/QH1t/POO+fHwojvmTNnlj22adMm7bDDDumxxx7L240dO9YphwaojNKsWTPnEaiTa665Jn333Xc54G7RokWFeb/j+XnnnZf69OmTtzvxxBOdZViIBODQxH322Wdpq622ygF2scSIs5dffjkts8wyRTsGAChFEUyF9dZbr9L1heWF7YDS9/XXX+fHmJfwuOOOy1UgxowZk4455ph08803py222KLW+yyMdAHq7913382Pv/jFLyp8rqJDW4iR4BGAx3Y+d1B/0Ya1atXKqQTqpFC1JaquVaawvLAdsPAIwKGJi9D573//e51HgL/99tvp6quvzjfP6joPWYwAF34DQMPr1KlTfnz11VfT5ptvPs/6WF5+O6D0Lb744vkxRn/37t07fx/TIsRI8KoC8OpGmcbo8Bg9F/sA6m+11VZLU6dOTSNHjsxhd4z8jvC7S5cueQT4qaeeWradzx3Un5LEQH2svvrq+fH+++9PRxxxxDzrY3n57YCFRwAO1Kv8eJSJatu2bfrJT35S5egyAKA4Yt6xuGF+0UUX5Tm/y4vqLxdffHFaddVV83ZA0xDzE4Y111yzwvLozPrkk0/W65oAqL+HH344LbXUUumRRx7JzyP0Lv8Yo78L2/ncQf0pfw7UR1RROvnkk9OZZ56ZDj300ArrojT62WefnUuhx3bAwlVxIkAAAKBkxDQjl19+ee51vtdee6XnnnsuTZ8+PT/G81g+ePDgvB3QNKy77rqpXbt26ZVXXqmw/K233kqdO3cu2nEB/2vJJZcsGyUWn9U999wzvfTSS/kxnodYH9sBAMWvInHSSSeljz76KK200krppptuSh9//HF+jOexPNarNgELnxHgAABQwvbee+909913p379+qXtt9++bHmM/I7lsR5oOlq3bp3LMw4bNiyPBl9//fXTAw88kJ5++ul0yy23FPvwgP+baiyqMsR8oTHiuzDquxB+x3oAoHG49NJL8+OQIUPS8ccfX7Y8Rn7H6PDCemDhEoADAECJi5A7Ro49+uij6YUXXkibbLJJ2nHHHY38hiYqSjBGOeW4SRejUiJQGzp0aNpss82KfWjA/4mQ+8svv0w777xzevfdd/Oc31H23MhvAGh8IuS+4IIL0pVXXpnGjx+funfvnk488UQjv2FRCsBj3oLoKR5zCH7xxRdpnXXWyb1YNtxww7x+woQJ6cILL0yvvvpqWmaZZfK8B4ccckiFuQavvvrqdNddd6Wvvvoq9ejRI8+DsPLKK5dtM799AAAAtRNlzrfZZpu0/PLLp65duwq/oYk77LDD8hfQeEXYPXbs2HyfLNpuc34DQOMVZc6PO+64snZb2XNYxOYAv/baa3N4ff755+cQPEonRvm0qVOnps8//zxfQMe8Yffcc0869thj85yC8X3BNddck26//fb8+pEjR+ZAPF4/e/bsvL4m+wAAAAAAAACAeo8Aj3mHdtttt7TVVlvl56eeemoOxF9++eU0ceLEtPjii6fzzjsvz28QZdQmT56chg8fnvbZZ58cct90002pf//+abvttsuvj5JrW2+9dXrkkUfyfv/0pz9Vuw8AAAAAAAAAaJAR4Msuu2x64okn0vvvv5++//77dOedd+ZSDmuvvXae22DTTTfNwXXB5ptvniZNmpQ++eST9MYbb6Tp06enLbbYomz9Eksskcuojxs3Lj+f3z4AAAAAAAAAoEFGgJ9xxhnpt7/9berZs2eeN7B58+Zp6NChuWT5hx9+mNZcc80K26+wwgr5ccqUKXl96NSp0zzbFNbNbx/LLbfcPMcUx1KVeE3Hjh3TjBkzavurAjXwzTfflD36nEHDmzNnTmrWrJlTCwAAAAAACyIAf/vtt1OHDh3SsGHD0oorrpjLn0dJ81tvvTXNmjUrjwYvr1WrVmXh2MyZM/P3lW3z5Zdf5u/nt4+6iNLrEyZMqNNrgep98MEHFR6BhhVtWKEdBAAAAAAAGjAAj9HU/fr1S7fcckvq3r17XtatW7ccisco8NatW+cb9eUVQuu2bdvm9SG2KXxf2KZNmzb5+/ntozJjx46t8phjdHiMnuvatWttflWgln70ox/5nMECMHenMAAAAAAAoIEC8FdeeSV9++23OfQub4MNNkhPPfVUDsCmTp1aYV3heYwW/+6778qWRcn08tustdZa+fsoV17dPuoiSsdWFZ4D9VMYmRqPPmfQ8JQ/BwAAAACAmmtei21zOB3efPPNCsvfeuut1KVLl9SjR4/0wgsvpO+//75s3bPPPptWXXXVtOyyy6a11147tW/fPj333HNl66dNm5Zef/31/Nowv30AAAAAAAAAQL0D8PXXXz9tsskm6ZRTTsmh9KRJk9KVV16ZnnnmmXTkkUemffbZJ3399dfpjDPOyGXRR40alcul9+nTp6yM60EHHZQGDx6cy5a/8cYb6aSTTsrBeq9evfI289sHAAAAAAAAANS7BHrz5s3Ttddem0Pv0047LX355ZdpzTXXzAF1lEEPN954Y7rwwgtT79690/LLL58GDBiQvy844YQTcin0M888M82aNSuP+B4xYkRafPHF8/oY5T2/fQAAAAAAAABAvQLwsOSSS6aBAwfmr6pGid95551Vvn6xxRZLJ598cv6qyvz2AQAAAAAAAAD1KoEOAAAAAAAAAI2VABwAAAAAAACAkiAABwAAAACAIrv++uvTwQcfXGHZhAkT0kEHHZQ23HDDtP3226c//OEPRTs+AFhUCMABAAAAAKCIbrvttnTllVdWWPb555+nww47LHXu3Dndc8896dhjj02DBw/O3wONy/fff5+eeuqp9PDDD+fHeA4UT4si/mwAAAAAAGiyPvroozRw4MD03HPPpS5dulRY96c//Sktvvji6bzzzkstWrRIq6++epo8eXIaPnx42meffYp2zEBFo0aNSv369UuTJk0qWxaf58svvzztvffeThcUgRHgAAAAAABQBK+99loOuf/yl7+kDTbYoMK68ePHp0033TSH3wWbb755Dtk++eSTIhwtUFn4ve+++6Zu3bqlJ554Io/+jsd4HstjPbDwCcABAAAAAKAIYl7voUOHppVXXnmedR9++GHq2LFjhWUrrLBCfpwyZcpCO0agclHmPEZ+77bbbmn06NG5w0rbtm3zYzyP5f3791cOHYpACXQAAAAAAGhkZs2alVq2bFlhWatWrfLjN998U+XrevbsWeW6CM4jVJ8xY0YDHik0TTHaOyoy3HzzzfnzOnPmzLy88HjSSSflTi6PPvpo2mabbYp8tLDomzNnTmrWrFmNthWAAwD19t1336Vhw4bl3q1ffPFFWmedddLJJ5+cNtxwQ2cXAAAA6qB169Zp9uzZFZYVgu8YZVpXsc8JEyZ4T6CeXnjhhfy42GKLVfhMFeYCj+WF7ZZffnnnG+op2q9CR7D5EYADAPV27bXXprvuuisNGjQol2274YYb0hFHHJEefPDBsvJsAAAAQM3FSO2pU6dWWFZ4vuKKK1b5urFjx1Y7OjxG0HXt2tVbAfX08ccfl5VCj89UjPyO8LtLly6pTZs26bnnnsvrN9lkE585aABzV0WpjgAcAKi3xx57LM9rtNVWW+Xnp556ag7EX3755dSrVy9nGAAAAGqpR48eaeTIkTlcK4wkffbZZ9Oqq66all122TqfzygfW58R5MD/2nHHHXPYfcUVV+SqiAURfkcFhyFDhuTPa2xX+AwDdVfT8ueheT1+DgBAFhfeTzzxRHr//ffzhfmdd96Ze+StvfbazhAAAADUwT777JO+/vrrdMYZZ6S33347jRo1Kt1yyy2pT58+zic0AhFqX3755en+++9Pe+21Vx7xPX369PwYz2P54MGDhd9QBEaAAwD1Fhfjv/3tb3Mptfjjv3nz5mno0KGpc+fOlW4f21VlypQpuczbjBkzvDPQwKIcW/lHoGFFOdHa9EgHAJhfZ/Mbb7wxXXjhhal37955DuEBAwbk74HGYe+9905333136tevX9p+++3LlsfI71ge64GFTwAOANRb9ETv0KFDGjZsWJ6HLMqf9+/fP9166611muNo9uzZacKECd4ZWEBiTjKg4UX71apVK6cWAKiTQYMGzbNs/fXXz1XWgMYrQu4999wzPfroo+mFF17Ic34rew7FJQAHAOolRmxHL9cow9a9e/e8rFu3bjkUj1Hg11xzzTyvGTt2bJX7i9HhMYKuLsE5UL0Y+R3hd8xRFnOSAQ0rpv8AAACanqiIuM022+RKDXFPy5zfUFwCcACgXl555ZX07bff5tC7vA022CA99dRTddpnlI9t27atdwYWkAi/fcag4Sl/DgAAAMXXvNgHAAAs2mK+7vDmm29WWP7WW2/lUaYAAAAAALCwCMABgHqJ+chibqNTTjklPfvss7m88pVXXpmeeeaZdOSRRzq7AAAAAAAsNEqgAwD10rx583Tttdfm0Pu0005LX375ZVpzzTXznOBRBh0AAAAAABYWATgAUG9LLrlkGjhwYP4CAAAAAIBiUQIdAAAAAAAAgJIgAAcAAAAAAACgJAjAAQAAAAAAACgJ5gAHAACAJuSjjz5K22yzzTzLL7744rT33nsX5ZgAAACgoQjAAQAAoAl54403UqtWrdJjjz2WmjVrVra8Q4cORT0uoKIPP/wwbbDBBunzzz9PSy+9dHrllVdSx44dnSYAAJgPATgAAAA0IW+99Vbq0qVLWmGFFYp9KEAV2rVrl2bMmFH2fOrUqalTp06pbdu2afr06c4bAABUwxzgAAAA0IS8+eabafXVVy/2YQA1CL+js0pMTxCPIZbHegAAoGoCcAAAAGhiI8A/++yzdOCBB6Ytt9wyHXDAAempp54q9mEB/1f2vBB+R+nz1157Le244475MZ6HWB/bAQAAlVMCHQAAAJqI7777Lr377rtpjTXWSKeeempq3759euCBB9KRRx6Zbr755rTFFlvM85qePXtWub8pU6bkOYnLl2oG6i7m/A4x4rtly5Zp5syZ+Xk8tmnTJq2yyipp8uTJebuJEyc61VBPc+bMSc2aNXMeAaDECMABAACgiWjRokV67rnn0mKLLZZat26dl6233nrp3//+dxoxYkSlAfj8zJ49O02YMGEBHC00PYVR3n369KnwuZo0aVJ+POKII9JZZ52Vt/O5g/qLNqxVq1ZOJQCUGAE4AAAANCGVzR/8k5/8JP3973+vdPuxY8dWua8YHR6j57p27dqgxwhN1dJLL52mTp2arr/++nTCCSfkkd8RfseI8BgBvs8++5Rt53MH9ReVFgCA0iMABwAAgCYiRnrvv//+6dprr02bbbZZ2fJXX301l0Wviygd27Zt2wY8Smi6XnnlldSpU6ccesfI1Ai9QzzG8yh/XtjO5w7qT/lzAChNzYt9AAAAAMDCsfrqq6fVVlstnXfeeWn8+PHpnXfeSRdffHF6+eWX09FHH+1tgCLr2LFjWbAdo7zXWWed9NBDD+XHeB5ifWwHAABUzghwAAAAaCKaN2+errvuunT55ZenE088MU2bNi0HazfffHNac801i314QEpp+vTpeaqCGTNm5BHfMed3QYTfsR4AAKiaABwAAACakOWWWy6P+gYarwi5P/zww7TBBhukzz//PI/+jrLnRn4DAMD8CcABAAAAoJGJsHvixIlpwoQJqWvXrub8BgCAGjIHOAAAAAAAAAAlQQAOAAAAAAAAQEkQgAMAAAAAAABQEgTgAADQBHz//ffpqaeeSg8//HB+jOcAAAAAUGpaFPsAAACABWvUqFGpX79+adKkSWXLunTpki6//PK09957O/0AAAAAlAwjwAEAoMTD73333Td169YtPfHEE3n0dzzG81ge6wEAAACgVAjAAQCgREWZ8xj5vdtuu6XRo0enTTfdNLVt2zY/xvNY3r9/f+XQAQAAACgZAnAAAChRf/vb33LZ89NPPz01b17xT/94ftppp6WJEyfm7QAAAACgFAjAAQCgRE2ZMiU/rrfeepWuLywvbAcAAAAAizoBOAAAlKhOnTrlx1dffbXS9YXlhe0AAAAAYFEnAAcAgBK19dZbpy5duqSLLroo/fDDDxXWxfOLL744rbrqqnk7AAAAACgFAnAAAChRiy22WLr88svT/fffn/baa6/03HPPpenTp+fHeB7LBw8enLcDAAAAgFLQotgHAAAALDh77713uvvuu1O/fv3S9ttvX7Y8Rn7H8lgPAAAAAKVCAA4AACUuQu4999wzPfroo+mFF15Im2yySdpxxx2N/AYAAACg5AjAAQCgCYgy59tss01afvnlU9euXYXfAAAAAJQkc4ADAAAAAAAAUBKMAIcS8MEHH6QZM2YU5Wf/97//LXts3bp1Kpa2bdumH/3oR0X7+QAAAAAAABSfABxKIPzu06dPsQ8jXX311cU+hHT99dcLwQEAAAAoKd99910aNmxYGj16dPriiy/SOuusk04++eS04YYbFvvQAKBREoDDIq4w8rtfv35ppZVWWug/f9asWWnChAl5LtFijQB///330+WXX160UfAAAAAAsKBce+216a677kqDBg1KK6+8crrhhhvSEUcckR588MG0wgorOPEA0BABePQ0Gz58eHrvvfdS586d03HHHZf+53/+pyyIOv/889O4ceNySeJ99903HX/88WmxxRYre/1tt92WbrrppvTxxx+n9dZbL5155pm511pBTfYBVBTh9xprrLHQT0uEzt98801abbXV8ucVAAAAAGg4jz32WNptt93SVlttlZ+feuqpORB/+eWXU69evZxqAJhL81RL9957bzrjjDPSgQcemB544IHc8Pbt2ze99NJL6dtvv02HH3543m7kyJHpnHPOSXfccUcuz1Lw5z//OV166aXpt7/9bRo1alQO7Q477LD02Wef5fU12QcAAAAAADQFyy67bHriiSfywLHvv/8+3Xnnnally5Zp7bXXLvahAcCiPwJ8zpw56aqrrkqHHHJIDsDD0UcfncaPH5+ef/759N///jfPR/ynP/0pLbnkkmnNNddMn376aQ68jzrqqNwoX3fddemggw5Ke+yxR379RRddlHbYYYfcYy3mMR4zZsx89wEAAAAAAE1BDEiLAWU9e/bMVVKbN2+ehg4dmquzVia2q8qUKVNSx44dTSUIC8DMmTMrPAINK3LqZs2aNXwAPnHixBxy77777hWWjxgxIj/GaO111103B9cFm2++efr666/zHMEx2nvSpElpiy22+P8H0KJF6t69ey53HgF4hOnV7WODDTaozSEDAAAAAMAi6+23304dOnTIVVJXXHHFPJisf//+6dZbb01du3at9f5mz56d77UDC0bkYEDDi/arVatWCyYAL8z5G2XKX3/99Rxqxyjw7bffPn344Ye591h5K6ywQlnPsgi7Q6dOnebZ5o033sjfz28fAnAAAAAAAJqCuCfer1+/dMstt+SBZKFbt245FI9R4Ndcc808rxk7dmyV+4vR4TGCri7BOVC9GPkd4XeXLl1SmzZtnC5oYLWpEl6rADxGYYdTTjklHXfccbmXWZQsP+aYY9LNN9+cZs2alZZYYokKrykk8d98801Z2Ye5DzC2ifVhfvuojJIuNGXxmSk8RueUpljWpdjnABpLWRcAAACgtLzyyivp22+/zaF3eTFQ7KmnnqrTPuM+Q9u2bRvoCIG5RfjtMwYNrzb3yWsVgC+++OL5MUZ/9+7dO38fPcViJHgE4K1bt87Dz8srhNbxYY/1obJtCr1h5rePulDShVL2wQcflFVoqKqTSKmXdWks5wCKXdYFAAAAKC2FaqlvvvlmWn/99cuWv/XWW3mUKQBQzwA85hcJa665ZoXla6yxRnryySfTpptumhve8qZOnVr22kLp81i2+uqrV9imsO9o0KvbR2WUdKEpKwRjq666alpttdWaZFmXYp8DaCxlXQAAAIDSEqH3JptskquyDhw4MN8/Hz16dHrmmWfSHXfcUezDA4BFPwBfd911U7t27XLZlcJ8IyEC686dO6cePXrkxjdKpbdv3z6ve/bZZ/Nr1l577XwTPwKq5557Lm2xxRZ5/XfffZfGjx+ffvnLX+bn89tHXSjpQikrVFaIx2KWVSlmWZfGcg5gQVD+HAAAAJqu5s2bp2uvvTZdeeWV6bTTTktffvllHqAWc4JHGXQAYF7NUy1EuHTEEUekYcOGpfvvvz/95z//yY3v008/nQ477LC0ww47pOWXXz6deOKJ6Y033kiPPfZYuuKKK9Kvf/3rshFs8X2US//zn/+c3n777XT66afneXv33XffvL4m+wAAAAAAgKZgySWXzKO/n3jiifTiiy+mkSNH5mqsAEADjAAPxxxzTB7pOWTIkPTRRx/lUuZDhw5Nm222WV5/4403pnPPPTf9/Oc/zw1zjOyO1xTE8q+++ir3WPviiy/SeuutlwPxZZZZpqyU8fz2AQAAAAAAAAD1DsBDjPaOr8qsssoq6aabbqr29Ycffnj+qkpN9gEAAAAAAAAAdS6BDgAAAAAAAACNlQAcAAAAAAAAgJIgAAcAAAAAAACgJAjAAYAGMXr06LTLLrukbt26pV133TU99NBDziw0Il9//XXaf//9y77iOcDEiRPTRhttlEaNGuVkQCNz0kknpXbt2qXu3bvnx3gOAADMX4sabAMAUK177703nXHGGen0009PW2+9dXrggQdS3759U8eOHfNNdaC4Nt100zRu3Liy5++8807q0KFD6tGjR3r++eeLemxA8Xz77bepf//+acaMGd4GaGSaNWs2z7Irr7wyf82ZM6coxwQAAIsKI8ABgHqJG3BXXXVVOuSQQ9KBBx6YOnfunI4++ui05ZZbCtagEYXfcSP9l7/8Zbr99tvzYzyP5bEeaJqGDh2a2rdvX+zDAOYTfi+22GLVrgcAACoSgAMA9S6d+t///jftvvvuFZaPGDEi9enTx9mFIooy54XwO0Z43nDDDWnNNdfMj/G8EIIrhw5NT3z277zzzjRo0KBiHwpQTvky55dffnmaPn16eu655/JjPK9sOwAAoCIl0AGAegfgIcK0ww8/PL3++utppZVWyqPAt99++0pf07Nnzyr3N2XKlFw6XTlWqL8DDjig7PGHH35IM2fOzM/jsU2bNnku8JEjR+b1EYQB9a+KsiiMzJw2bVoaMGBAOvPMM1OnTp3mu712GxaeKHFecNRRR1Vou+N5v379yra78MILvTXQRNpuAKB2BOAAQL0URo6ecsop6bjjjstziY4ZMyYdc8wx6eabb05bbLFFrfc5e/bsNGHCBO8M1FPhc7TbbrtV+ExNmjSpbHkE4LHOZw7qL9qvVq1aNfpTec4556SNNtponuotdaXdhoYXZc8ra7vL03ZD02m7AYDaEYADAPWy+OKL58cY/d27d+/8fdeuXfNI8KoC8LFjx1Y7yix64cc+gPqJz9E777yT7r///lz2PEaPxQ30Ll265BHggwcPLtvOZw7qr2XLlo3+NI4ePTqNHz8+3XfffTV+jXYbFr7vv/8+t81zt93labuhabTdAEDtCcABgHpZccUV82PMK1zeGmuskZ588sk67TNK0LVt29Y7A/V0xx13pA4dOuTHESNGlN04j8fmzZuXlT2P9T5zUH+LQgnVe+65J3366adpu+22q7B84MCB6cEHH0w33nhjrfep3YaGc+KJJ5aVQb/uuuty2fNC2x3Py2+n7Yam0XYDALUnAAcA6mXddddN7dq1S6+88krq3r172fK33norde7c2dmFImrfvn3q0aNHGjduXL5JHnN+R9nzGPkd4XdUW4j1sR3QNMTnf9asWRWW9erVK51wwglpjz32KNpxAf9ryJAhZQF4zPddmPO7su0AAIDKCcABgHpp3bp1OuKII9KwYcPyaPD1118/PfDAA+npp59Ot9xyi7MLRfb888+nTTfdNIfgMd93fBVE+B3rgaZXuWVuyy67bJXrgIUrOqhVNyo11gMAjUtMW3LSSSflASIbbLBB7tA29/QlwMLTfCH+LACgRB1zzDHp+OOPzyNRdtlll/Twww+noUOHps0226zYhwb8Xwj+1Vdf5dHfq6++en6M58JvAGicIuSOMuflxXPhNwA0PnvttVeuujZ8+PD03HPP5cd4HsuB4jACHABoEIcddlj+AhqnKHMeZc8nTJiQunbtat5QoMybb77pbEAjFJ1LL7zwQm03ADRiEXLfe++9qWXLlnlaoZ/+9Ke5KuLvfve7vDzWjx49utiHCU2OEeAAAAAAAABQy7LnhfA7qqyde+65aeWVV86P8TyWx/rYDli4BOAAAAAAAABQCyeffHJ+7Nu3bw67y4vnhelMCtsBC48AHAAAAAAAAGrh3//+d3484ogjKl1/+OGHV9gOWHgE4AAAAAAAAFALP/nJT/LjjTfeWOn6ESNGVNgOWHgE4AAAAAAAAFALl112WX684oor0uzZsyusi+dXXnllhe2AhUcADgAAAAAAALXQpk2btOeee+awu0OHDumss85KkydPzo/xPJbH+tgOWLhaLOSfBwAAAAAAAIu80aNHp7322ivde++9eSR4fBVE+B3rgYVPAA4AAAAAAAB1ECH3zJkz04knnpheeeWVtMEGG+Ty50Z+Q/EIwAEAAAAAAKCOIuweMmRImjBhQuratavwG4rMHOAAAAAAAAAAlAQBOAAAAAAAAAAlQQAOAAAAAAAAQEkQgAMAAAAAAABQEgTgAAAAAAAAAJQEATgAAAAAAAAAJUEADgAAAAAAAEBJEIADAAAAAAAAUBIE4AAAAAAAAACUBAE4AAAAAAAAACVBAA4AAAAAAABASRCAAwBAE3DZZZeldu3ape7du+fHeA4AAAAApUYADgAAJa5Zs2ZpwIABFZbF81gOAAAAAKVEAA4AACVs7pB7qaWWqnY9AADQuIwePTrtsssuqVu3bmnXXXdNDz30ULEPCZjL119/nfbff/+yr3gOFI8AHAAASlT5Mud33HFHmj59enrsscfyYzyvbDsAAKDxuPfee9MZZ5yRDjzwwPTAAw+k3XbbLfXt2ze99NJLxT404P9suummqUOHDun+++9P77zzTn6M57EcKA4BOAAAlKjyZc9/8YtfVFhX/vnc5dEBAIDimzNnTrrqqqvSIYcckgPwzp07p6OPPjptueWW6fnnny/24QH/F36PGzcuV1f75S9/mW6//fb8GM9juRAciqNFkX4uAACwkCy33HKVLl966aXT559/7n0AAIBGaOLEiem///1v2n333SssHzFiRNGOCfj/osx5IfyeMWNG+uGHH9KECRPSDTfckD+nbdu2zetju/bt2zt1sBAJwAEAoMR98sknlS4XfgMAQOMOwEMEa4cffnh6/fXX00orrZRHgW+//fZVvq5nz55VrpsyZUrq2LFj3idQPwcccEDZY4TfM2fOzM/jsU2bNnku8JEjR+b1d955p9MNDVAZJTqc1IQAHAAAStSll15aVt48Lrr32GOPsnXxvPx2AABA4xKjRsMpp5ySjjvuuNS/f/80ZsyYdMwxx6Sbb745bbHFFnXa7+zZs/MoVaB+Cp+j3XbbrcJnatKkSWXL49o71vnMQf1F+9WqVasabSsABwCAEnXyySeXBeCFnukdOnRIX3311TzbAQAAjcviiy+eH2P0d+/evfP3Xbt2zSPBqwvAx44dW+3o8BhBF/sB6ic+R++88066//77c9nzGPkd4XeXLl3yCPDBgweXbeczB/XXsmXLGm8rAAcAgCZUHmru8DvWAwAAjc+KK66YH9dcc80Ky9dYY4305JNP1nm/cX0QcxMD9XPHHXfkTubxGHN+R+gd4rF58+ZlZc9jvc8c1F9Ny5+H5g3w8wAAgEYsQu65y5zHc+E3AAA0Xuuuu25q165deuWVVyosf+utt1Lnzp2LdlzA/2rfvn3q0aNHvraOgDuqNbzxxhv5MZ7H8lgf2wELlxHgAADQBESZ82OPPTbPOxal1/Q+BwCAxq1169bpiCOOSMOGDcujwddff/30wAMPpKeffjrdcsstxT48IKX0/PPPp0033TSNGzcuz/cdXwURfsd6YOETgAMAAAAAQCN0zDHH5HLKQ4YMSR999FFaffXV09ChQ9Nmm21W7EMD/k+E3F9//XU64IADyjqdR9lzI7+heATgAAAAAADQSB122GH5C2i8IuyOOb9VXYPGwRzgAAAAAAAAAJQEI8ABAACgCfn000/ToEGD0t/+9rf0zTff5LkJTznllFxSFWg8mjVrNs+yOXPmFOVYAABgUWIEOAAAADQhxx57bJo8eXIaPnx4uvvuu1Pr1q3ToYcemmbOnFnsQwOqCb+rWw4AAPx/AnAAAABoIr788sv04x//OF1wwQVp/fXXz6O+jznmmDR16tT073//u9iHB9Qg5BaCAwBA9ZRABwAAgCZiySWXTJdffnnZ888++yzdcsstqWPHjmmNNdYo6rEB84bb06dPTxMmTEhdu3ZN7dq1q7CdcugAAFA5ATgAAAA0QWeddVb605/+lFq2bJmuvfba1LZt20q369mzZ5X7mDJlSg7PZ8yYsQCPFJqmCL8LUxPEYzwvH4L73EH9RUcSVRUAoPTUOQCfOHFi2nvvvfMFczyG6JF64YUXpldffTUts8wyeQ6xQw45pOw1P/zwQ7r66qvTXXfdlb766qvUo0ePdPbZZ6eVV165bJv57QMAAACov1/96ldp//33T7fddlueF/z2229P6667bq33M3v27HwtDzSs8p+rSZMmVbseqJtow1q1auX0AUCJqVMA/u2336b+/ftX6Gn6+eefp8MOOyxtv/326dxzz00vv/xyfoyeqfvss0/e5pprrskX1IMGDco9xC+77LJ0xBFHpPvuuy/3OK/JPoB5tWnTJvcG/+KLLxb66Zk1a1a+WJg2bVp+LIb43eMcAAAANVcoeR6d0F955ZV06623posvvnie7caOHVvlPmJ0eIyei/LMQMOKz1Vc70b43aVLl3mue33uoP7injQAUHrqFIAPHTo0tW/fvsKyKJu2+OKLp/POOy+1aNEirb766mny5Mlp+PDhObyOYOymm27Kwfl2222XXzNkyJC09dZbp0ceeSTttttu890HULm46H333XfzV7FMnTo1FZMLfwAAmL+Y8/uZZ55JO+20U77uDs2bN89heF3/po/SsVWVTwfqLgaERNnzEOF3+fLnwecO6k/5cwAoTbUOwMeNG5fuvPPONHr06LIgO4wfPz5tuummZRfQYfPNN0/XX399+uSTT9IHH3yQ/2jfYostytYvscQSaZ111sn7jAB8fvtYbrnl6vfbQomKsmf77rtvhekEFuYI8JgSYdVVV02tW7dOxfDee+/lso0AAED14tq6b9++6cYbb8wd0gtV3l5//fVcjQ1oXPMRzx16l98OAABogAA8ShwPGDAgnXnmmalTp04V1n344YdpzTXXrLBshRVWyI9TpkzJ68Pcr4ttCuvmtw8BOFRfAnyppZZa6KcopkKIclHRoaVYvc/jJl6cAwAAoHpxzb3NNtukCy64IH8tueSSudN5XO8feuihTh80whC8svUAAEADBeDnnHNO2mijjdLuu+9e6SjQuedMadWqVX785ptvysKpyrb58ssva7SP6uYcq0oE5zHfePn5yqGUxOem8FiMf+eFz3YxA+hinwMo5s0vAIDauuKKK9Lll1+eTjrppPTVV1+l7t2754pKP/rRj5xMaOTXAcJvAABowAA8Sp5HifL77ruv0vVR+jjm+S6vEFrHqNBCaeTYpnyZ5NgmRq7WZB91FfuMEtFQimJ6gRBlyKvrKLKgTZo0KTX1cwALQrRhhc5gAAANoUOHDrmDe3wBjVeE3dHJO+5pde3a1ZzfAADQ0AH4Pffckz799NMK836HgQMHpgcffDCPsp46dWqFdYXnK664Yvruu+/KlnXu3LnCNmuttVb+fn77qMrYsWOrHR0eFwxxoQClqBCMxRzcq6222kL/+THyO8LvLl26lHVmaWrnABakuSujAAAAAAAADRCADx48uKzMcEGvXr3SCSeckPbYY4907733ppEjR6bvv/8+LbbYYnn9s88+mwOpZZddNvcwb9++fXruuefKAvCYY+z1119PBx10UH7eo0ePavdRV1EyqlhzE8OCVqioEI/F/Hce4Xexfn5jOQewICh/DgAAAACN25AhQ1Lfvn0rTDsUUw4BxdG8phvGCOxVVlmlwleIYDrW7bPPPunrr79OZ5xxRnr77bfTqFGj0i233JL69OlTNoItgu4I0mPE9htvvJE//DHqO4L0ML99AAAAAAAAQGMawFI+/A7x3MAWWAQC8PmJIPzGG2/Mc/D27t07XX311WnAgAH5+4IYLb7vvvumM888Mx1wwAF5lPeIESPS4osvXuN9AACNV7ThG220Ue7EBgAAAAClbO6Qe5lllql2PdDISqBX5s0336zwfP3110933nlnldtH4H3yySfnr6rMbx8AQOP07bffpv79+6cZM2YU+1CASkTlpY8++qjseVRx+vDDD50rAAAAqGPZ84K77ror7bLLLmnChAmpa9eu6cEHH0z77bdf2XbKocMiOgIcAGjahg4dmtq3b1/swwAqET3Oy4ffIZ7riQ4AAAB1U77seVQ/Lq/887nLowMLngAcAKi3cePG5QougwYNcjahkZlfyC0EBwAAgPpVXKtMTPsLFIcAHACol2nTpqUBAwakM888M3Xq1MnZhEZ6Ef7Tn/40TZ8+PY0fPz4/xvPKtgMAAABqrqrpxT799FOnERbFOcABAM4555y00UYbpd13373GJ6Nnz55VrpsyZUoO48wlDvVXvuz5I488kmbOnJm/j8d43q5du7LtfOag/ubMmaOqAgAANBFXXHFFWXnzu+++O88BXhDPy28HLFwCcACgzkaPHp1Hk953330NehZnz56dJkyY0KD7hKau/Gdq0qRJ1a4H6t5+tWrVyukDAIAm4KSTTioLwPfbb7/8uOSSS6Yvv/xynu2AhUsADgDU2T333JPLOW233XYVlg8cODA9+OCD6cYbb6z0dWPHjq12dHiMoOvatat3BhpQfKZi5HeE3126dElt2rSZZz1QPy1btnQKAQCgCVeBmjv8jvXAwicABwDqbPDgwWnWrFkVlvXq1SudcMIJaY899qjzfuPCoW3btt4ZqKcVV1yxrAx6fDaj7HmI8Duel9/OZw7qr/yNLwAAoGmIkHvIkCFlo8ELZc+N/IbiEYADAHUWoVllll122SrXAQvPhx9+WBbIPf3002Vzfle2HQAAAFA3EXb36dMnTy8WFdZ0Mofial7knw8AACxA8yu3phwbAAAAAKXECHAAoEG9+eabzig0MhFyd+zYsawceogqDUZ+AwAAAFBqjAAHAIAmIMLu6dOnp/Hjx+dH4TcAAAAApUgADgAAAAAAAEBJEIADAAAAAAAAUBIE4AAAAAAAAACUBAE4AAAAAAAAACVBAA4AAAAAAABASRCAAwAAAAAAAFASBOAAAAAAAAAAlAQBOAAAAAAAAAAlQQAOAAAAAAAAQEkQgAMAAAAAAABQEgTgAAAAAADQyE2cODFttNFGadSoUcU+FGAuzZo1S+3atUvdu3fPj/EcKB4BOAAAAAAANGLffvtt6t+/f5oxY0axDwWYS1VhtxAcikcADgAAAAAAjdjQoUNT+/bti30YQC1DbiE4FIcAHAAAAAAAGqlx48alO++8Mw0aNKjYhwJUE25Pnz49jR8/Pj9Wtx2w4LVYCD8DAAAAAACopWnTpqUBAwakM888M3Xq1KlGr+nZs2eV66ZMmZI6duyolDo0sAi9Z86cmb+Px3gec4EXmL4A6m/OnDk17lAiAAcAAAAAgEbonHPOSRtttFHafffdG2yfs2fPThMmTGiw/QGpwmdq0qRJ85wSnzlomParVatWNdpWAA4AAAAAAI3M6NGjcznl++67r1avGzt2bLWjw2MEXdeuXRvgCIGC+EzFyO8Iv7t06ZLatGlT4eT4zEH9tWzZssbbCsABAAAAAKCRueeee9Knn36atttuuwrLBw4cmB588MF044031mm/UT62bdu2DXSUQIhy54W5vyP8Ll/+PPjMQf3VtPx5EIADAABAE/LFF1+kK664Ij355JPp66+/TmuttVbq169f6t69e7EPDQAoZ/DgwWnWrFkVzkmvXr3SCSeckPbYYw/nChrZfMRzh97ltwMWLgE4AAA00V6yLsKhaerbt2/6+OOPcwi+7LLLpj/+8Y/p8MMPT3/+85/TaqutVuzDA/6PthtYccUVKz0J0X5XtQ4obghe2Xpg4WtehJ8JAAAsRFVdjNemdBRQGiZPnpyefvrpdM455+QR36uuumo666yz0gorrFDr+UWBBUfbDQCLjqpCbuE3FI8R4AAAUMLmF3LHehfl0HQsvfTSafjw4albt24V/h+Ir2nTphX12ID/pe0GqvPmm286QdAIxXX1jBkz0oQJE1LXrl3N+Q1FZgQ4AAA0kRvo06dPT+PHj8+P1W0HlK4lllgibbvttqlly5Zly8aMGZNHhm+99dZFPTZA2w0AAA3BCHAAAGhCvdHLPxd8Ay+++GI67bTTUq9evdJ2221X6Qnp2bNnlSdqypQpqWPHjhX+fwEaRnRYmzlzZv4+HuN5u3btytb73EH9+ZsYAEqTABwAAACaoMceeyz1798/bbzxxmnw4MF13s/s2bNzqUegYZX/XE2aNKna9UDd27BWrVo5fQBQYgTgAAAA0MTceuut6cILL0w777xzuuSSSyqURJ/b2LFjq1wXo8Nj9FzMcwg0rPhcxcjvCL+7dOmS2rRpM896oH6qa/8AgEWXABwAAJqAKHdefu5v5c+h6br99tvT+eefnw4++OB0xhln1Pv/g3h927ZtG+z4gP8V5c4LbXeE3+XLnwefO6g/fxMDQGkSgAMAQImae07DuW+cl98OaBomTpyYLrroorTjjjumPn36pE8++aRsXevWrVOHDh2KenzQ1Gm7AQCg/gTgAADQhG6kV7YeaDrGjBmTvv322/Too4/mr/J69+6dBg0aVLRjA/6XthsAAOpHAA4AAE30RrrwG5qeo446Kn8BjZu2GwAA6q55PV4LAAAsQjfSYx7R8ePH50fhNwA0btpuAACoGwE4AAAAAAAAACVBAA4AAAAAAABASRCAAwAAAAAAAFASBOAAAAAAAAAAlAQBOAAAAAAAAAAloUWxDwAAAAAAAAAWVc2aNZtn2Zw5c4pyLIAR4AAAAAAAANBg4Xd1y4EFTwl0AAAAAAAAqKX5hdxCcCgOATgAAAAAAADUwtzh9vTp09P48ePzY3XbAQueABwAAAAAAADqaO75vs3/DcUlAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAACoo7nn+TbvNxRXiyL/fAAAAAAAAFikxDzf5YPudu3aVbkd0MhHgH/xxRfp7LPPTttss03aeOON0wEHHJDGjx9ftv6ZZ55Je++9d9pggw3SzjvvnB544IEKr//mm2/Sueeem7bYYou00UYbpX79+qXPPvuswjbz2wcAAAAAAAAU0/zCbeE3LCIBeN++fdNLL72UrrjiinTPPfekrl27psMPPzy9++676Z133kl9+vRJW2+9dRo1alTab7/90oABA3KgXXDOOeekv//972no0KHp97//fX7dCSecULa+JvsAAAAAAACAYqsq5BZ+wyJSAn3y5Mnp6aefTrfffnvaZJNN8rKzzjor/e1vf0v33Xdf+vTTT9Naa62VTjrppLxu9dVXT6+//nq68cYb84jvjz76KI0ePTpdd911qXv37nmbCNJjlHeE6jEiPELx6vYBAAAAAAAAjUWE3TNmzEgTJkzIA0fbtm1b7EOCJq1WAfjSSy+dhg8fnrp161a2LOY3iK9p06blUug77LBDhddsvvnm6cILL8wf/hdeeKFsWcGqq66aVlxxxTRu3LgcgM9vH+XnUwBSheoJxTBr1qxcyaFVq1apdevWRTmG999/vyg/FwAAAAAAgEU4AF9iiSXStttuW2HZmDFj8sjw008/Pf35z39OHTt2rLB+hRVWSDNnzkyff/55HgEeIXoEZXNv8+GHH+bv47G6fSyzzDLzHFfPnj2rPOYpU6bk/UXPGyhFhX/bV199dWrqooOMzzqlRucvAAAAAABYQAH43F588cV02mmnpV69eqXtttsujwRt2bJlhW0Kz2fPnp1D7LnXhwjEv/nmm/z9/PZRF/G6KDsBpeqII45IzZs3L8rP/uSTT9KoUaPS3nvvnZZbbrlULPH/yBdffJG/oJREGzZ3x7HGKD57Ma3Jk08+mb7++us8nUm/fv3KpjwBiq+ySkrmIwMAAACg1NQ5AH/sscdS//7908Ybb5wGDx6cl8UN+rlD6sLzNm3a5PLIlYXYEX7H+prsozJjx46t8jhjdHjc2Is5F6BUFfPfd3QuiQB8/fXX9zmDBaCyjmONUd++fdPHH3+cQ/Bll102/fGPf0yHH354rg6z2mqrFfvwoMmrahqhWC4EBwAAACA19QD81ltvzXNy77zzzumSSy4puznfqVOnNHXq1ArbxvO2bdumDh065FLkMUIsAu3yN/Rjm5gHvCb7qIu4sRevBxpeYWRqPPqcwcILrRqTmArl6aefTrfffnvaZJNN8rKzzjor/e1vf0v33Xdf+u1vf1vsQ4QmbX7/jwjBAQAAACglta6ZHDe3zz///HTggQfmUV7lg+woc/r8889X2P7ZZ5/No8SjPHPcFP/hhx/SCy+8ULZ+4sSJeW7wHj161GgfAEDjsvTSS6fhw4enbt26VQjU4mvatGlFPTZo6uYOv6dPn57Gjx+fH6vbDgAAAACaxAjwCKsvuuiitOOOO6Y+ffrkuX8Lorz5wQcfnHr37p1LosfjX//61/Twww+nG2+8MW8To7x33XXXdOaZZ+b9REnzgQMHpk033TRtuOGGeZv57QMAaFyWWGKJtO2221ZYNmbMmDwy/PTTT69yipKqTJkyJVeNmTFjRoMfKzRlEXrPnDkzfx+P8bxdu3Zl633moP5iSgEdSgAAAGARCsDjZva3336bHn300fxVXoTVgwYNStdcc0267LLL0u9///u00kor5e+32GKLsu1i9HiE38cdd1x+vs022+RAvOAnP/nJfPcBADReL774YjrttNNSr1690nbbbVenfcR0KRMmTGjwY4OmrPxnatKkSdWuB1Kd26/CFEEAAADAIhCAH3XUUfmrOhFox1dVYo7gCy64IH/VdR8AQOP02GOPpf79++epS6KaS1XGjh1b5boYHR4j6Lp27bqAjhKapvhMxcjvCL+7dOmSqzHNvR6on/JThAEAAACLQAAOAFCVW2+9NV144YVp5513Tpdcckm9QoAoHxud5oCGE+XOC3N/R/hdvvx58JmD+lP+HAAAAIpPAA4A1Nvtt9+epzk5+OCD0xlnnCEAgEY6H/HcoXf57QAAAACgFAjAAYB6mThxYrrooovSjjvumPr06ZM++eSTsnWtW7dOHTp0cIahEYXgla0HAAAAgFIhAAcA6mXMmDHp22+/TY8++mj+Kq93795p0KBBzjA00hBc+A0AAABAqRGAAwD1ctRRR+UvoHGLsHvGjBlpwoQJqWvXrub8BgCARcAXX3yRrrjiivTkk0+mr7/+Oq211lqpX79+qXv37sU+NKAcnc6hcWle7AMAAAAAAADm1bdv3/TSSy/lEPyee+7JnVkPP/zw9O677zpd0EhUNe1YddORAQuWABwAAAAAABqZyZMnp6effjqdc845ecT3qquums4666y0wgorpPvuu6/YhwfUIOQWgkNxCMABAAAAAKCRWXrppdPw4cNTt27dKoRp8TVt2rSiHhswb7g9ffr0NH78+PxYnhAcFj5zgAMAAEATdf3116e///3v6Y9//GOxDwUAmMsSSyyRtt122wrLxowZk0eGn3766VWer549e1a5bsqUKaljx45pxowZzjc0oAi9Z86cmb+Px3jerl27svU+c1B/c+bMqXGHEgE4AAAANEG33XZbuvLKK3NJVaDxqezmXtz0A5quF198MZ122mmpV69eabvttqvzfmbPnp0mTJjQoMcGTV35z9SkSZOqXQ/Uvf1q1apVjbYVgAMAAEAT8tFHH6WBAwem5557LnXp0qXYhwNUoqqRLbFcCA5N02OPPZb69++fNt544zR48OBqtx07dmy1o8Pj/5GuXbsugKOEpis+UzHyO8Lv+Bu7TZs286wH6qdly5Y13lYADgAAAE3Ia6+9lhZffPH0l7/8JQ0bNiz997//LfYhAeXMr6yjEByanltvvTVdeOGFaeedd06XXHJJrQKAqv4fadu2bYMdH5ByufPC3N8Rfpcvfx585qD+alr+PAjAAQAAoAnZfvvt8xfQ+G/qxY30KJkao8bK30gXgkPTcfvtt6fzzz8/HXzwwemMM86o1c1/YOHORzx36F1+O2DhEoADAAAA1ZZKrcqUKVNSx44d04wZM5xBaGARfkcp1RCP8bz8jXWfO2j48KqxmThxYrrooovSjjvumPr06ZM++eSTsnWtW7dOHTp0KOrxAfP/f0T4DcUhAAcAAADqbPbs2XmEKtCwyn+uYj7R6tYDdW/DWrVq1WhP35gxY9K3336bHn300fxVXu/evdOgQYOKdmzA/ENw4TcUjwAcAAAAqNLYsWOrHR0eN/aiPDPQsOJzFSO/I/zu0qVLnk907vVA/dR3Lu0F7aijjspfQOMXfxNHdZbC1CXm/IbiEoADAAAAdRajXdzgg4YX5c6j7HmI8HvueUV97qD+GnP5cwCg7gTgAAAAANAIS6jOHXqX3w4AAKhc8yqWAwAAAAAL2fzCbeE3AABUzwhwAAAAaKIGDRpU7EMAajASvPxyAACgekaAAwAAAEAjE2F3zAE+fvz4/Cj8BgCAmhGAAwAAAAAAAFASBOAAAAAAAAAAlAQBOAAAAAAAAAAloUWxDwAAAFjwmjVrNs8yc4kCAAAAUGqMAAcAgCYYfle3HAAAAAAWVQJwAAAoYfMLuYXgAAAAAJQSATgAAJSoucPt6dOnp/Hjx+fH6rYDAAAAgEWVABwAAJqAuef7Nv83AAAAAKVIAA4AAAAAAABASWhR7AMAAAAAAACARVVlU4upvAbFYwQ4AAA0wYtx834DAABAw19vu+6G4jMCHAAASlT0Ni9/Id6uXbsqtwMAAABqZ36dy2O9a25Y+IwABwCAEja/C20X4gAAAFD/8Hv69Olp/Pjx+bG67YAFTwAOAAAlrqqQW/gNAAAADX/d7XobiksADgAATUBcfJfvje5iHAAAAIBSJAAHAAAAAAAAoCQIwAEAAAAAAKCO5p7n27zfUFwtivzzAQAAAAAAYJESU4uVD7rbtWtX5XbAwmUEOAAAAAAAANTS/MJt4TcUhwAcAAAAAAAA6qCqkFv4DcUjAAcAAAAAAIA6irB7+vTpafz48flR+A3FJQAHAAAAAAAAoCQIwAEAAAAAAAAoCQJwAAAAAAAAAEqCABwAAAAAAACAkiAABwAAAAAAAKAkCMABAAAAAAAAKAkCcAAAAAAAAABKggAcAAAAAAAAgJIgAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAAAASoIAHAAAAAAAAICSIAAHAAAAAAAAoCQ0ygD8hx9+SL/73e/S1ltvnTbccMP0m9/8Jr333nvFPiwAoArabgBYdGi3AWDRou0GgBIIwK+55pp0++23p/PPPz+NHDkyN/BHHHFEmj17drEPDQCohLYbABYd2m0AWLRouwFgEQ/AI+S+6aab0gknnJC22267tPbaa6chQ4akDz/8MD3yyCPFPjwAYC7abgBYdGi3AWDRou0GgBIIwN944400ffr0tMUWW5QtW2KJJdI666yTxo0bV9RjAwDmpe0GgEWHdhsAFi3abgCovRapkYmR3qFTp04Vlq+wwgpl6+bWs2fPKvc3ZcqU1LFjxzRjxowGPlIoHf/5z3/SV199VafXTpw4MX++Xn/99TRz5sw67aNDhw6pc+fOdXotlLo5c+akZs2apcZM2w218/LLL6dPPvmkzqdt8uTJ6euvv67Ta7/77rvcXrdp0ya1aFH3S4H27dunVVZZpc6vX2655dKGG25Y59dDY6XdhtJT33a7MbTd2m2omrYbSo9rbtfclK7atNuNLgAvBGgtW7assLxVq1bpyy+/rHOZmAkTJjTI8UGpmTZtWjrkkEPSDz/8UK/9nHTSSXV+bfPmzdMf/vCHXO0BmLcNizawMdN2Q819/PHH6Zlnnkkbb7xxnU9bY+k0FhcddTVmzJj8N8jyyy/foMcExabdhtLSEO12Y2m7tdtQOW03lBbX3P/LNTelqjbtdqMLwFu3bl32SxS+D998803u7VqZsWPHVrm/GB0ef+R37dp1ARwtlIZHH320ziPAZ82ald5999202mqrVfjM1oYR4FC1uTuENUbabqi5+Js0Onw19RHgO+20kxHglCTtNpSWhmi3G0Pbrd2Gqmm7obS45v5frrkpVbVptxtdAF4ofT516tQKPWTj+VprrVWnfcZw+LZt2zbYMUKpWXvttev82ih/Hp+v+OPC5wwaXmMvfx603VA7W265ZdFOWbTbURlJuw0LhnYbSk8x2+2g7YYFS9sNpcc1N5Su2rTbzVMjDOKiZ+pzzz1XtizKI8b8wj169CjqsQEA89J2A8CiQ7sNAIsWbTcA1F6Lxjh8/aCDDkqDBw9OyyyzTPrxj3+cLrvsstSxY8fUq1evYh8eADAXbTcALDq02wCwaNF2A0AJBODhhBNOyHMcnXnmmXl+4Rj5PWLEiLT44osX+9AAgEpouwFg0aHdBoBFi7YbAEogAF9sscXSySefnL8AgMZP2w0Aiw7tNgAsWrTdAFA7jW4OcAAAAAAAAACoCwE4AAAAAAAAACVBAA4AAAAAAABASRCAAwAAAAAAAFASBOAAAAAAAAAAlAQBOAAAAAAAAAAloUUqcVOnTk3ff/996tmzZ7EPBUrSnDlz0uzZs1PLli1Ts2bNin04UHKmTJmSFltssdSUaLthwdFuw4Kl3QYamrYbFixtN9CQtNvQeNrtkh8B3qpVq9SiRcnn/FA0H374Yfrss8+E37CARBsWbVlTou2GBUe7DQuWdhtoaNpuWLC03UBD0m5D42m3m82JLikAdVSorjB27FjnEAAaOe02ACxatN0AsOjQbkPjUfIjwAEAAAAAAABoGgTgAAAAAAAAAJQEATgAAAAAAAAAJUEADgAAAAAAAEBJEIADAAAAAAAAUBIE4AAAAAAAAACUhGZz5syZU+yDAAAAAAAAAID6MgIcAAAAAAAAgJIgAAcAAAAAAACgJAjAAQAAAAAAACgJAnAAAAAAAAAASoIAHAAAAAAAAICSIAAHAAAAAAAAoCQIwIE6e+WVV5w9AKBGvv/++wqPAAAAwIL3ww8/VHg+Z84cp52SJwAH6uTJJ59Mxx13XBo+fLgzCABU6/3330+DBw9OM2fOTIsttpizBQCLgDfeeCO9/vrrxT4MAKAeIuxu3vx/o8BXX301PzZr1sw5peQJwIE6WWWVVdJPf/rTdP/996cbbrjBWQQAqhQX10899VQ69thj05lnnpluu+22eXqgAwCNS4Tfv/zlL9M777yT7r333vSvf/2r2IcEANQy/C6E3UOGDEkXXnhhmjRpknNIkyAAB2otSpeuuuqq6eSTT04bbrhhevDBB9Mf/vAHZxIAqFSnTp3SiSeemG+k33333WmttdbKPdCVQweAxmubbbZJP/vZz9Lee++dTj/99NyeAwCLjkL4PXbs2NyRrV+/fqlLly7FPixYKATgQJ0bzqlTp+Yyph988EEaNmxYuuWWW5xNAKDScmvx2KJFi9S5c+d0zTXXpGnTpuW/I4TgANA4Lbfccrnd/uabb1LLli3TRx99VOxDAgBq6fnnn8+jv999992yzmyuw2kKBOBA7f/jaN48Pf7442m//fZLSyyxRDrooIPST37yk3TPPfeYExwAyAolzgsd5zbeeON05513pr59+6aPP/44HXfccemrr74SggNAIzL3FCVbbLFFuvXWW/No8F/96ldp/PjxeXl0bAMAGr/ll18+bb311unDDz/MbXqIzuimJaPUNZvjL1agBr3Eunbtmjp06JAvcqdPn55vXnfr1i0df/zxeZspU6ak22+/PT355JNpn332SYceeqjzCgBNVFxIR4e58PDDD+e/E6LMWpRR/e677/L0KTfccENadtll82jwtm3b5r8v2rVrV+xDB4Amq3z7/c9//jN/H+13+/bt02effZbOPPPMfH/guuuuS927dy/24QIA1bTlYfbs2bmKy5dffpnb77vuuivft48O6ZVtD6WkRbEPAGjc3nnnnXTMMcekRx55pGwUV+vWrfON7LXXXrtsuyifEiPBX3755XTjjTemWbNmpaOOOqqIRw4AFEvhAvqSSy5JI0eOzD3O//Of/6SDDz44nXzyyWnXXXfNf1MMHz48/fKXv8x/W+y888460AFAI2i/Bw8enO699970+eefp0033TT9+te/TltttVW64IIL0llnnZX69OmTzj///DRhwoS07bbbCsMBoBEoH2bfdttt6e23304vvPBC2mmnnXJn9N/+9rd5fVyjx/X4scceWzZdWaFyG5QSXTuAaq2++up5VPcyyyyT3n///fTFF1/kRrFjx475efQCL1hxxRXTRhttlL8fN25chXUAQOkrX1wqLrbHjh2bL7yjSsxll12Wv7/00kvzfGO77LJLvuBeZZVVUqtWrdKBBx5Y1GMHgKaqfAnUuCke4ffAgQPTlVdemf773//mEWN/+9vf8n2BCy+8MJdRPf3009NTTz1Vdg8AACiuQvgd197XXnttrrgWwXeUPT/ttNPy+pjOZK+99srTk0WH9SD8plQZAQ7MV6Hc2Q477JBLnx955JF5tHf0+u7cuXP+frnllsvbxlyecUP76KOPTksvvbSzCwBNSOHCOUZ2x/xim2++eVpnnXXyst133z0H33HDPAwYMCCP+o6vQo/zKI/eooVLFAAoxg3zmN/7k08+SSeddFK+/g+rrrpqOvHEE3MIHiL8jmD8tddey1XhCnOIKp8KAMX37LPPpoceeihPNbb++uunF198Md1yyy3phBNOyJVef/SjH+UQPO7hT5o0yehvSpq7S0CNRE/vuOCNOb8XX3zxdNhhh+WSZ1H+7PXXX09LLbVUvuAdM2ZMGjVqlPAbAJqomGMsbp7HqO+YHzRC77g5HqKneQTdMYdozPkdjzHvdyyLEFz4DQALX7TBH3zwQe7cHqJEavmqcBF4RwgeHdxmzpyZevXqldZdd928vnw7DwAUV7TTMVAtwu8HH3wwnXHGGXkaspjSJO7r77333mmPPfbIc4DHdoVrcaPAKUVKoAM1tt122+XeY1G6NHqO7bfffunmm2/O83p+/PHHqWXLlrl8SvQQBwCaXtnUEH8PxI3zY445Js83FqVUy9tzzz1z8B1zgrdp06ZsuQtuAFj405YUbnr/+Mc/zlOVRNv8j3/8I/373/+uEIJfddVVeeTYM888U2E/wm8AKH5bXrguj3v00SE9piOLgWv9+/fPHdw6dOiQq7S9+eabebu4ny/8ptQ1m1N+oj6AGoi5v37zm9+kU045JY8EL1C2FACalvIlT+NGeVxoxyju9dZbL99AjznFotPceeedlzvOzW8fAMCCV77t/fLLL/PzuAkeld2iDPqhhx6att9++1wKvXwH9xglvuKKKwq9AaARteVRjSW+ojP6jBkz0v7775+vzwcOHJgOOOCAsvY+Sp8fcsgheRQ4NAVKoAO1FnN+3XDDDXlk1zfffJMb0iWXXFLZUgBoQqIfbeGCe8iQIemJJ55In3/+eS6j9sUXX+SR3zESPLaJC++4sb7vvvvOsx/hNwAUp/2+8cYb09NPP53ef//9HGrHNX6URY3OaxGCR9sdpc8LIXjMGxqUPQeAxtGW33TTTbk6y2effZanJ4lBa9GGR1t+7733pi5duqRp06blKUujXY92HpoKQy2AOofgUQItGlOFJACg6SmULI8L7j/96U/p9NNPz1ViYsqUKVOmpMmTJ6fFF188zzcWFWOi7Pnjjz9e7MMGgCat0H5H57URI0akvfbaK1122WWpffv26aKLLsrtd/fu3XP7Hp3bzjnnnNyul6fsOQAUR6FqS7j22mvzdKXrrLNObrvjejuqt6ywwgrphBNOyB3W+vTpk66++ur8mrhuj4ptsRyaAiXQgXqJsipt27Z1FgGgiYkOcFEJpl+/frlj3C9+8Yv05JNP5gvuuFkeo8XGjBmTR4HPnj073XfffbkMelxwAwDFE6XMjz/++NS3b9/005/+NN8wjynOzj777DwnaLt27VK3bt1yx7brr78+/eEPf1CxBQAakXHjxqU///nPaYcddsjTloSoyHbggQemZZZZpqztjlLoyy67bFp66aVzCG4KU5oSI8CBehF+A0DTFBfPEWZ/+umnuex5jBKL8DtGfO+5557ptddeSw8++GCeFzxGlcWUKbF9XHADAMUT84C+9957aYMNNkhPPfVU7swWYfjuu++e2+6o9had3KKD26233ppvoMeIMwCg+KLk+RlnnJEeeOCBfK0dotN5hNzRce3111/Po73D6quvngPxuH6PtlyHdJoSATgAAFDnUeCtW7fON8oj+B4wYED65S9/mdfFxXdcjLds2bLCa1xwA0BxLbXUUmmNNdbI7XdUajnttNNyR7Vo16dPn57atGmTWrVqVeE1hblGAYCFa+7pR1daaaW07bbb5kA7RoKHuO6O50suuWTq1KlTWZnz8u23tpymxl+vAABAnS7CY47vU089NU2bNi117tw57bbbbnnEWNw8v+uuu1KXLl1yuTUAoPGIMudLLLFE+uMf/5j23Xff9POf/zwvjyotUbkl2nQAoHEozPk9fPjw9Pvf/z79+Mc/TkceeWSehuwvf/lLuv3228sC7uigHp3YVG0Fc4ADAAD1CMHja+zYsXn0d/Q0j1FjMcp75syZ6Z577skhefRE19scAIqv0CbPmjUrj/qOTmvdu3dPq6yySp7z+4svvkijR49WsQUAGpmYriSmKjn33HPTfvvtlz7++ON0yy23pPvvvz/97Gc/SyuuuGL617/+lSZNmpTLoy+22GLFPmQoqmZz5q6fAAAAUEvvv/9+GjlyZA7EO3bsWGHOb2XPAaDxKLTN0Vntsssuy3OFRunUqNxy9tln53VROtWNcwAojqo6kUc7PWrUqHTmmWem/fffP02dOjWNGDEiz/kdHdJjZHjv3r3zttpymjoBOAAAsEAuzl1wA0DjVGijo+Pat99+m5dFCB50XgOAxuGtt97Kc36XL2ke4XdUa4nHGAn+6aefpptuuik98sgjuSx6hOBBJTaauhbFPgAAAGDRVgi/5w68jRwDgIWnNje6C+F3zCtaCL4L+1C5BQCK79FHH03HH398GjRoUNppp53ydGPhggsuyO11VHGJ9nyPPfZIhx56aF5322235WlOTjjhBNOQ0eTV7K9iAACgSYgL6cpEuF2duIleCLzfe++9NHv27AVyfABA9eH3v//97yrb8/Ii/C4/M2KURK9pgA4ANKy5Zyvecccd89zeF110UR7dHe10QYzyjrZ+8ODB6e9//3uehuyggw5K2267bZ4n/PPPP59nf9DU+KsWAACY5+b5iy++mJ544ol8Mf3NN9+UjRSrTGEEWfjjH/+YTjvttHzBDQAs+NKoodB+33777alfv365jPn8lG+/Yz7RGEkWbT4AsPCvxQtt8ldffZX+85//5O+vvfbatMUWW6Rzzz03jRkzpqydjnZ+r732SkcffXQOvUOUSj/qqKPSrbfempZeeumy/UFTpQQ6AACQb4IXbp5HibW4uI7SaYsvvnhaYokl0jXXXJM6d+48T5nz8jfP77zzznTllVem888/P6244orOKgAsQFdffXW69957c7u7+eab52UffPBBHgVWvqx5Zcq33yNHjsyjy6INb9WqlfcMAIrUET0C7+iIPnny5DRw4MC0yy67pKuuuiqXND/vvPPSxx9/nNZbb730+9//Ps8LXih9/u233+Zr9x/96EfeO/g/AnAAAGjiyt8Ej4vtxx9/PF1++eVphRVWSJMmTco32KOcWowOW2655cq2n/vmeYwcu/jii1OvXr2K/BsBQOlba6210sorr5yD6+OOOy5ttdVW+eZ33BAvr1DBpdBmz91+R/nUaMO33377IvwWANC0FcLvIUOGpLvuuiu36csvv3zabLPN8tRi0antd7/7XTr99NPT8OHDU+vWrXPQPXTo0LJ2Pdp/oKJmc0wEAAAApJQee+yx9PDDD+cL6AjAC95+++108skn55vscVFeKIc+d/gdo8d22mkn5xIAFpKnnnoq3XzzzWn69Onp7LPPThMmTMhteLTXSy21VOratWuF7bXfANA4pzQ56aSTclsewXeMAH/mmWdyIB7lzE855ZT0k5/8JP3rX//K1+Nrr712Ds6jFHqLFsa5QmV8MgAAoImLm+EzZ87M84aOHz8+rbPOOhXWr7HGGmnHHXdMDz30UN6uffv284wcE34DwMIvlbrNNtvk76+//vp0ySWX5JviX3zxRfrtb3+bt4ty6J06dUqrrrpq2mOPPXLZ1MK0JTqvAUDjENfXMQ1JTEMWndJvuOGGPPp73XXXTc8++2y+5o62vlu3bmWvienJhN9Qtf/9axkAAGhS4qZ4+e+jXGpcVO+6665pypQp+cZ4zCNWEKO/5y6p+sADD+R5yC688EIjvwFgIYff7777bp6qZMMNN0wnnnhivnH+yiuvpAMOOCDdd999eR7Rn/70p3nbGBleGA3+hz/8IV166aV52hKVWwCg+KLD2pdffpnOPffc3KZHh7UBAwakQYMGpV/96lc56C5/fR6i0xtQNSPAAQCgCY74Ltw8jxA7bp5Hz/LtttsunXrqqWngwIF5efQ47927dy6res899+SL8nbt2uXXxcX3tGnTci/0rbfeusi/EQA0rfY75v1+5JFHclu88cYb50A7bpDPmDEj/fWvf0277LJL6tGjR/4q7/PPP08vvPBCvsHeq1evIv0mAED5zm0dOnRIo0aNSi+99FLufL766quXrX/88cfzc/N8Q+2YAxwAAJqomB/0pptuSj/60Y/yHGPHHntsOv744/PN8RjZ/Y9//COPJov5xaK82jXXXJOfF0afmW8MABb+yO8RI0bk9jsqt0TJ1KjQsv766+d1MV/o8OHDcwnVI488Mv3sZz+bZ1/Rsa3QoQ0AKL643i6M6I75wB977LHc8S06rU2dOjWNHj06jwKPZYXpyIDqKYEOAABNsOz5Z599li+mf//73+dy52eddVYaNmxYuuqqq9LSSy+dzjnnnDwiPC6uV1lllXTdddfl8DtGhRduwJtvDAAWrNtvvz0/FtreqMASc4EefPDBaYsttkibb755Wfgd1VqirT7ppJPySPAnnnii0n0KvwGgcSlfzrxly5a5DR83blxaccUVy8Lv6IAu/IaaUwIdAACa2MixuHE+c+bM1L59+zwfaJs2bdKBBx6Yt4n5vMNvf/vbdPrpp+dy6OPHj0933HFHnlM0LsYBgAUvOqk9//zzaf/99y+7Mf7VV1+lN954o2z6kfIjxp577rkcgkdofvbZZ6eNNtrI2wQAi5guXbqk2267rcK1t+prUHsCcAAAaEJzhg4aNCjfHI8b6OHpp59OO+ywQ/4+RpNFj/LYJtafeeaZOQCPUPyWW27J+zjooIOK+rsAQFOx995753Y3Au4obR4jvpdZZpkcbN999915nu/llluu7KZ4x44dc3nzsMkmm8zTAQ4AWDSu3+eutqb6GtSev4ABAKCExY3vQpm0GDEWgff111+fhg4dmrp165b++Mc/pieffLJs+7jRfsIJJ6TXXnstl1mNcugxEjxuum+77bZF/E0AoGmIdjja6ShnHuF3tN0nn3xyuuSSS/L6qMgSYvqSzz//PN8Uj5Hg0c6vsMIKFfYl/AaA4k9BVl602fNTaL/fe++9PA0ZUHvN5kR3EgAAoKRce+21aa+99kqdOnXKz2Oe70cffTQ/P//888tKpQ4ZMiS1bt06HXrooXnO74K4TIjgPELwxRdf3AgyAFhILr300lz+PELvX/3qVznkvuaaa3K73atXr3T88cenv/zlL+mmm25KH330UZ4D/OOPP85t9p///OcciBfacQBg4StfgeXFF19MX375Zb6u7tGjR+7gVlU7XX55dFYfM2ZMuvzyy/Nc4EDtKIEOAAAl5oEHHkivv/56+s1vflPWwzxujP/rX/8qK40aNttss3TSSSflEDwurr/55pu000475XVx0R0X33GRHowgA4CFY8CAAWmJJZbII76jvPkRRxyRjjvuuDwaPNr4aKPjeZRCv++++9K0adPyDfXozFYYDV6YFxwAKO4UZBFiz5o1K19bR/sendo6d+48T3tdPvyODuxXXnll7rwu/Ia6MQIcAABKuMf5448/ntZaa620/PLL59Fk0Xu8T58+OfgueP755/N839tss01+BAAWvrnn6x42bFguhd6vX7/cqS1Ggl933XXpr3/9a+6wVr4tLxB+A0DxlA+xn3jiiXTxxRfnEDymKJk0aVK6+uqr0wcffJBGjRqVlltuubLty79u5MiR6bLLLsuvjcovQN0YAQ4AACWkcOEcN9BfeeWVdPbZZ6ctt9wy3yT/9a9/nUeSXXXVVbmnecwxGjbddNPcuzyCcgCguOF3jBKLIPvYY4/NZVIHDx6c2/YYCX7UUUfl76ODWwTi5513XoX9GPkNAMVTCLEfe+yx9PDDD6du3bqljTfeOC9baaWVUseOHfMUJ9F+RyW2aLcrC78vuugi4TfUkwAcAABKSPl5xDbYYIN02GGHpXvvvTf97ne/y4F3jP4OEYLHjfYooRrWWWed/GjkGAAUr1Tq8OHD81yh77zzTu68dsghh6TZs2fnCi6xXYwEjxA8yp7PmDHDXN8A0IhEWz1z5sx0++23p/Hjx5ddZxesscYaaccdd0wPPfRQ3q59+/YVwu/o9Bbhd2FqMqDuBOAAAFDCI8kOP/zw/Hj33XdXCMFjWfQ4j/nE9ttvv7LXGTkGAAtX4cZ3dE6Lm98nnnhiWnvttVPbtm1Ty5Yt0zHHHFM2ErzQtp9++ul5/dxlUwGA4lVxie+jfY42O0Zy/+Mf/8jzee+99955DvCw8sor523Ke+CBB8pGhQu/oWEIwAEAoATFBXjhQjxGgYfyIXiUUY3we7fddiv2oQJAkxfzgsbc3pdccknaZpttKpyPp59+Ot8Mj6A7bqbHPKK77757pfOGAwDFqeISIXa05+uuu27abrvt0qmnnpoGDhyYl0c1l969e6fp06ene+75f+zdB7hcVfU47BUCqQSkhx66oZdQpZkQBA1SVRBRmjRBSiJIRzqYUKQ3QektRJpEiCBFQAKCAqFKUCBA6KSRAPmetX//ud+9IQkpN5m5c9/3eeY5mXPOnXvuGYY1e6+91761lELv3Llz+bkJEyaUyi6XXHJJbLLJJt4+aCZtJuYnFAAAqEuNO8avuuqq0theaqmlyujyBRZYoOzPdcHnnNPYWAColhdffDF+/OMfx/nnnx8bbrhhQ3x+7733Yp999imlzzPpnXF82223FbcBoIbkzO3f//73sdhii8Xrr78ev/jFL+Kggw6KDz/8sLS9cyZ4VnPJCi+57NiFF15Ynlfa69rk0PwMEQUAgFYwEzztvvvuZQZZx44dY7755ms4R/IbAKorS5h/4xvfKJ3mOROsEp9zhliWTH355ZfLvh133LHsz45yAKA6Km3s9MEHH8STTz4Zf/jDH0q582OPPTYuuOCCsrRJtrtPOOGEMiM8Y/3SSy8dF198cUl+56zwymB1bXJofqZ5AABAKyqHfuCBBzasFapsKgDUhhVXXDHWWWedOOecc8rssW9961vRtm3bGDNmTHTo0CEWX3zxJufrKAeA6mjcjn7sscdi7NixMffcc0f37t3LYPNdd921nHPKKaeUcw4++OA46qijSjn0oUOHxvXXXx+77LJLtGvXzlsIs5AS6AAA0MJUEtjTq3FZtVGjRpVGOgBQGx3pGd/333//Mossy50vuOCCpaM8y6APHDhQ0hsAaqgtfvrpp5elST799NPyPJcx2WKLLRrOveaaa8o5O++8cxxzzDGlHHomxZ966qnYc8894yc/+UnV/g5oDZRABwCAFtZJXmlwjxs3LkaPHl2S2ZXG+JTksUryOzvRszTbZ599NpuuGgCYkkryO+N7lkXNtcDffPPNePTRR8ts8Oxczxiea4YCANVvi7/wwgvxyCOPxCWXXBLnnXderLbaanH11VfHAw880HB+Jrh/+ctfxnPPPVeWN8ly6DkTfMMNN4zNNtvM2wizmBngAADQAkutXXHFFfHMM8+Uhne3bt3ihz/8YZPR5lMapZ6J71yDLNck69mz52y9fgBg2uJ8dpRn/K6UR21cxQUAmH0uuuii2G677WLRRRdtaFPfe++95flJJ51U9j3++ONx9tlnl2VLdt9997Lm96Tt8Yztc801l6XIYDYxAxwAAFqISqf4WWedFZdffnlssskmZUT5O++8EwcddFApkTq15PcNN9wQZ555Zpx77rmS3wBQozPBUya7K8nvxlVcAIDZ56677ornn38+FlpoofI8q7GMHDky/v3vf8crr7zScN76668fhx56aKnSljPBBw8e3HAs2+MZyzP53bhdD8xaPmkAANCCvPjii3H//feXMms/+MEP4hvf+Ea89dZb0b9//xg+fHg5PqXk929/+9s49dRTY8stt6ziXwAArcPUliaZkkoneSV+jx07tuHfAMDs9b3vfa8MIM+BaH/961/j7bffjn322Sf23nvv+Oc//1lmfTdOgh922GHxv//9L5544okmryOWw+xn+CgAALSQcqhpzJgxZd3v1VdfPe6777741a9+Ff369YvvfOc7ceSRR8a8885btqlt27YNJdoqye88DwCYffE7Z4PljLFMbM8999xNEtyTanxs4MCB8eGHH5Y1RNu3b+8tA4DZqBKTM57n8mPHHXdcbLTRRmWm95577lmWJ8nkeLa7szJbWm+99eKcc86JlVZayXsFVWYGOAAA1LBK5/lNN90UH3/8cekAz9JpWVbtiCOOiMMPPzx23XXXMiL9gw8+iI8++qg0wCvJ7+uuuy5OO+208pD8BoDZm/y+4oorSqzefvvty6ywHLw2LcnvHLx29NFHxzLLLCP5DQBV0Dher7HGGrHHHnvECy+8EL/73e/i3XffjX333TcOPvjguPDCC+P8889vOHfllVcu7fEc/AZUjwQ4AADUuP/+979xwQUXxO23314a0127di0zurPs2i677NJQIjVnmC277LINPzdixIh45JFHSvJb2XMAmD0qye+zzjorLr/88thkk03KzLB33nknDjrooHjvvfe+8jOTLlty5plnllllPXv29LYBQJUHtqW99tqrDGj717/+VZLgGdczCZ4zwjMBfvPNNzf5ucqgdKA62kyckQWJAACAWWJyZVGztNohhxwSn376afzhD38oCfG+ffvG+++/HzvvvHO0a9cuHnzwwRg5cmTcdtttZTZ4RXayL7jggt4tAJiNXnzxxbJEyfHHHx89evSIhx9+uHSQn3DCCbHIIotEly5dGsqjTpr8tmwJANRudZcrr7wybrnllrIsWQ5wW3jhheOOO+6IPn36NGmLA9VlBjgAANSQyZVFzUZ0dpo///zzceutt8ZSSy0VF198cSnDNmjQoLj77rtjoYUWKmuF5rmVdUaT5DcAzL7ZYRVjxoyJ0aNHl87xLHueM79zMFsuR5LlzXOWWMbrfDQuey75DQC1J5PflVifpdB/8IMfxLPPPhsnn3xyWYZsu+22K23xHLwO1AbDUQAAoAbkjLDevXvHt771rfI8E9tzzz13fPvb3y6l0xZffPHYYost4u9//3tsu+22scACC8TZZ59d1v3u2LFjeaRscBt1DgCzV2VW2E033VSS3O3bt4+55porrr766rI2aK4DXlm2JGN3DlRrXBr1uuuuK2XP82HZEgCo3SR4bnffffcYNWpUDB8+POabb76Gc7TFoXZIgAMAQJW9+uqrMX78+FhvvfXK8yx1nmuKZcf5pZdeWjrNu3fvXjrOf/zjH8fPfvazMqMszT///A2vk53pGtwAUB25RMkFF1wQn332Wey2227RtWvXMqP74IMPbkh+jx07NsaNGxfLLrtsw8+NGDEiHnnkkTjttNMkvwGghSTBDzzwwIZlTBqXSAdqgzXAAQCgijLxnWt4T5gwoSS8cy2xLGe+4YYbxjPPPFMS4C+//HKZAZ6l1v785z+XnzvllFOiQ4cO3jsAqILG63ZXZBWWLHOeA9n+8Ic/lIR437594/3334+dd965xPsHH3wwRo4cGbfddluTQWvvvfeeZUsAoAbi+bRoXHktZ4Jn9TagtkiAAwBAlbz11ltl3e4999wzOnXqVNYLzRlimQjff//9o1evXuW8IUOGxL/+9a+46qqrSsM6z7v99ttjySWX9N4BQI1Vdclk969//evYcccdS/I71wd98cUXSwxfZpllyvOM9bn+d84Wm5GOdwBg5jSetZ3VWTIuZ0I84/XUEuONj2V7/sMPP4yf/OQnZfkToHZIgAMAQJW88MIL0a9fv1hrrbXKCPI+ffrEN77xjVIuNWeGZzJ8m222aTj/lVdeiXvuuSdeeumlsv5347VDAYBZ74QTTojevXvHt771rfJ80KBBpaP829/+donL2YH+m9/8psTxM844o2F2WK773bFjx/KYdOYYAFC95PcVV1xRqq9l+7xbt27xwx/+MLbYYouvTX7feOON5XtBLn/Ss2fP2Xr9wNeTAAcAgCo2uv/4xz/GZZddVmaIZbnU9ddfv8z2ziR4Ht91113ju9/9bsPPNO4wzxHqkuAAMPtmd2cneSa4cwZ3ljrfdttty7/nnXfeOPzww6N79+7lvB//+Mdx3XXXxeqrr95s5VYBgOZ11llnxc033xyHHXZYGaSWbfMccP7QQw99ZWmSxvH7hhtuKG320047LbbccktvC9Sg/xviAgAAzDbZcK6MOM9ZY5nUXmqppcossiyflp3lv/rVr8rx7DyvrPudGs8Wk/wGgNkjZ3Qvt9xyDcnvW265JZ566qlSmSVLmmcCPKu67LPPPvHuu+/Gd77znTKwLWeET0ryGwCqL5cnuf/+++O8886LH/zgB6UaWy5T1r9//xg+fHg5PrXk96mnnir5DTVMAhwAAGajTHxnw7lSbm3NNdeMW2+9NX72s5/Fs88+G6ecckp89NFHDUnwTHKfe+658eijj3qfAKAKsjP80ksvjTFjxpTkd26vvvrq0mGeM8TWXXfdMmPs2GOPjR49ekTfvn3jsccei7/+9a8xcuRI7xkA1EhbvLGM56NHjy5t7/vuuy8OOuigOOSQQ8ogtixvnjPDs+paPhqXPa8kv/M8oHZZbAgAAKqwzliWPh86dGh89tlnsdtuu8XOO+9cGt933XVXaUwfd9xxpSGeneg5M3y99dbzPgFAFXzyySdlpvc777xTqrb06dOnxOrsAM+S6NmBvs0220SvXr3KI/+d52cJ1cUWW8x7BgA1oNIWv+mmm0ryun379mVgWw5qu/DCC8tSJrvssks554MPPiizvhtXXcvqbGeeeWZ5KHsOtc8McAAAmM0N7rPPPjsuueSSWGGFFWLxxRePCRMmlIb1HnvsEdttt10899xzcfDBB5cybNnZnsnwPJ4jzwGA2WvFFVeMnXbaqczovu2228pyJKusskpZLzTjc5ZCvfvuuxvOX3755WO//faL3/3ud+I3ANSQ//73v3HBBRfE7bffHiuvvHJ07dq1DGjbe++9G5LfY8eOLUuYLLvssg0/N2LEiHjkkUes+Q0tiBngAAAwG+U6YoMHD44zzjgjNt544yZriQ0bNqwkwdu1axd/+9vfSsJ88803b/hZa34DwOyTMTofGY/nnnvuMvt7qaWWKpVZMileWa4kO85zVljG86233rr8bCbJxW8AqJ7Gbe2KrMyy2mqrlZLnWYntpJNOKlXXstx5trezLf7ggw+W6i/77LNPw88tuuii8Zvf/CYWXHDBKvwlwIwwAxwAAGZxo7ux9957Lz788MMy+7uxHFHer1+/uP/++2PXXXcts8RzRlmWZMsOdwBg9i5bkp3mleota665Ztx6663xs5/9LJ599tk45ZRT4qOPPmpIgmen+bnnnhuPPvqotwkAasCkye/KALVDDz00nn/++RLXc2DbxRdfHGussUYZ4JYVXRZaaKEYOHBgOTersFXa9JLf0LKYAQ4AALNhze9c6zvXGMvGdCa1//73v8f222/f0CjPkeaZ6B45cmR53rlz57LNxnbjWWQAwOyL33/84x9j6NChJY7nTLGdd945Ro8eHXfddVdZBzyXKckkeM4ey47z9dZbz9sDAFV0wgknRO/eveNb3/pWeZ7xOSu5fPvb3y4D1nIZsi222KK0ybfddttYYIEFygD0XPe7Y8eO5ZGyfa4tDi2XGeAAADCLO89vuummOOaYY2LAgAGl0zxnf2fHeZY5r+jSpUssssgi0alTp68dtQ4AzDqV+J2d4ZdcckmJ29lZPmHChNJxnsuVbLfddvHcc8/FwQcfHD/4wQ/inXfeKcnwPJ6zxQCA2e/VV1+N8ePHNwxI+/TTT+N3v/tdWa4k1/jOQW0Zp/PfuTRZzgSvmH/++RuS3waiQ8vXZuKkNRkBAIBmk2t933jjjbHuuuvGQw89VNYGzfJqt9xyS8wzzzxl1tiqq65akuRZGj1LrVnrGwCq68UXXyzJ7RzAtvHGGzdZR/Rf//pXid/XXnttGcz28ccfxzXXXFMqvAAA1ZGJ76yslgPWMiZnmzsrsG244YbxzDPPxKWXXhovv/xyGdSWg9n+/Oc/l5/LZU06dOjgbYM6o5YiAADMItkxfuedd5Zt9+7dSyL8+OOPL2XUsozqsGHDYsiQIWUUes7+vuyyyxpmjkmCA8Ds0zjBnd57770yMC1nfzc2YsSI6NevXxx55JGx6667lpngWb0lf1apVACojrfeeqsMJt9zzz1LXB4zZkxcffXVJRGe8blXr15lUHq2v3MgWy5dkmXR87xchmzJJZf01kGdkQAHAIBZ5Nlnn40ddtihJL+feuqpkgDPTvNMdI8dO7aMOj/88MNLqdVsmOs8B4DqLluSa323b9++zBjL2Jzrg26//fYNyfGcWZYd6dlZnjp37ly2SqUCQPV88skncc8995QlSTJO9+nTJ0499dRS+vyKK64oie5tttmmJMLzkf/O81966aVYbLHFvHVQh6wBDgAAs8C4ceNKAjw70UeNGhWDBg0qJVT33nvvOOyww+Ivf/lLmQ1+3333lc707FjXeQ4A1Ut+53IkWfJ8wIABMXr06DL7+6677iplziu6dOlSqrbk7LLGGs8eBwBmrxVXXDF22mmn+Otf/xq33XZbqbq2yiqrlLZ3Vle74YYb4u677244f/nll4/99tuvrA9eqcIG1BczwAEAYBbINcROOumk0rGe640NHz48fvGLXzQkx7P82jrrrFPWBK/QeQ4As1cl+X3GGWeUSi0ZnzPpnaVUv/3tb5f1Q7Nyy+OPPx6rrrpqSZLnLLLG8RsAqI4cRJ6PjOdZ0jxnfy+11FJlAHomxVdfffX41a9+VWaCX3fddaXNXYnhmSSvsAQZ1J82E/P/DgAAwCxbT/TYY4+NN998M37/+9+XhPj+++9fkt/77LNPOc+a3wBQPddee21cfPHFcemll5ZlSzIRnlVatt122+jRo0cMGzYsHnnkkZh33nnL7O+zzjqrlEcXvwGgNqq4pFdeeaUMRM/KLTnje6WVViqVXb7xjW+Udb+zwkuWSM8Yv+GGG3rroM6ZAQ4AALNIZUZ3NrxzBPrJJ59cOtE//fTT2HPPPRuS5EabA0D15JIlO+ywQ0l+P/XUUyUB3q9fvzLze+zYsbHHHnvE4YcfXjrZM/Gd8T1nmDWeOQYAVCf5/cc//jGGDh0an332Wey2226x8847l6VMsqJLrgN+3HHHlZngffv2Le3y9dZbz1sFrYA1wAEAYBb77ne/Gz/5yU/ipZdeiiWXXDJuvfXW0mmeM8eUPQeA6sllSTIB3r59+xg1alTpGN94441j7733LuuG/uUvfykzxe67775o165dids5eE3yGwCqp5L8Pvvss+OSSy6JFVZYIRZffPGYMGFCGWCeg9e22267eO655+Lggw+OH/zgB2X2dybDrfkNrYOhqgAAMIvNP//8ccQRR5TGeM4cS2aOAUD1ZanUk046qcwke+aZZ2L48OHxi1/8oiE5nmuC57Iljdf8NngNAKrvxRdfjMGDB8cZZ5xRBq9VliBLWXktk+A5eC1LomfCfPPNN2/4WVXYoP5JgAMAwGxSSX6bOQYAtWONNdYoHebHHntsmdm9/vrrl4T43//+99hkk01in332KedZ8xsAqqdxgju999578eGHH5bZ342NGDGiLGVy5JFHxq677lpmgnfq1MkSJtDKKIEOAACzmZljAFB7cXmllVaKJ554Ik4++eSyhmh2oO+5554Nne5miwFAdeTAtEq8zrW+00ILLVQGmeeAtVQ5nrO+s+LayJEjy/POnTtbwgRaITPAAQAAAGj1vvvd78abb75Z1gtdcsklS2n0nBFu5jcAVDf5XVnz+6abbiqD1bp27Ro9e/Yss7/vuuuusuzYZpttVs7p0qVLLLLIImXWd2MGokPr0mZiDmEFAAAAAGLChAkNy5bkDLJMggMA1ZVrfd94442x7rrrxkMPPRRbb711WcbklltuiXnmmSdWX331WHXVVUuSPEujDxw4UPUWaMV8gwcAAACA/6eS/M45I5LfAFB91157bdx5551l271795IIP/7440uczmVLhg0bFkOGDImhQ4eW2d+XXXZZSX6r4gKtlwQ4AAAAAExCqVQAqA3PPvts7LDDDiX5/dRTT5UEeL9+/Uqie+zYsbHHHnvE4YcfXkql50C2jOGquEDr9n8LJwAAAAAAAEANGTduXEmAt2/fPkaNGhWDBg2KjTfeOPbee+847LDD4i9/+UuZDX7fffdFu3btSvJbFRfADHAAAAAAAABqTocOHeKkk06KL7/8Mp555pkYPnx4/OIXv2hIjuea4Ouss05ZE7xCFRdAAhwAAAAAAICatMYaa5Sk9rHHHlvW/V5//fVLQvzvf/97bLLJJrHPPvuU86z5DVRIgAMAAAAAAFCTKjO6V1pppVIC/eSTT45hw4bFp59+GnvuuWc5lmXP27ZtW+UrBWqFBDgAAAAAAAA17bvf/W68+eab8dxzz8WSSy5ZSqPnjHAzv4FJtZmYw2IAAAAAAACgxk2YMCHmmmuu8u/PP/+8JMEBGpMABwAAAAAAoEXJ+Z2V8ugAjc3R5BkAAAAAAADUOMlvYEokwAEAAAAAAACoCxLgAAAAAAAAANQFCXAAAAAAAAAA6oIEOAAAAAAAAAB1QQIcAAAAAAAAgLogAQ4AAAAAAABAXZAABwAAAAAAAKAuSIADAAAAAAAAUBckwAEAAAAAAACoCxLgAAAAAAAAANQFCXAAAAAAAAAA6oIEOAAAAAAAAAB1QQIcAAAAAAAAgLogAQ4AAAAAAABAXZAABwAAAAAAAKAuSIADAAAAAAAAUBckwAEAAAAAAACoCxLgAAAAAAAAANQFCXAAAAAAAAAA6oIEOAAAAAAAAAB1QQIcAAAAAAAAgLogAQ4AAAAAAABAXZAABwAAAAAAAKAuSIADAAAAAAAAUBckwAEAAAAAAACoCxLgAAAAAAAAANQFCXAAAAAAAAAA6oIEOAAAAAAAAAB1QQIcAAAAAAAAgLogAQ4AAAAAAABAXZAABwAAAAAAAKAuSIADAAAAAAAAUBckwAEAAAAAAACoCxLgAAAAAAAAANQFCXAAAAAAAAAA6oIEOAAAAAAAAAB1QQIcAAAAAAAAgLogAQ4AAAAAAABAXZAABwAAAAAAAKAuSIADAAAAAAAAUBckwAEAAAAAAACoCxLgUAMmTpxY7UsAAMTkqWqN31da498M0BL4/7P75b8TgJZH/AZmJwlwqKJPPvkkDj/88Bg6dGjDvt122608atFKK60U5513Xvn3448/Xp7ndlpM7/kA0Fpj8htvvFFi5sCBA6NWDBkyJI444ohoTZ588snYZ599qn0ZANRovG4pbeiXX345dtlll2hN3n777RLD33zzzWpfCgA1Fr9rsb39dX79619Hz549o5bU4jXBpOb8yh5gthk2bFj86U9/ih133LFh3/HHH98i3oFVVlklbrzxxlh++eWrfSkAUFcxeeGFFy4xdqmllopacdVVV0Vrc/PNN8err75a7csAoEbjdUtpQ99zzz3xz3/+M1qTv//97/G3v/2t2pcBQA3G71psb7dEBxxwQPz0pz+t9mXAVEmAQ41pKQnlueeeO9Zcc81qXwYA1F1MbteunRgLANNIGxoAWh7t7ZbNAAJaAiXQYSaMGzcuBgwYEFtuuWWsuuqqsfbaa8cee+xRRrVV5KjjnXfeuXRkb7zxxnHccceVsi9ZxqwySiq3lZIvjcu/7LnnnrHDDjtMdoTV97///YbnWT7mJz/5Sayxxhqx3nrrlRKlH3zwwXT/PaNGjYqTTjopNtlkk3K9OSrvgQcemOZybE8//XS55rwPG2ywQRx22GHxzjvvTPbnx48fX85df/31m9yvr5N/V9++feNb3/pWrLbaarHtttvGoEGDGo5nebm8rqmVnquUurnrrrtiv/32K/dt8803jwsuuCC+/PLLr8z++t73vlfe3zwnX+OLL75oUu7lZz/7WRm1mH/3d7/73SbHAZg96ikmT1qSLbcZ8/K1Mzbnv7/zne/EX//61/jPf/5T4lD+vt69e5fYVpE/l6/zzDPPxPbbbx+rr756bLPNNmUm2PTIe/CPf/yjPCqxv/I94IYbbohvf/vb5X4/8sgjDbEz71Xe5/ydGav//Oc/N7mulVdeuVzXj370o/L35GtcccUVTX7vnXfeWe5tvkZ+r+jXr1+T7xVZbu3ss8+OU089NdZdd93ynSLL6n300UdNXiev68c//nGss8465Zz8HjFixIivXE9ed36/yPft4IMPjttuu62UTm1p5fEAalk9xeuW0IbO9uv555//lTZx/jv3573KOFs554knnoi99tqrxNV8fzLW5s9U2smV7ygZ13/5y1/GWmutVe7fMcccE2PGjGn4vc8++2z5fpKxN8/Zfffdy9/auB2d79ktt9xSvgPkOXn+Cy+80OT6hw8fXn5Pxue8v/kzuURJReV6rrzyythqq63K+3nrrbfGkUceWY736tWr/C4AZk49xe9aa29PS9xs/Dvz2vIa875MWu1kWuPm1/WJT0tbe9IS6Pnv3/3ud3HGGWfERhttVO5HfqfIa2os29nZf175Gx599NHSHtfmZlaQAIeZkP/jz8ZVri31+9//vjSycn2t7FidOHFi3H///bHvvvvGAgssEOecc07puL3vvvvi0EMPLeXP8otAyu3kyr5kEHjuuefi9ddfb9iXXxwefPDB0plcaaBmUOzQoUP5HUcddVTpoM4vFPnlZFpl0ja/bNxxxx3lmi+88MJYdtll4xe/+EWT9Vmm5Pnnny9fQD777LM488wz4ze/+U0J3hnoPv/88ybn5vO8B3k871v37t2n+Tp/9atflXKk+fqXXXZZCZD5Zeexxx6L6XXCCSeUmezZoM/7mY3+/DJXcckll8Sxxx4bG264YVx88cWx6667lt+Z+xrL+5Md6fllId/7tm3bTve1ADBz6ikmT07GzvxbskPhoosuio4dO5a/IRut2WDNOJWl3DIm5rqXjeXfnR3AGeeWWWaZOOSQQ6arLGjej4y3+chScXm/KvI183fmfcuG+rXXXlv+vcUWW5Q42r9//zKjPa+18XVl4zqvIxu+l156aelAye8PDz30UDmejfR8T7ODJWNvvp8Z6/MeNHbdddfFU089Faeddlo5ln9X/r35nqccJJffbxZddNE466yzyutkGdhMvL///vtNvgflfzennHJKOSdfa7PNNouFFlqo/M15jwGYefUUr1tCG/oHP/hB7LTTTuXfGc/yeUV+d8iO+uyszs70TD7nffnGN75ROr3z+0aPHj1KrG88kC3lvV988cXL35zXm4nsPL8yKGDvvfeO+eabr7S187XGjh1bzvv0008bXiOTJnnswAMPjN/+9rfx4Ycflvvx7rvvluOvvPJKSYZkZ30m2PM7RZs2bUqCIN+vxvL3/PznPy/3MTvd999//7I/rz2TJwDMnHqK37XW3p7WuJl9z9l2zsHaeV7GxEx2V9q10xM3v65PfFra2pPzxz/+sQwayJ85+eSTy/eWvGcV2T7PxHm2//M7RH7/yDhtMhmzihLoMINy9PXo0aNLQMnO25QjzzJonX766fHee++VIJIN0wwiGXBSdgKfe+65JTBXSr3kdnJlX7LTNxvBOQMqG9HpL3/5SwkKffr0Kc8zOGVwzU7mSuI1R2/lrOX8YpJJ22mRXyhyxFomcbPTOuUI9P/973+lwzkbvlOTXwSyoZxfgtq3b1/25ReDDJD5hahxh3cGuhz9l6O0G3eiT4sM2HkvKteY9zx/b97X6ZW/O78MpE033bSMWP/DH/5QGssZzDMQZwd5vscpRy/m78rnOcpxhRVWaPiSdOKJJ0bXrl2n+xoAmHn1FpMnJ+NnNr4rHdfZGZCdCdmYzZiUunTpUkasZyOzcUzKUd+Va84Zajk6PeN9JninRd6PbBynSZc/yZnVOeOqIr83ZEO9cWdzdpBnQzyT2nkvUsbZPKfy9+RI93vvvbfMmstrzHOzYyM7WCoxPmPwv//97/KzlfdwjjnmKN8n8m9P888/f/lbM5GecTvjfG4bN+YrFVtyxnl25FRUOjcq8rWUowdoPvUWr1tCGzq/D1S+E0waw/P6Kt8hKp3SmTzOZHTG15QzyHIGXP7uSgxP+R2i0qGdA8az2krG8Lz27IDPZHYmJDLmphwYkAn4fP8rMTs79fMeVO5TzhTL+5id55l0yP8G8r3P55XvIRmn833MRHcm3Su23nrrJuvKVsqy5n9LSyyxxDTfLwDqP37XWnt7WuNmXmO+7nLLLVee53eHykzxSgJ+WuPm1PrEKz87tbZ2/szkzDPPPKU/vfL+/Pe//y3/beTflwn+/O8hK79kcrxyv+aaa66vJN+huZgBDjMoA0p2nGbgzxJl2cDNMqA54q3y5SBHdGcDrhL4U54/ePDgWHDBBb/2d3Tq1Kn8/N13392wL0uUZANzkUUWKaPBssGdATU7gzMRm48ll1yyBMNKKdJpkR3NGXAaly7JQJd/U47Inpafz+BXabinnAmWjeXGo9MzuOYI+QzqWepkemXJlQycOcItS5Xml6xseFe+IEyP7bbbrsnzHHU2YcKEMjMsH/kFLe9H5b7mo3J/Gt/b7LSQ/AaonnqLyVOScbUiR9ZXGvyN41Glsd5YNsAr8u/P0m3/+te/ZnqUfJp0Blp20GendV5DNsT/9Kc/lVnhlfdhSn9PvofZoK6UT80ya3lPs7GejeGcSZeJ7PxO0vg9zLhcaZBXns8555xldsBrr70WI0eObOgwadwpnr970lHw01ORBoDpV2/xuqW0oadk0riX7eOsupJt4pwNnvc8Z4dn8iH3NTZpMj3bw5UYngPFM6ZnIiFn+uUAt3zvsppb43ZzJqYbDxLI5H/+/RnDU8bp7CSvdMSnjPGZ6MjkQyYFpvS3ANB86i1+11p7e1rjZiaQK8nvVBngVZklPj1xc2p94tPS1p6S/J7SuDJq5frz/cvZ/W+99VaTAfSp8QA7aG5mgMNMyBFPuRZGlvbo3LlzfPOb3ywBO2U5lAzIlYA5o7IMye23314aoBn8cuR1/s5KwM3RX9lIzcekGjekv06u4ZGBvDLSe3rlz0/L35qd0dmpnaPKcnZ1fomZHlkGJkeJZwm2/BKV15uj1HMGds4wmx6T/u78spE+/vjjhnVPcubZ5FTKsqV87wGornqKyVPSuCFbkaXZvk52KDeW9yHvR15zzrKeGZV7XJEjvLPRnut4ZVIgR67ne5EmLZU26e/OmF45JzsfsrzbVVddVUad57/znmenQGWduMnF8nyN7BjIWF5Zn2xyHS65Lztppva3AND86ilet5Q29JRMGveyoz7XM8/Ba5lUyI71jMfZ2T1pDJ/0+0fjGJ7vaw5+yxKy2W7PGWwZ8/N9ydmDlcouk/s78n5kCdyUsXxKMTx/V848nNLfAkDzqqf4XWvt7WmNm5PGuspgg0of9vTEzan1iU9LW3tKJvf9oHKNlbXaJ/3vZFoGSMCMkgCHGZQdvJVS3Fl6JUecZeDJgJVfCnKEVD6v/M+9Itf3ypFyjUeQTU2OdMv1JzMA5jYDepaFqQTI/B1Z7mRyo6WmJUhX5PVmA7xxWdGUncO57+vKrOXPT/q3plwfpPFo7GxQZ5mcLFGWpW2yLMr0yN+TI+DykV+6hgwZUl4jXys7xyvXnqPUKyPOGo9wayzLrzRWWTMlA3G+T5XR9t26dfvKzwrOALWj3mJyc8v43jhuZfWUjJGVEezNJRu1OXAsE99ZXi3jf3aaZ0m37EyfXlkOLR85WjzfpyzllqXS8v3KMqmTi+UZ/3NfNuArf1/+vZPKmeHZeAdg9qm3eN1S2tDT6pRTTimDzHNd1RxkXuloz/s5vXIAXJZSz7ics+Dye8D1119fqrDkOqeTi+GVmF3pGJ933nmnGMNTxvHGA9MBmDXqLX7XYnt7WuLm15meuDm1PvGKqbW1Z0RlNnjld036u2FWUAIdZlCWDslAnh29GYwqDd4M/JXAm43WSjmYxuuE5c9kwGlcEmRK8pxtttmmvM4999xTvmxUGqI5Mm3llVcuieAsMVJ5ZOmULBOeI+WmVZYey1IneX0V2Wg/8sgjy5ebafn5LDfTuLxpNvzzb62M4E75hSC/xBx22GEleZ1faqbVm2++WUrd5H2ofDn4+c9/XhrnWUKlck8qow8bl5abnPvuu6/J82zs5/uWX8zykR34Wdqn8b3Njvyzzjor3njjjWm+bgBmrXqLyc2tcbzL2J5rqeWa25WR5NNiWma3ZWM4Z6nttNNODTEzVb5bVEamT4szzjijrK+W15vvX5Zyq6w1Won5lddu/N0jv1vkrLXsPMn14fI7R64j11iuzZrl2b9u+ZQZndEHQOuI1y2hDT098SzbzbnkWOP7le9ZJjSmJ4bnPc+10LPDPd+LnEV+wgknlHVBG8fw4cOHx6uvvtrwPNveWXq1knDPWe/5HjaesZad71kSN9+zqX2PEcMBmk+9xe9aa29Pa9z8OtMTN6fWJz4tbe0ZTYDnfz9Z4r2xvF8wq5gBDjMoR3Nnx26Oztpzzz1LQBg4cGA88MAD5Xiuf5XrVO+///6loZpra+QorEyeZgBfccUV48UXXyzn5s/kKK1KidBJZcmT3//+96URN2mZl3zt/DLRt2/f+P73v18CW56b66IccMAB0/z3bL755iXA5tqdhxxySBnNl6PNskGaI86/Tv6uLMe27777lrXJsnxajhzPGVrf+ta3mqwhknbeeecYNGhQGWWeCez8+79OljjPYJmzvzKYZ9DML2E5Qj5/b8oE+WmnnVbKr+61114xYsSIuOCCCyZbpjw7DnJkW/5MrpOSIxcPPfTQ8uUqHznC7txzzy2/KzsCskGez/OL3pTeKwBmv3qLyc3tzDPPLB0WmRC++eabS2zPMqrTIxvfGcuztHl2PExOxtSM1RlPM17nz2SnSM7cTjmTe1plB0CWPs/vJXkvM8Fw+eWXl1H0eawi43y+r/ndI/+d72nOGs+4XXlPMhFReU8ySX/++eeX93iPPfb42r85/zupzMSbtLQdAK07XreENnQlnqUcEJYd23mdk5O/N9vIOeMs1xjNErRZjjXbv9MTw3OAWSbMc7Zg3udsi+fr5hqllZl8lSRBLm2SbfDs8K/E58pSJ7mOena+572pVJi55pprykC2/E4wLX9zdrLnOuuN10wFoHXH71prb09r3Pw60xM3p9YnPq1t7emV3yfyv5N+/frF8ccfX9ZKz+8a2W+fDF5jVjCtAWbQ0ksvHQMGDChJ0QwGmXBNV199dfkf+tChQ8tspVyvulIqJpOnOZItvzCkHKXWp0+fEmTyf/5Tkl8K8stCBqZJR1ltvPHGccUVV5QZzxlEDj/88NJ4zE7jNddcc5r/nvyZ/GKRgTWvM6/39ddfL18kKmVGpyY7w/Nvz5Fg2fjPJHWOdsuR75Mb8ZZBLdftzo7onOU1rbJRnME2rzG/dGXjPAN8Xm/KLxv5ejlDO4N9drpn58PkOq0PPvjg8qUkvyTlSLd8Dxuv+Z1/R3ZmZKM5Z5rn+5Z/U355yPI+ANSGeovJzS1Hj990000lXuao8oztOetseuy6666lAZ3xsPFMt0llWdZcK6ySDMjOiOw8z6ot+T5Mq2yI5zIkL7/8crnu7OzIEekZ1xuXksvydzkgLn9Xjvzffvvty3eFih122CF+97vflZnp+b6ffvrpJVmRJdpzNt3U5M9mQj9/LhMOAMyceovXLaUNndeXM78yNuffPSV5PBMVmYTPpHx24uf79MMf/rAk4zPRMC2y7Z0d7dlmPvroo8tr5Yz2jNONB7EttthipU2f67seddRRZemxG264oSHO53t93XXXlfcwB7PlMmiZNM/vAjkAYGqycz7Pyf/epudeAVD/8bvW2tvTGje/zvTEza/rE5+WtvaMyP8m8rtMDqzPQXA5Oz3/5smtcQ7Noc3E/BQAtCKZHO/Vq1eZKZ6d2wBQj3JUfjZ8s1TZEkssEfWmZ8+eZU3UTGoDAC1HJttzxtlf//rXal8KALSa9va09onPqrZ2VqPJAYA5QL4iqwJk0j+r6Ki4SnNTAh3qXI7S/rpxLjlab1rWYplV8vqmZTR5XmNlnRkAaGlqLSZnmbVpWdOzspY3ALQGtRavJ0cbGgBqO35rb3/V7bffHmeffXaZVb7ooouWyjlZsS2T7ZLfzAp6s6DO7b777mVk9dRkec9qjrzO68v1RL6OGdsAtGS1FpNzra1pKWHWkka0A0C9xevJ0YYGgNqO39rbX5XLkmQ5/SyN/8EHH8SCCy4YW221VSlpD7OCEuhQ5/7zn//E6NGjp3pOri+20korRbWMGjWqrM35dbLzfb755pst1wQA9R6Tcw23d99992vPy+uZ3FqkAFCPai1eT442NADUdvzW3obqkwAHAAAAAAAAoC4ogQ4ATNVHH30UZ511VjzwwANltkmOlu3bt2/06NGjHN9jjz3i73//e5OfyfV7rr76ancWAAAAAIDZygxwAGCq9txzzxg5cmQcf/zxscACC5TE9q233hq33XZbLLvssrHRRhvFQQcdFFtssUXDz8w111zxjW98w50FAAAAAGC2qvsEeM5OGz9+fCy00ELVvhQAmG6ZeM41ioYOHVqVu/f666/HlltuGdddd12ss846ZV9+dch9ffr0iZ/85CclAZ7J8JVXXrlZfqfYDUBLVe24XQ3iNgAtmdgNAPUZt+u+BPpnn30WX3zxRbUvA+pWJsJykEn+T6dNmzbVvhyoO59//nn5nFXLfPPNF5deemmsttpqDfvys56PTz75JF588cXy72WWWabZfqfYDbOOuA31HberQdyGWUvshllL7Aaak7gNtRO36z4BvvDCC5ftkCFDqn0pUJfGjBkTw4YNi+7du0enTp2qfTlQd3r16lXV3z/PPPPEZptt1mTf4MGDy8zwo446Kl566aXo0qVLnHjiifHII4+U/w9stdVWccABB5SBMTPyd+XAta5du8Ydd9zRrH8LEDF27NgYPnx4dOvWLTp27OiWQDPL6iitbVCoNjfMWtrcUN9t7moQu2HWEbehduJ23SfAAYDm89RTT8WRRx5ZSqBvvvnmJQmeM79WX3312GOPPcqAmDPPPDPeeuutsp1RWVkiXwuYNTIJDjS/jF/t27d3awEAAKCKJMABgGly3333Rb9+/WLttdeO/v37l3058/uII46IeeedtzxfccUVY6655opDDz00Dj/88FhwwQUn+1pTq8ySI/mylE1WlgCalxngMGtNrfoJAAAAMHtIgAMAX+uaa66JU045pZQ3P+OMMxo6+Oecc86G5HfFCiusULZvv/32FBPgXyfLx1pWAWadLH/uMwbNr7WVPwcAAIBaNEe1LwAAqG3XXXddnHTSSbHrrrvGWWed1WR222677VZKojf273//u8wCzzWGAQAAAABgdjIDHACYotdeey1OPfXU6N27d+y7777x3nvvNRzr0KFDfOc73ynHcw3wjTfeuCS/c+3vvfbaK+aee253FgAAAACA2UoCHACYosGDB8eECRPi3nvvLY/Gtt9++zj99NNLuderr766JMIXWmih2H333WOfffZxVwEAAAAAmO0kwAGAKdpvv/3KY2qyNHo+AAAAgOY3aNCguPTSS+N///tfLLXUUnHggQfG1ltv7VYDwBRYAxyYYV988UU8+OCDcc8995RtPgcAapO4DQAti9gNpD/96U9x9NFHl4Hnd911V/Tp0ycOO+yw+Oc//+kGQQ0ZNWpU/OhHP2p45HOgeswAB2bIwIEDo2/fvjF8+PCGfd26dYsBAwbEDjvs4K4CQA0RtwGgZRG7gTRx4sQ499xz46c//WlD5bX9998/hg4dGv/4xz9irbXWcqOgBqy33nrxxBNPNDx/9dVXo0uXLrHuuuuWzyow+5kBDsxQQ3ynnXaK1VZbLe6///4y+zu3+Tz353EAoDaI2wDQsojdQMVrr70Wb775ZmyzzTZNbsoVV1wR++67rxsFNZT8btOmTfz4xz+O6667rmzzee7P48DsJwEOTHcJtpz5neWWcv2hDOCdOnUq23ye+/v166ccOgDUAHEbAFoWsRuYNAGexowZE3vttVdsuOGG8YMf/CD++te/ulFQA7LMeSX5nZ/Tyy67LFZcccWyzeeVJLhy6DD7KYEOTJeHHnqolD2//vrrY445mo6hyedHHnlkbLTRRuW8zTff3N0FgCoStwGgZRG7gcYqSbMjjjgiDjzwwDLpZPDgwXHAAQfElVdeWRLik9OrV68p3sgRI0ZE165dS3IOmDm77LJLw/bLL7+MsWPHlue57dixY1kL/IYbbijHb7zxRrcbmmFpkBxYMi0kwIHpkl+S06qrrjrZ45X9lfMAgOoRtwGgZRG7gcbmmmuuss3Z39tvv335d/fu3eP555+fagL864wfPz6GDRvmZsNMqnyOsipq489UTiCr7M8EeB7zmYOZl/Grffv203SuBDgwXRZddNGyffbZZ2ODDTb4yvHc3/g8AKB6xG0AaFnEbqCxRRZZpGyzpHJjyy+/fDzwwANTvFlDhgyZ4rGcHZ4z6DKRDsyc/By9+uqrceedd5ay5znzO5Pf3bp1KzPA+/fv33CezxzMvHbt2k3zuRLgwHTZZJNNSgA/9dRTy5rfjWWZl9NOOy2WWWaZch4AUF3iNgC0LGI30Ngqq6wSnTt3jmeeeSZ69OjRsP+ll16KpZZaaoZvVpaP7dSpk5sNMymXCe3SpUvZXnHFFSXpnXKby4VWyp7ncZ85mHnTWv48NV3AF+BrtG3bNgYMGFBGtW233Xbx+OOPx+jRo8s2n+f+HNmW5wEA1SVuA0DLInYDjXXo0CH23nvvuOCCC0qf23//+9+46KKL4pFHHok99tjDzYIqm3vuuWPdddctVRUywZ3LFbzwwgtlm89zfx7P84DZywxwYLrtsMMOccstt0Tfvn2jZ8+eDftz5nfuz+MAQG0QtwGgZRG7gcYOOOCAMpv07LPPjnfeeSeWW265OO+882L99dd3o6AG/OMf/4j11lsvnnjiibLedz4qMvmdx4HZTwIcmOEG+bbbbhv33ntvPPnkk7HOOutE7969zfwGgBokbgNAyyJ2A43lbG8zvqF2ZZJ71KhRscsuu8SwYcPKet9Z9tzMb6geCXBgpkqzbbrpprHQQguVoK7sOQDULnEbAFoWsRsAWo5Mduea35UEuDW/obqsAQ4AAAAAAABAXZAABwAAAAAAAKAuSIADAAAAAAAAUBckwAEAAAAAAACoCxLgAAAAAAAAANQFCXAAAAAAAAAA6oIEOAAAAAAAAAB1QQIcAAAAAAAAgLogAQ4AAAAAAABAXZAABwAAAAAAAKAuSIADAAAAAAAAUBckwAEAAAAAAACoCxLgAAAAAAAAANQFCXAAAACoU5dccknstttuTfYNGzYsfvKTn8Saa64ZPXv2jD/+8Y9Vuz4AAABobhLgAAAAUIeuvfbaOOecc5rs+/DDD2OPPfaIpZZaKm699db4xS9+Ef379y//BgAAgHowZ7UvAAAAAGg+77zzThx//PHx+OOPR7du3Zocu+mmm2KuueaKE088Meacc85Ybrnl4vXXX49LL700dtxxR28DAAAALZ4Z4AAAAFBHnnvuuZLkvv3222ONNdZocmzo0KGx3nrrleR3xQYbbBDDhw+P9957rwpXCwAAAM3LDHAAAACoI7mudz4m5+23344VV1yxyb6FF164bEeMGBELLrjgV36mV69eU/xd+TNdu3aNMWPGzPR1A181duzYJlugeU2cODHatGnjtgJAnZEABwAAgFZi3Lhx0a5duyb72rdvX7afffbZDL3m+PHjY9iwYc1yfcDkZZUGoPllDKvEQQCgftRkAvzzzz+PCy64IAYNGhQfffRRrLzyyvGrX/0q1lxzzWpfGtDIF198EQ8++GA8+eSTMXLkyOjdu3e0bdvWPQIAgBrVoUOH0tnfWCXx3alTp8n+zJAhQ6b4ejk7PGfPde/evZmvFKjM/M7kd7du3aJjx45uCjSzSQeFAQD1oSYT4BdddFHcfPPNcfrpp8eSSy4Zl112Wey9995x9913N5RmA6pr4MCB0bdv3yaj0LNBPmDAgNhhhx2qem0AAMDkZbnyd999t8m+yvNFFllkhm5blo6dUvIcaB6Z/PY5g+an/DkA1Kc5ogbdd9990adPn9h4441j6aWXjl//+tfx6aefxtNPP13tSwP+X/J7p512itVWWy3uv//+Mgs8t/k89+dxAACg9qy77rqlglNWc6p47LHHYplllokFFligqtcGAAAAdZsAz0Z3JtPeeOON0ii/8cYbSzmab37zm9W+NGj18jOZM79zkEouU7DeeuuVUei5zee5v1+/fk061AAAgNqw4447xqhRo+Loo4+OV155pQxeveqqq2Lfffet9qUBAABA/ZZAz4b4wQcfXNYSy/WE55hjjjjvvPNiqaWWmuz5ed6UjBgxopR4GzNmzCy8Ymg9crZ3lj2/8sorY9y4cWU9slTZHnroodGzZ8+49957Y9NNN63y1ULLl2tqKskGNIccnJZxPGd+jhw5Mnr37l2+awOtSw44v/zyy+OUU06J7bffPhZaaKE4/PDDy78BAACgHtRkAjxHoXfp0iUuuOCCsgZZrgeeM0qvueaa6N69+3S/3vjx42PYsGGz5FqhtclO85Qd5o0/V5W1wCsd6XledqYBMydjWPv27d1GYKbkDM+s4FKJ16lbt24xYMCA2GGHHdxdqGOnn376V/atvvrqpdIaAAAA1KOaS4DnjO3snMsSbD169Cj7cl3hTIrnLPALL7zwKz8zZMiQKb5ezg7P2XMzkjgHvipnjFVmkeXnKmd+Z2d6dqJ37NgxHn/88XJ8nXXW8bmDZpBLgADMbPJ7p512KsuUZAWXHKyWcfyss84q+2+55RZJcAAAAADqRs0lwJ955pmYMGFCSXo3tsYaa5SSjTMiS8fmGsXAzMtyqZnszk7zXPO7IpPfHTp0iLPPPjuWWWYZZVWhmSh/DsyMTHTn4NJMfmfczuVLsoJLDmLL59ttt12ptLTtttsqhw4AAABAXZgjakyu151efPHFJvtfeumlknQDqitnjWW51DvvvLN0mueM79GjR5dtPs/9/fv314kOADXgoYceKpVajjrqqJhjjqZf/fP5kUceGa+99lo5DwAAAADqQc3NAM+1yLJ08hFHHBHHH398SYjn7JRHH300rr/++mpfHhBRyqRmudScUdazZ8+Ge5Izv5VRBYDaWl4orbrqqpM9XtlfOQ8AAAAAWrqaS4DnTJSLLroozjnnnDIj5eOPP44VV1yxrAmeZdCB2kmCZ7nUe++9N5588skycCXLo+cMcQCgNiy66KJl++yzz8YGG2zwleO5v/F5AAAAANDS1VwCPM0777xl9nc+gNqVye5NN900FlpoobKWqOQ3ANSWTTbZpCwjdOqpp5aqSo19+eWXcdppp5UKLnkeAAAAANSDmlsDHAAAaB45OG3AgAFx5513xnbbbRePP/54jB49umzzee7v37+/QWwAAAAA1I2anAEOAAA037Ilt9xyS/Tt2zd69uzZsD9nfuf+PA4AAAAA9UICHAAA6lwmubfddtu4995748knn4x11lknevfubeY3AAAAAHVHCXQAYKo++uijOO6442LTTTeNtddeO3bZZZcYOnRow/FHH320JNfWWGON2GqrreKuu+5yR6FGy6Hn5zg/p7nN5wAAQO175513YqWVVvrKY+DAgdW+NACoSWaAAwBTddhhh8XIkSPjrLPOigUWWCCuvvrq2GuvveK2226LiRMnxr777ht77LFH/Pa3v40HHnggDj/88Jh//vljww03dGcBAABgJr3wwgvRvn37uO+++6JNmzYN+7t06eLeQo34+OOPy4Dz//znP7HsssvGPffcE/POO2+1LwtaLQlwAGCKXn/99XjkkUfiuuuuKyWT07HHHhsPPfRQ3HHHHfH++++XUeeHHnpoObbccsvF888/H5dffrkEOAAAADSDl156Kbp16xYLL7yw+wk1aPnll49XX3214fm7774b3/jGN0o/2SuvvFLVa4PWSgl0AGCK5ptvvrj00ktjtdVWa9iXo83z8cknn5RS6JPO9N5ggw3KGsM5OxwAAACYOS+++GJJpAG1nfzecsst4/e//33Zptyfx4HZTwIcAJiieeaZJzbbbLNo165dw77BgweXmeGbbLJJvP3229G1a9cmP5Mj0seOHRsffvihOwsAAADNMAP8gw8+iF133TU22mij2GWXXeLBBx90X6EGyp5Xkt+jR48uywWuvvrqZZvPUx7P84DZSwl0AGCaPfXUU3HkkUeWkaybb755jBs3rklyPFWejx8/foqv06tXrykeGzFiREmqjxkzxjsDzSwHpzTeAs0rq580XpcTAGBmff7552VN4ZxF+utf/zrmnnvuuOuuu2KfffaJK6+8crLLj2lzw+yRa36nyozvxm3ujh07xhZbbBH33XdfOW/IkCHeFpiNbW4JcABgmuQX9n79+sXaa68d/fv3L/vat2//lUR35Xl+0Z9R+RrDhg3zzsAsMnz4cPcWZoGMXxkbAQCay5xzzhmPP/54tG3bNjp06FD2rbrqqvHyyy/HFVdcMdkE+NfR5obmkYNT0s4779ykH6vS5v7Rj35U+tPyPP1cMHvb3BLgAMDXuuaaa+KUU04pI1bPOOOMhlneiy66aLz77rtNzs3nnTp1ii5dukzx9aY26jVHqudovu7du3tnoJnlKPRsiHfr1m2mBqkAkzdpVRQAgObQuXPnr+xbYYUV4uGHH57s+drcMHssu+yypR/shhtuKMnuSdvcWbWhcp5+Lpi9bW4JcABgqq677ro46aSTYrfddoujjz66SZmZHj16xD/+8Y8m5z/22GNllvgcc8wxw3c2f0cm0YFZIxviPmPQ/JQ/BwCaW870zsTaRRddFOuvv37D/meffbaURZ8R2tzQPO655574xje+EX/5y1/K88pA88o2Z39XztMGh9nb5p7xnmkAoO699tprceqpp0bv3r1j3333jffeey9GjhxZHp9++mlJiv/rX/8qJdFfffXV+P3vf1++1O+9997VvnQAAABo8ZZbbrkye/TEE0+MoUOHlrb3aaedFk8//XTsv//+1b48aNXmnXfe8hmtVGrYdttt45///GfZVio35PE8D5i9zAAHAKZo8ODBMWHChLj33nvLo7Htt98+Tj/99Ljwwgvjt7/9bfzhD3+IJZZYovx7RtYgAwAAAJrK6moXX3xxDBgwIA455JD45JNPYuWVV44rr7wyVlxxRbcLquyVV14p1RhycErO+K7M+q4kv/M4MPtJgAMAU7TffvuVx9Rsuumm5QEAAAA0vwUXXLDM+gZqUya5P/7449hqq63iP//5T6nakBUSzfyG6pEABwAAAAAAgBmUye4hQ4bEsGHDonv37tb8hiqzBjgAAAAAAAAAdUECHAAAAAAAAIC6IAEOAAAAAAAAQF2QAAcAAAAAAACgLkiAAwAAAAAAAFAXJMABAAAAAAAAqAsS4AAAAAAAAADUBQlwAAAAAAAAAOqCBDgAAAAAAAAAdUECHAAAAAAAAIC6IAEOAAAAAAAAQF2QAAcAAAAAAACgLkiAAwAAAAAAAFAXJMABAAAAAAAAqAsS4AAAAAAAAADUBQlwAAAAAAAAAOqCBDgAAAAAAAAAdUECHAAAAFqRzz//PM4999z49re/HWuttVbsuuuu8fTTT1f7sgAAAKBZSIADAABAK3LRRRfFzTffHCeddFIMGjQolllmmdh7773j3XffrfalAQAAwEyTAAcAAIBW5L777os+ffrExhtvHEsvvXT8+te/jk8//dQscAAAAOqCBDgAAAC0IgsssEDcf//98cYbb8QXX3wRN954Y7Rr1y6++c1vVvvSAAAAYKbNOfMvAQAAALQURx99dBx88MHRq1evaNu2bcwxxxxx3nnnxVJLLTXZ8/O8KRkxYkR07do1xowZMwuvGFqvsWPHNtkCzWvixInRpk0btxUA6owEOAAAALQir7zySnTp0iUuuOCCWGSRRcp64P369YtrrrkmunfvPt2vN378+Bg2bNgsuVbg/wwfPtytgFkgY1j79u3dWwCoMxLgAADQCmSZ4wcffDCefPLJGDlyZPTu3bvM/ARal5yx3bdv37jqqquiR48eZd9qq61WkuI5C/zCCy/8ys8MGTJkiq+Xs8Nz9tyMJM6Br5czvzP53a1bt+jYsaNbBs0slwABAOqPBDgAANS5gQMHloRX49lj2ZE+YMCA2GGHHap6bcDs9cwzz8SECRNK0ruxNdZYowySmRFZOrZTp07NdIXA5GTy2+cMmp/y5wBQn+ao9gUAAACzNvm90047lWTX/fffXxJcuc3nuT+PA61HrtedXnzxxSb7X3rppTIwBgAAAFo6CXAAAKjjsuc587tPnz4xaNCgWG+99crssdzm89yf6/7meUDrsPrqq8c666wTRxxxRDz22GOlMsQ555wTjz76aOyzzz7VvjwAAACYaRLgAABQpx566KGS3DrqqKNijjmafvXP50ceeWS89tpr5TygdcjP/kUXXRQbbLBB+X9ALoOQifBcEzzLoAMAAEBLZw1wAACoUyNGjCjbVVdddbLHK/sr5wGtw7zzzhvHH398eQAAAEC9MQMcAADq1KKLLlq2zz777GSPV/ZXzgMAAACAlk4CHAAA6tQmm2wS3bp1i1NPPTW+/PLLJsfy+WmnnRbLLLNMOQ8AAAAA6oEEOAAA1Km2bdvGgAED4s4774ztttsuHn/88Rg9enTZ5vPc379//3IeAAAAANQDa4ADAEAd22GHHeKWW26Jvn37Rs+ePRv258zv3J/HAQAAAKBeSIADAECdyyT3tttuG/fee288+eSTsc4660Tv3r3N/AYAAACg7tRsCfRBgwbFd7/73VhttdXie9/7Xvz5z3+u9iUBAECLlWXON91009hqq63KVtlzAABoWV577bVYa621YuDAgdW+FGASO+20U3Tu3Dl69OhRtvkcqJ6anAH+pz/9KY4++ug46qijYpNNNom77rorDjvssOjatWsJ8AAAAAAA0FpMmDAh+vXrF2PGjKn2pQCTaNOmzVfuya233lr2T5w40f2CKqi5GeD5P4Nzzz03fvrTn8auu+4aSy21VOy///6x0UYbxT/+8Y9qXx4AAAAAAMxW5513Xsw999zuOrSA5Pf0HAdaSQI8y7i8+eabsc022zTZf8UVV8S+++5btesCAAAAAIDZ7Yknnogbb7wxTj/9dDcfakjjMudHHHFEjB49OoYOHVq2+Xxy5wGttAR6JsBTlnLZa6+94vnnn48llliizALv2bPnZH+mV69eU3y9ESNGlNLpSsPArDF27NgmW6D5K6MYKQoAAACt0yeffBKHH354HHPMMbHoootO08/oL4fZI8ucVxx33HFN+srz+RlnnNFwnhwVzN6+8ppLgI8aNapsc3TMgQceWNY1GTx4cBxwwAFx5ZVXxoYbbjjdrzl+/PgYNmzYLLhaoGL48OFuBswCGcPat2/v3gIAAEArdMIJJ8Raa631lYqpM0N/OTS/xjmoyfWVy1HB7O0rr7kE+FxzzVW2Oft7++23L//u3r17mQk+pQT4kCFDpjraLUcE5GsAzS9Hs2VA79atW3Ts2NEthmbWrl079xQAAABaoUGDBpVyynfcccd0/Zz+cpj9Mgc1tb5yOSqYvX3lNZcAX2SRRcp2xRVXbLJ/+eWXjwceeGCGXjOnw3fq1KlZrg+YvAzoPmfQ/JQ/BwAAgNYpyya///77sfnmmzfZf/zxx8fdd98dl19++Qy9rv5yaB477rhjQxn0E088sZQ9r/SV5/PG5+k7h9nbV15zCfBVVlklOnfuHM8880z06NGjYf9LL70USy21VFWvDQAAAAAAZof+/fvHuHHjmuzbcsst45e//GV8//vf9yZAld1yyy0NCblc77uy5vfkzgNmr5pLgHfo0CH23nvvuOCCC8ps8NVXXz3uuuuueOSRR+Kqq66q9uUBAAAAwGxZ4/D8888v5Y9zksghhxxiiSRoZSrVUie1wAILTPEYMHvlErxTm5Wax4HZb46oQQcccEAcdNBBcfbZZ8d3v/vduOeee+K8886L9ddfv9qXBgAAAACz1OGHH14qJB5xxBFx8803l20+z/0AQG3JJHeWOW8sn0t+Q/XU3Azwij322KM8AAAAAKC1yCT3b3/72zK7M9cSXW655eLVV18ta4nm/nTmmWdW+zKBKnnxxRfde6hBWeZ8zJgxMWzYsOjevbs1v6HKanIGOABQmy655JLYbbfdmuw75phjYqWVVmry6NmzZ9WuEZi8L774Ih588MFSXSm3+RwAqL2y51kRMZPfb7zxRuy+++6x4IILlm0+z/15PM8DAAAmTwIcAJgm1157bZxzzjmTHX2+3377xcMPP9zwyFGvQO0YOHBgLL/88rH11luXQSu5zee5HwCoHRdeeGF8/vnncfLJJ8ecczYt3JjPcxZ4Hs/zAACAyZMABwCm6p133ikJ7v79+0e3bt2aHMu1jF555ZVYddVVY6GFFmp4zD///O4q1IhMcu+0006x2mqrxf33319mf+c2n+d+SXAAqB1Z6jz16dNnsscr+yvnAQAAXyUBDgBM1XPPPRdzzTVX3H777bHGGms0Ofbf//63rG+07LLLuotQg7LMed++fUtn+aBBg2K99dYr65DlNp/n/n79+imHDgA1Itf7Tnfeeedkj1f2V84DAAC+qmktJQCASeR63lNa0/ull14q26uvvrrMKp1jjjli0003jUMPPTS6dOkyxXvZq1evKR4bMWJEdO3atSTWgZmTn8vhw4fHlVdeGePGjYuxY8eW/ZVtflbz833vvfeWzy4wc7IySps2bdxGYIYdcMAB8atf/aosWZLrfjeWpc+PO+64Ugo9zwMAACZPAhwAmGGZAM+k98ILLxwXX3xxmRF+5plnxssvvxx/+MMfyrEZMX78+Bg2bJh3BmbSk08+WbZt27Zt8pnKpHhlf+W8XL4AmDkZv9q3b+82AjOsXbt2ZYDab3/721hiiSVKInz55ZePRx99tKwLnssTZYI8zwMAACZPAhwAmGH7779//PjHP4755puvPF9xxRVLEu2HP/xh/Pvf//5KyfSKIUOGTHV2eM6g6969u3cGZtLIkSMbSqHnZypnfmfyu1u3btGxY8d4/PHHy/F11lnHZw6agYQU0BxyQGk6++yz46CDDmrYnzO/M/ldOQ4AAEyeBDgAMMNyhncl+V2xwgorlO3bb789xQT418nysblOMTBzevfuXZLdZ511VlnzuyKT3x06dCgd68sss0w5rzIbHJhxyp8DzSWT3Dnj+5xzzomhQ4dGjx494pBDDjHQBgAApoEEOAAwww4//PB4991346qrrmrYlzO/U5ZqBKork9oDBgyInXbaKbbbbrtSUjX35czvTH7feeedccstt0h+A0CNVpU48MADyzImWclFlQkAAJg2M7YwJwBARHznO98p6xGef/75Zf3vv/3tb3HUUUdFnz59YrnllnOPoAbssMMOJcmdg1N69uwZm222Wdk+++yzZX8eBwAAAIB6YQY4ADDDcr3uLMt46aWXxmWXXRZdunSJbbbZppRnBGpHJrm33XbbuPfee+PJJ58sa34rew4AAABAPZIABwCm2emnn/6VfVtvvXV5ALUtS59vuummsdBCC5Uyqtb8BgAAAKAeKYEOAAAAAAAAQF2QAAcAAAAAAACgLkiAAwAAAAAAAFAXJMABAAAAAAAAqAsS4AAAAAAAAADUBQlwAAAAAAAAAOqCBDgAAAAAAAAAdUECHAAAAAAAAIC6MGe1LwBouUaNGhW77LJLDBs2LLp37x7XX399zD333NW+LAAAAAAAAFopCXBghqy33nrxxBNPNDx/9dVXo0uXLrHuuuvGP/7xD3cVAAAAAACA2U4JdGCGk99t2rSJH//4x3HdddeVbT7P/XkcAACoXYMGDYrvfve7sdpqq8X3vve9+POf/1ztSwImU3XtRz/6UcMjnwMAAF/PDHBgumSDu5L8HjNmTHz55ZelBPpll10WV1xxRXTq1Kkcz/OUQwcAgNrzpz/9KY4++ug46qijYpNNNom77rorDjvssOjatWustdZa1b48QNU1AACYKWaAA9Nlt912K9uf/OQn0aFDhybH8nnOBG98HgAAUDsmTpwY5557bvz0pz+NXXfdNZZaaqnYf//9Y6ONNrKUEdQIVdcAAGDmSIAD0yXX+k79+vWb7PGcOdL4PAAAoHa89tpr8eabb8Y222zTZH9Wc9p3332rdl3A5KuuZbW1FVdcsWzzeWXpMeXQAQBgypRAB6bLcsstF//+97+jf//+8cc//vErx88666yG8wAAgNpLgKdMpO21117x/PPPxxJLLFFmgffs2XOyP9OrV68pvt6IESNK6fR8PWDm7bLLLg3bXHJs7Nix5XluO3bsWNYCv+GGG8rxG2+80S2HZqiMkgNLAID6IgEOTJerr746unTpEtdcc01ceumlTY6NGzcurrvuuobzAACA2lKZNXrEEUfEgQceWCo7DR48OA444IC48sorY8MNN5zu1xw/fnwMGzZsFlwttD6Vz1KfPn2afK6GDx/esD8T4HnM5w5mXsaw9u3bu5UAUGckwIHpMvfcc8e6665bSq516tSpjD7PBnjOCM/R5zlyNo/neQAAQG2Za665yjZnf2+//fbl3927dy8zwaeUAB8yZMgUXy9nh2cbIF8DmHn5Wcolxe68885S9jxnfmfyu1u3bmUGeLa9K+f53MHMa9eundsIAHVIAhyYbv/4xz9ivfXWK0nwHHmej4pMfudxAACg9iyyyCJlm2sKN7b88svHAw88MEOvmaVjc3AsMPOuv/76UnUtt1dccUVJeqfczjHHHA1lz/O4zx3MPOXPAaA+zVHtCwBapkxyf/rpp2X2d673ndt8LvkNAAC1a5VVVonOnTvHM88802T/Sy+9FEsttVTVrgtoWnUtKytkgjurNbzwwgtlm89VXQMAgK9nBjgwUw3zHH2e645l6TWjzwEAoLZ16NAh9t5777jgggvKbPDVV1897rrrrnjkkUfiqquuqvblAaquAQDATJMABwAAgFbkgAMOKOWUzz777HjnnXdKRafzzjsv1l9//WpfGvD/ZHW1UaNGxS677NIw6DzLnudAdAAAYOokwAEAAKCV2WOPPcoDqF2qrgEAwIyxBjgAAAAAAAAAdcEMcAAAaAW++OKLePDBB+PJJ5+MkSNHRu/evaNt27bVviwAAOBrvP/++3H66afHQw89FJ999lmsu+66ccQRR5RlTIDa0KZNm6/smzhxYlWuBTADHAAA6t7AgQNj+eWXj6233jqOOeaYss3nuR8AAKhtv/jFL+L111+PSy+9NG655Zbo0KFD7L777jF27NhqXxowheT31PYDs54S6AAAUMcyyb3TTjvFaqutFvfff3+ZBZ7bfJ77JcEBAKB2ffzxx7H44ovHySefHKuvvnqZ9X3AAQfEu+++Gy+//HK1Lw9ava9LckuCQ3VIgAMAQB2XPe/bt2/06dMnBg0aFOutt1506tSpbPN57u/Xr185DwAAqD3zzjtvDBgwIFZcccXy/IMPPoirrroqunbtWqo6AdUzaXJ79OjRMXTo0LKd2nnArGcNcAAAqFO5RuDw4cPj+uuvjznmaDr2NZ8feeSRsdFGG5XzNt9886pdJwAA8PWOPfbYuOmmm6Jdu3Zx0UUXlcGtk9OrV68pvsaIESNK8nzMmDFuOTSjTHpXliXIbT7v3Llzw3GfOZh5EydOnOYBJRLgAABQp7JzK6266qqTPV7ZXzkPAACoXT/72c/iRz/6UVx77bVlXfDrrrsuVllllel+nfHjx8ewYcNmyTVCa9X4M5UD0ad2HJgxGb/at28/TedKgAMAQJ1adNFFy/bZZ5+NDTbY4CvHc3/j8wAAgNpVKXl+yimnxDPPPBPXXHNNnHbaaV85b8iQIVN8jZwdnjPounfvPkuvFVqb/EzlzO9Mfnfr1i06duz4lePAzMkKKNNKAhwAAOrUJptsUhrep556alnzu7Evv/yydJYts8wy5TwAAKD25Jrfjz76aHznO9+JOeecs2E5o0yGv/vuuzP0mlk+dkrl04EZk+XOK2t/Z/K7cfnz5DMHM29ay5+npgsBAgAAdaNt27YxYMCAuPPOO2O77baLxx9/vDTIc5vPc3///v3LeQAAQO1577334rDDDitJ8IoJEybE888/H8stt1xVrw1au6ym0FgmvXv06PGV5Pek5wGznhngAABQx3bYYYe45ZZbom/fvtGzZ8+G/TnzO/fncQAAoDatuOKKsemmm8bJJ59cHvPOO29ccskl8cknn8Tuu+9e7cuDVi+T21OblSr5DdUhAQ4AAHUuk9zbbrtt3HvvvfHkk0/GOuusE7179zbzGwAAWoCzzjqrVHY69NBD49NPPy0zTK+99tpYbLHFqn1pwFSS4JLfUD0S4AAA0ApkmfOcObLQQgtF9+7dJb8BAKCF6NKlS5xwwgnlAdSmTHaPGTMmhg0bVtrc1vyG6rIGOAAAAAAAAAB1QQIcAAAAAGrMm2++GYsvvnisv/76ZZvPAQCAr6cEOgAAAADUkPbt28f48eMbnn/00UexxBJLRLt27eKzzz6r6rUBAECtq/kZ4K+99lqstdZaMXDgwGpfCgAAAADMtuR3165dy5q/uU25P48DAAAtNAE+YcKE6NevX4wZM6balwJMxq677hqdO3eOHj16lG0+BwAAAGZMljmvJL/ff//9ePXVV6NPnz5lm89THlcOHQAAWmgC/Lzzzou555672pcBTEabNm3iuuuua7Ivn+d+AAAAYPqtttpqZbvooovG/PPP3+RYPq/MBK+cBwAAtKAE+BNPPBE33nhjnH766dW+FGASX5fklgQHAACA6ffpp5+W7RlnnDHZ4yeffHKT8wAAgBaSAP/kk0/i8MMPj2OOOaaMeAVqR+My50cffXSMHj06hg4dWrb5fHLnAQAAAF+vS5cuZXvEEUdM9nj2lTU+DwAA+Ko5owadcMIJsdZaa8U222wzTef36tVrisdGjBhRykNZRxyaR+Oy50cddVSMHTu2/Du3+fyUU05pOO+yyy5z22EmTZw4UVUFAABoJf7973/HEkssUfqzPvjgg+jQoUPDsXz+9ttvN5wHAAC0kAT4oEGDymzSO+64o9lec/z48TFs2LBmez3g/zT+XA0fPvwrt8XnDponhrVv396tBACAVmDxxRePdu3alXbAAgssUCZ17L333tGnT5+G5Hcez/MAAIAWkgC/9dZb4/3334/NN9+8yf7jjz8+7r777rj88su/8jNDhgyZ6uzwnD3XvXv3WXK90Jrl5ypnfmfyu1u3btGxY8evHAdmTnZuAQAArcdnn31WBsFmEjyT3pV1vyvtgzwOAAC0oAR4//79Y9y4cU32bbnllvHLX/4yvv/978/Qa7Zp0yY6derUTFcIrduPf/zjhjLop556ail7njL5nc8bn+dzBzMvY1gtueSSS+Lhhx+Oq6++ukm1h1z+4Nlnn435558/dt999/jpT39a1esEAICWLJPcb775Zqy66qrx6aefljW/8/u2md8AANACE+CLLLLIZPdn2acpHQNmn2uvvbYhAZ4Jr8qa35M7D6gv+bk+55xzokePHg37Pvzww9hjjz2iZ8+e8Zvf/Caefvrpsu3cuXPsuOOOVb1eoKkvvvgiHnzwwXjyySdj5MiR0bt372jbtq3bBAA1KpPdmQTPAadZYc0gcwAAaKEJcKD25bICU5uVmseB+vHOO++UpUgef/zxstxBYzfddFPMNddcceKJJ8acc84Zyy23XLz++utx6aWXSoBDDRk4cGD07du3LFtSkZ/nAQMGxA477FDVawMAAACA5jRHtAAvvviijjmoMZnkzjLnjeVzyW+oP88991xJct9+++2xxhprNDk2dOjQWG+99Uryu2KDDTYoSbb33nuvClcLTC75vdNOO8Vqq60W999/f5kFntt8nvvzOAAAAADUixaRAAdqtxzy6NGjSwIst8qeQ33K8ubnnXdeLLnkkl859vbbb0fXrl2b7Ft44YXLdsSIEbPtGoHJy7LnOfO7T58+MWjQoDJgJcun5jaf5/5+/fqV8wAAAACgHiiBDgDMsHHjxkW7du2a7Gvfvn3ZfvbZZ1P8uV69ek3xWCbOM6k+ZswY7wzMpJztnRUZrrzyyvJ5HTt2bNlf2R566KFlkMu9994bm266qfsNs3ipIAAAAGDWkwAHAGZYhw4dYvz48U32VRLfOct0RuVrDhs2zDsDM+nJJ58s27Zt2zb5TFXWAs/9lfMWWmgh9xtmUsavykAwAAAAoDokwAGAGZYztd99990m+yrPF1lkkSn+3JAhQ6Y6Ozxn0HXv3t07AzNp5MiRZZslzvMzlTO/M/ndrVu36NixYzz++OPl+DrrrOMzB81g0qooAAAAwOwnAQ4AzLB11103brjhhpJcq8wkfeyxx2KZZZaJBRZYYIZfN8vHzswMcuD/9O7duyS7zzrrrLLmd0Umv7OCw9lnn10+r3le5TMMzDjlzwEAAKD65qj2BQAALdeOO+4Yo0aNiqOPPjpeeeWVGDhwYFx11VWx7777VvvSgP9X4nzAgAFx5513xnbbbVdmfI8ePbps83nu79+/v+Q3AAAAAHXDDHAAYIblLO/LL788TjnllNh+++3LGsKHH354+TdQG3bYYYe45ZZbom/fvtGzZ8+G/TnzO/fncQAAAACoFxLgAMA0O/3007+yb/XVV48bb7zRXYQalknubbfdNu6999548skny5rfyp4DAAAAUI8kwAEAoJWUQ990001LpYbu3bsrew4AAABAXbIGOAAAAAAAAAB1QQIcAAAAAAAAgLogAQ4AAACt1GuvvRZrrbVWDBw4sNqXAkxikUUWic6dO0ePHj3KNp8DAABfzxrgAAAA0ApNmDAh+vXrF2PGjKn2pQCTaNOmzVfuybvvvlv2T5w40f0CAICpMAMcAAAAWqHzzjsv5p577mpfBjANye/pOQ4AAK2dBDgAAAC0Mk888UTceOONcfrpp1f7UoBGGpc532ijjWL06NExdOjQss3nkzsPAABoSgl0AAAAaEU++eSTOPzww+OYY46JRRdd9GvP79Wr1xSPjRgxIrp27aqMOjSTLHNece+998bYsWPLv3Obz3Mt8Mp5li+AmZdLCqiqAAD1RwIcAAAAWpETTjgh1lprrdhmm22a5fXGjx8fw4YNa5bXAv5/jT9Xw4cP/8qt8bmD5olh7du3dysBoM5IgAMAAEArMWjQoFJO+Y477pjmnxkyZMhUZ4fn7Lnu3bs30xUCFfm5ypnfmfzu1q1bdOzYscnN8bmDmdeuXTu3EQDqkAQ4AAAAtBK33nprvP/++7H55ps32X/88cfH3XffHZdffvl0v2aWju3UqVMzXiW0XgsvvHBDGfTevXuXsucpk9/5vPF5Pncw85Q/B4D6JAEOAAAArUT//v1j3LhxTfZtueWW8ctf/jK+//3vV+26gP/zzjvvNCTk/v73vzes+T2584DW4aOPPoqzzjorHnjggRg1alSstNJK0bdv3+jRo0e1Lw0AapYEONCso2Sz/CEAUHu++OKLePDBB+PJJ5+MkSNHlllkbdu2rfZlAbPZIossMtn9CyywwBSPAbNXtqunNitVuxtal8MOO6x8f88keMbrq6++Ovbaa6+47bbbYtlll6325QH/j75yqC1zVPsCgJZpSo1xpaMAoPYMHDgwll9++dh6663jmGOOKdt8nvsBgNqTSe4sc95YPpf8htbl9ddfj0ceeSROOOGEMuN7mWWWiWOPPbb8/+COO+6o9uUB/4++cqg9EuDAdPu6JLckOADUjkxy77TTTrHaaqvF/fffX2aB5zaf535JcODFF1+MHXbYwY2AGpNlzkePHh1Dhw4tW2XPofWZb7754tJLLy3f3Rv3u+Xjk08+qeq1Af9HXznUJglwYKYCeuPG+NTOAwCqU/Y81wfs06dPDBo0KNZbb73o1KlT2ebz3N+vX79yHgAAUFvmmWee2GyzzaJdu3YN+wYPHlxmhm+yySZVvTZAXznUMmuAAzMsS6+NGTOmyXOJbwCoHQ899FAMHz48rr/++phjjqZjX/P5kUceGRtttFE5b/PNN6/adQIAAF/vqaeeKt/ht9xyy6l+f+/Vq9cUj40YMSK6du3apE8PmHk5QWzs2LHl37nN5507d2447jMHM296clAS4AAAUKeycyutuuqqkz1e2V85DwAAqE333Xdfqd609tprR//+/WfqtcaPHx/Dhg1rtmsDoslnKgeiT8pnDmZexq/27dtP07kS4AAAUKcWXXTRsn322Wdjgw02+Mrx3N/4PAAAoPZcc801ccopp8RWW20VZ5xxRpOS6JMzZMiQqc4Ozxl03bt3nwVXCq1XfqZy5ncmv7t16xYdO3b8ynFg5nxd/GtMAhyYYVlqovHa38qfA0BtyXUBs+F96qmnljW/G/vyyy/jtNNOi2WWWcb6gQAAUKOuu+66OOmkk2K33XaLo48+uln63/I1OnXq1CzXB/yfLHde6SvP5Hfj8ufJZw5m3vTEQAlwYKbWWJg0kDc+DwCorrZt28aAAQNip512iu222y4OPfTQsu/xxx+Ps88+O+6888645ZZbyj4AAKC2vPbaa2Uwa+/evWPfffeN9957r+FYhw4dokuXLlW9Pmjt9JVD7ZIAB2Y6sE/uOABQG3bYYYeS5O7bt2/07NmzYX/O/M79eRwAAKg9gwcPjgkTJsS9995bHo1tv/32cfrpp1ft2oD/o68capMEONCsgV3yGwBqTya5t91229Jp9uSTT8Y666xTZpGY+Q0AALVrv/32Kw+gtukrh9ojAQ7MVGAfM2ZMDBs2LLp3724dEwCoYZns3nTTTWOhhRYqcVvyGwAAAJqHvnKoLXNU+wIAAAAAAAAAoDlIgAMAAAAAAABQFyTAAQAAAAAAAKgLEuAAAAAAAAAA1AUJcAAAAAAAAADqwpzVvgAAAAAAoKk2bdp85ZZMnDjRbQIAgK9hBjgAAAAA1Hjye2r7AQCA/58EOAAAAADUiK9LckuCAwDA1EmAAwAAAEANmDS5PXr06Bg6dGjZTu08AADg/ycBDgAAAAA1ZtL1vq3/DQAA00YCHAAAAAAAAIC6IAEOAACtwH//+99YeOGFY9111y3bfA4AAAAA9WbOal8AAAAwa80111zx+eefNzzPdUSXXnrpmHPOOWPChAluPwDUoFznu/Ha39b9BgCAaWMGOAAAtJLk9/zzzx9HHnlk2abcn8cBgNow6TrfnTt3jh49epTt1M4DAAD+fxLgAABQp7LMeSX5PXLkyPjf//4XO+64Y9nm85THlUMHgNrxdcltyW8AAJg6CXAAAKhTq6yyStkusMACseCCCzY5ls8rM8Er5wEAtWFKSW7JbwAA+HoS4AAAUKfGjBlTtqeddtpkj5944olNzgMAakcmu3MN8KFDh5at5DcAAEwbCXAAAKhTnTp1Kttc93tyjjvuuCbnAQAAAEBLJwEOAAB16rnnnivb999/P957770mx/L5Bx980OQ8AAAAAGjpajIB/tFHH5XZKJtuummsvfbascsuu5RyT0BtadOmTXTu3Dl69OhRtvkcAKgdSy21VMw555zl3wsttFAsueSSceONN5ZtPk95PM8DAAAAgHpQkwnwww47LP75z3/GWWedFbfeemt079499tprr/jPf/5T7UsD/p8pJbslwQGgtkyYMKEhCZ4zvn/72982zPzO/XkcAAAAAOpFzSXAX3/99XjkkUfihBNOKLNKl1lmmTj22GNj4YUXjjvuuKPalwdMQ5JbEhwAaksmufN7dqViS27zueQ3AAAAAPWm5hLg8803X1x66aWx2mqrNezLTrp8fPLJJ1W9NuCrye3Ro0eXJQpy25gkOLQu77zzTqy00kpfeQwcOLDalwb8P1nm/N13340nnniibJU9BwAAAKAe/V8txBoyzzzzxGabbdZk3+DBg8sMlaOOOmqyP9OrV68pvt6IESOia9euMWbMmGa/VmjtMuk9duzY8u/c5vOcUVbhcwczb+LEiS1iQMkLL7wQ7du3j/vuu6/J9Xbp0qWq1wX8/xZffPF46623Gp4vtthi8eabb7pFAAAAANSVmkuAT+qpp56KI488MrbccsvYfPPNZ+g1xo8fH8OGDWv2a4PWrvHnavjw4VM9DsQMx7BMLNe6l156Kbp161aWLAFqz+QG0mQyPPfnQBsAAAAAqBc1nQDPWWT9+vWLtddeO/r37z/F84YMGTLFYzk7PDv1unfvPouuElqv/FzlzO9Mfmfiq2PHjl85Dsycdu3atYhb+OKLL8Zyyy1X7csAJuPrqkhIggMAAABQT2o2AX7NNdfEKaecEltttVWcccYZM5UAyE69Tp06Nev1AVHKnVfW/s7kd+Py58nnDmZeSyh/XpkBPt9888Wuu+4ar732Wiy99NKx//77x6abblrtS4No7WXPK/Lz+Oc//7lUaMlBaltvvXU8+OCDDecphw4AAABAPajJBPh1110XJ510Uuy2225x9NFHt5jOf2iN6xFPmvRufB7QOnz++efxn//8J5Zffvn49a9/HXPPPXfcddddsc8++8SVV14ZG2644WQrtEzJiBEjomvXrjFmzJhZfOVQ/xqv+Z3J76zcknKbzytxPM/zmYPm/64MAAAAzH41lwDPWWOnnnpq9O7dO/bdd9947733Go516NAhunTpUtXrA76+Y0/yG1qXOeecMx5//PFo27ZtidVp1VVXjZdffjmuuOKKySbAp2Xt85ylCjSfxp+pXL5kaseBGZPxq3379m4fAAAAVFHNJcAHDx4cEyZMiHvvvbc8Gtt+++3j9NNPr9q1AV+fBJf8htZpctUgVlhhhXj44Ycne/6QIUOm+Fo5Ozz/X5IlmoHmk5+pnPmdye9u3bqV5UsmPQ7MnJlZugsAAACo0wT4fvvtVx5A7csEVZZLrawlas1vaJ1ypvePfvSjuOiii2L99ddv2P/ss8+WsugzIgfY+H8KzLzFFlusoQx6rvmdZc9TJr/zeePzfOZg5rWU8ucfffRRnHXWWfHAAw/EqFGjYqWVVoq+fftGjx49qn1pAAAAUH8JcACgZVluueVi2WWXjRNPPDF+85vfxHzzzRc33XRTPP3003HrrbdW+/KgVXvzzTcbEnIPPvjgZKs1VM4DWo/DDjssRo4cWZLgCyywQFx99dWx1157xW233VZiOgAAALRkc1T7AgCAlm2OOeaIiy++OFZfffU45JBDypIlzzzzTFx55ZWx4oorVvvyoNX7uuVJLF8Crcvrr78ejzzySJxwwgllxvcyyywTxx57bCy88MJxxx13VPvyAAAAYKaZAQ4AzLQFF1wwTjvtNHcSalQmuRdffPGGcuiVsudmfkPrk5VaLr300lhttdUa9mWliHx88sknVb02AAAAaA4S4AAA0ApksnvMmDExbNiw6N69uzW/oZWaZ555YrPNNmuyb/DgwWVm+FFHHTXZn+nVq9cUX2/EiBHRtWvX8v8XYPL++9//xqeffjpDt2fcuHHxn//8p3zGOnToMEOv0aVLl1hqqaW8PTCFgaKVJYNaiksuuSQefvjhsoQJADB5EuAAANAKTK5jT/lz4Kmnnoojjzwyttxyy9h8881n6IaMHz++DK4BviorK/z0pz+NL7/8sqpLFv3xj38sA2CAr8aw9u3bt5jbcu2118Y555xTljEBaos2N9QWCXAAAKhzU5rVkvslwaH1uu+++6Jfv36x9tprR//+/ad43pAhQ6Z4LGeH5/9HsrIEMHn33nvvDM8Af+2118psz3333TeWWWaZGXoNM8Bhytq1a9cibs8777wTxx9/fDz++OPRrVu3al8OMAltbqg9EuAAAFDHvq6koyQ4tE7XXHNNnHLKKbHVVlvFGWecMVMJgPz/SKdOnZr1+qCefPOb35zhn+3YsWP5fK288sqx6qqrNut1AV//XblWPPfcczHXXHPF7bffHhdccEFZ3gioDdrcUJskwAEAoJU0xEePHt2wBnjnzp2bnGcmOLQe1113XZx00kmx2267xdFHH91iOv8BoLXq2bNneQC1RZsbapcEOAAAtAKZ4B4zZkyT55Je0PpkOeVTTz01evfuXUoqv/feew3HOnToUEolAwAtWy5RMiUjRoyIrl27NmkbADMvB5yPHTu2/Du3+bzxwHOfOZh509OXJQEOAAAArcTgwYNjwoQJZU3ifDS2/fbbx+mnn161awMAZo/x48eXylBA82n8mRo+fPhUjwMzHr/at28/TedKgAMAAEArsd9++5UHAFC/hgwZMtXZ4TmDLpdFAppPfqZy5ncmv7t16xYdO3b8ynFg5rRr126az5UABwCAViBLRGUJtsbPAQCA1ifbAp06dar2ZUBdyXLnlTZ3Jr8blz9PPnMw86anL0sCHAAAWsnaSJM2wBufBwAAAGhzQz2Yo9oXAAAAzDpfl9yW/AYAAABtbqgnZoADAEArmwneeD8AANBynH766dW+BGAS2txQe8wABwAAAAAAgJlIguca4EOHDi1bA86huiTAAQCgzk1u9vfU9gMAAABASyUBDgAAdezrktyS4AAAAADUEwlwAACoU5MmtxuXY5vaeQAAAADQUs1Z7QsAWq7JdZZb2wQAalPG6DFjxjR5LvENAAAAQL0xAxyYIdYSBQAAAAAAoNZIgAPTzVqiAAAAAAAA1CIJcGC6WEsUAOojhit/DgAAAEA9sgY4MMOsJQoAtW3Sdb47d+48xfMAAAAAoB6YAQ4AAHXs65Lbkt8AAAAA1BMJcAAAqHNTSnJLfgMAAABQbyTAgRlmLVEAaDky2T169OgYOnRo2Up+AwAAAFCPrAEOTBdriQIAAAAAAFCrzAAHppu1RAEAAAAAAKhFZoADzTITvPF+AAAAqAdvvfVWjBkzpmq//80332zYdujQoSrX0KlTp1hsscWq8rsBAGBGSIADMyyT3dkRMGzYsOjevXtpFAMAAEC9JL/33XffqAXnn39+VX//JZdcIgkOAECLIQEOAAAtyOuvvx6ffPLJDP3suHHj4vnnn48vv/xypmaRzTPPPLH00kvP8M8DQEtQmfndt2/fWGKJJapyDRm7K4POqzED/I033ogBAwZUdRY8AABMLwlwAABoIT744IPYeOONSwK7mtq2bRtPP/10zD///FW9DgCYHTL5vfzyy1flZmfi+bPPPotll11W1TUAAJhGEuAAANBCZML54YcfnuEZ4K+88kopoXrggQfOVEd+zgCX/AYAAACgFkmAAwBACzIzpcfbtGlTZo+tsMIKseqqqzbrdQEAAABALZij2hcAAAAAAAAAAM1BAhwAAAAAAACAuiABDgAAAAAAAEBdkAAHAAAAAAAAoC5IgAMAAAAAAABQFyTAAQAAAAAAAKgLEuAAAAAAAAAA1AUJcAAAAAAAAADqwpzVvgAAAGhN3nrrrRgzZkxVfvebb77ZsO3QoUNUS6dOnWKxxRar2u8HAAAAoH5JgAMAwGxMfu+7775Vv9/nn39+tS8hLrnkEklwAAAAAJqdBDgAAMwmlZnfffv2jSWWWGK23/dx48bFsGHDonv37lWbAf7GG2/EgAEDqjYLHgAAAID6JgEOAACzWSa/l19++dl+3zPp/Nlnn8Wyyy5bypADAAAAQL2Zo9oXAAAAAAAAAADNQQIcAAAAAAAAgLogAQ4AAAAAAABAXajJBPiXX34Zv/vd72KTTTaJNddcM37+85/H//73v2pfFgAwBWI3ALQc4jYAtCxiNwDUQQL8wgsvjOuuuy5OOumkuOGGG0qA33vvvWP8+PHVvjQAYDLEbgBoOcRtAGhZxG4AaOEJ8Exy//73v49f/vKXsfnmm8c3v/nNOPvss+Ptt9+Ov/zlL9W+PABgEmI3ALQc4jYAtCxiNwDUQQL8hRdeiNGjR8eGG27YsG+eeeaJlVdeOZ544omqXhsA8FViNwC0HOI2ALQsYjcATL85o8bkTO+06KKLNtm/8MILNxybVK9evab4eiNGjIiuXbvGmDFjmvlKoXY8/fTT8d57783wz7/++usxatSoGfrZzz//PMaOHRsdO3aMOeecsf+lzD333LH00kvHzFhwwQVjzTXXnKnXgFo0ceLEaNOmTdQysRum3bhx40rMfP755+Pjjz+eoVuXMX9Gv9tm3P7www/jP//5zwzH7dSpU6cSe2fEu+++W+5B3gvf0ak34jbUl+aI27UQu8VtmDKxG+pPS+8rb47+cn3l1Kvpids1lwDP/zmkdu3aNdnfvn37GW5sZJmYYcOGNcv1Qa0ZOXJkPProo7H22mvP8GsstdRSUQv/45oZgwcPjk8++SQWWmihZrsmqAUZwzIG1jKxG6bdG2+8Ed27dy9xL/89o+aYY8YKOeV37EUWWSSaIyEwM9ef9+Ctt96Kzz77bKavBWqJuA31pbnidrVjt7gNUyZ2Q32pl77yme0v11dOvZqeuF1zCfAOHTo0/BGVf6fsHMtRM5MzZMiQKb5ezg7P/1FkgwXqUf63ncsEtPYZ4N/5znfMAKcuTTogrBaJ3TB9cXvJJZecqYZsc8wim2+++ao2AzyttNJKNdOpAM1J3Ib60hxxuxZit7gNUyZ2Q32ph77y5ugv11dOvZqeuF1zCfBK6fMsjdi4UyyfZ0fZjMjp8PllH+rVRhttVLXfnY34rLCQXy58zqD51Xr58yR2w/SZmZHoM0vchllL3Ib6U824ncRumLXEbqg/+sqhfk1P3J6x+kuz0De/+c0yuuXxxx9v2JdljXO9pXXXXbeq1wYAfJXYDQAth7gNAC2L2A0A02/OWpy+/pOf/CT69+8f888/fyy++OLx29/+Nrp27RpbbrlltS8PAJiE2A0ALYe4DQAti9gNAHWQAE+//OUvy1oJxxxzTIwbN67M/L7iiitirrnmqvalAQCTIXYDQMshbgNAyyJ2A0AdJMDbtm0bv/rVr8oDAKh9YjcAtBziNgC0LGI3AEyfmlsDHAAAAAAAAABmhAQ4AAAAAAAAAHVBAhwAAAAAAACAuiABDgAAAAAAAEBdkAAHAAAAAAAAoC5IgAMAAAAAAABQF+aMOvfuu+/GF198Eb169ar2pUBdmjhxYowfPz7atWsXbdq0qfblQN0ZMWJEtG3bNloTsRtmHXEbZi1xG2huYjfMWmI30JzEbaiduF33M8Dbt28fc85Z93l+qJq33347PvjgA8lvmEUyhmUsa03Ebph1xG2YtcRtoLmJ3TBrid1AcxK3oXbidpuJOSQFYAZVqisMGTLEPQSAGiduA0DLInYDQMshbkPtqPsZ4AAAAAAAAAC0DhLgAAAAAAAAANQFCXAAAAAAAAAA6oIEOAAAAAAAAAB1QQIcAAAAAAAAgLogAQ4AAAAAAABAXWgzceLEidW+CAAAAAAAAACYWWaAAwAAAAAAAFAXJMABAAAAAAAAqAsS4AAAAAAAAADUBQlwAAAAAAAAAOqCBDgAAAAAAAAAdUECHAAAAAAAAIC6IAEO1K2JEydO9t8AQMvy5ZdfVvsSAIBp9Oabb8aHH37YZJ82OQAAs5MEOFC3HeVt2rQp//7iiy8a/g0AtBxDhw6N//73vzHHHJotANASjB8/Pq688sq4+eaby/Nnnnmm7NMmB4DaZMA59UpPElCXQbvSUX766afHiSeeaLQ5ALRAL730UmyzzTbx/vvvx3333RdvvPFGtS8JAJiKdu3aRdeuXeOss86KH/7wh3HaaafFuHHj3DMAqFGVfvRnn322tL2hXkiAA3UbtJ9//vl49NFHY/vttzeSDQBaoB49esT6668f3/72t+PAAw+MhRde2KA2AKhRWX0t7b333rHmmmvGv/71r1hllVVinnnmqfalAQBTmfn9yCOPxH777Rd33313fPLJJ+4VdUECHKhL1157bfz85z+PJZZYIlZdddVo27ZttS8JAJjODvQVV1wxVlpppVI6tUOHDvHOO++UEqqV4wBAbcg1vivt7ix/Pnr06Nh9991L2/ySSy4xCxwAaixuVyaRXXHFFXH//ffHe++9F7/73e9i0KBB8fHHH1f7EmGmzTnzLwFQe6PXunXrFnPPPXdZb2zEiBGx5JJLVvuyAIDp7EC/6qqryqyx888/P2655ZbYdttt4/rrry9J8c8//zzmnFNzBgBqIXZX1vj+wx/+EFdffXUpgb766qvHAgssEAMGDCjHfvazn5UBbZP7OQBg9qnE3wsvvLC0u4899thYe+2144knnijt7zye7W9VXGjJzAAHWrzG5VpSjl771re+FSeffHJ5fvTRR8eoUaOqdHUAwLRq3BF+2223lRljWQJ9iy22iEMOOSTWWmut2GWXXcra4Jn8zvMBgOqqxO577rknHnzwwTjooINK8jtlZbZ+/frFueeeW5LjWc3l3nvvjc8++0zyGwCqKPvLH3jggejbt29ss8028d3vfjeOP/740ubOgWx/+tOf4qOPPvIe0WJJgAMtPvldKdfy8MMPl1lhOWrtsccei3XXXbcE6//85z9x8MEHx5gxY6p9uQDANHSg//nPf47BgwfHT37yk4YO9G9+85tx+OGHlyT4j370o3jooYfi0ksvjRdffNE9BYAqe/XVV0vp80cffbQktyddEzw7188+++yGai5zzTVXla8YAFqvHEw+bty4ePPNN+Mb3/hG2ZdLj6VDDz209KtffPHFZU3wXNYEWiIJcKBFqyS/+/kTdC0AAQAASURBVPfvH8cdd1wJyjniPNcau/HGG2O99dYrSfDsHM8kuJngAFD7cv2xTHBnErxxYztLn2cSfIMNNoj99tuvrE22/PLLV/VaAaA1mrQKy3LLLVcGruWAtXPOOacMRM8lTSpJ8L322isuv/zykgzPAWzZllfJBQCqU0E1B58vuOCCZdnQm266qRxv165dQxI8lzDJOH7mmWfG448/XvaJ27Q0EuBAi5ed3/n47W9/W9Ya23rrrcv++eefP95///2SBM+R5tmRft5551X7cgGAqTTE0+mnn146yD/44IPSif7JJ580SYLn4LYc6HbnnXeWRvnkXgMAmDUy7laqtmSsHj58eEyYMCG+/e1vlyXIFl100TIAPfdnnP78889Lp/nGG29c4nsuY5L7rP8NALO3gmoONs+KazmBLP30pz+NN954o0wsS5kEz5j94YcfxhlnnBHf+c53ysSzHNAmbtPSzFntCwCYWS+88EL06tUr1llnnbKW2KmnnlrW/15hhRXihBNOKGuGZtmWXEt0xRVXdMMBoAYb4k899VR8+umnZcmSzTbbrJRdy0b2kCFDokOHDrHPPvtEly5dys907NgxVl111fJzeU52rgMAs152ildi9/nnn18GmmfFtWWWWSY23HDD+NWvfhVHHnlk6Sz/5S9/Gb/73e+iW7duX4nXmQQHAGZf3D7ttNNi4MCBJR5nonvnnXeOAw44IEaMGFGWJ9lqq61KOzuruGTbPOP6u+++G6+//rrZ37RIvm0CLTqA58izLI2aJVtyBFuWRc3HTjvtFEOHDi2N8R//+MelHFv37t3Lz+koB4DaaohnJ3nO5s7nb731Vqyyyiol4d2vX7+S8M4YnzE/y6fOO++8TV5H8hsAZp/K7K8LL7wwrrvuujjssMPK2qE5k+wvf/lLqcKWM8ZyIHomyHfddde49dZbo2vXrt4mAKjSgPPsI3/ggQfiD3/4Q9l/3333lTie7el99923LDOWSfBsp2+yySZlQHr65z//GfPNN1/pTzd4jZZGAhxokUG7ccM7R5Nn+fO55pqrlGv5wQ9+UPZncF5iiSWic+fOTV5HRzkAVF8ljl977bVx++23x7nnnhuLL754jBo1Ko4//vi4+OKLY5555ikzybKs6i233FJKqu6yyy7VvnQAaLWyY/ydd94pnegnnnhibLHFFmV/zhK7+eab449//GNZS/SHP/xhfPzxx/HYY4/FQgstVO3LBoBWIyuk5rIjWTkt/e1vfytt7lyqZOWVVy77KrE54/Znn31WqrZkRdVse2dll6zQdvfdd5eB6tlmb9++fVX/JpgREuBAi0t+33XXXaXBPXLkyNhhhx3KDO///e9/pYRLJrzz35kMz7IuORK9UiIVAKg9//73v2PbbbeNtdZaq4wqX3jhhctyJlmK7corrywd6llKNZPj2ZkOAFR3ANv48ePLeqG5NEnK9bxz4Pluu+0W99xzTzz88MMlZue6oflIKrEBwKx32WWXlTW+c7nQlJVZMoH9xBNPlKXGKhZZZJEyuDzjevap53m/+c1vyuC1q6++Oh599NFYeuml45prromVVlrJW0eLJAEOtKgSqaeffnr86U9/iuWXX76sR5IBffvtty8lz3NtkiyXOvfcc5dRbLleaAb4/NlJZ48DANWV8X3cuHFlZHnPnj3LvozVOeJ8ySWXjF/84hfRt2/feO2118q6orvvvns5Rwc6AMw+lbZ0ZQmylAPOx44dG88991ysv/76pcpaxu/cv+KKK8Ynn3zS5PykEhsAzHo///nPY4899iix+9lnny0Tw4444oj43e9+F3//+98bqrQ0ToJnFbYc2JZymdGs8JKxvFOnTl+prAotiQQ4UPMqjeac8Z2d5JdccklZGzQb0FkiNdcZW2CBBWLAgAFl/ZIs25JJ8Cz1kufkaHRrlABA7S1lkiXZvvWtb5X1yPr06VMa55WYnbPLunfv/pU1Q3WgA8Dsj93ZMZ4xOB+5JMlPf/rTOO+882L++eeP7bbbriS/Mwn+yiuvxLrrrtsk+Q0AzL64nbE6y57n2t7HHnts7LrrrnHIIYeUwWk5uzuP77jjjuVnsgLb/vvvX5YSrbxGlju3fAn1oM3E/K8eoMb9/ve/L+uJ5Vqg559/fhmNVmlQ5+ywHNGWpdYmbWSbJQYAtdWBnqXU3nvvvWjXrl1ssMEG8frrr5dG+VJLLRX77bdfGeSWo8379etXqrnk2uA60QGges4+++wy8Dzjc8pO9KzOctttt5UKbd///vdLOfRhw4bFhx9+WPYbhA4As8+klVdSLiWWS4n++te/LkuIvvrqq2UmeFZZywprubTo170GtGRmgAMtYpZYNq5zNPnw4cPL/gzGOdM7R6QdfPDB8b3vfS+efvrpWHPNNZVZA4AaXsrk7rvvblieJEeeX3rppWW974svvrjMJsvy53ks3XrrrSWuW8oEAGZv7K50gGfcvv766+O0004r+5955pkycO3AAw+MvffeO1ZeeeW44YYbYrHFFovlllsujj766JL8NhgdAGaPxu3l7D/PR5Yvz9idA89PPvnkciyT4L/85S/L5LKspJpVXDbffPOG15H8pt5IgAM1qRK0c5R5llf79re/XZLdhx12WJx00klxzjnnlOfp448/Lp3ljWeFAwC11YGeZc4ffPDBMuI8Z3v/97//LUnvLMc2cODAuOiii8o5b775Zonr2267belAt5QJAMxeldg9ePDgePjhh8sssV69epV9W2yxRVkzNDvTcwB6xvEf/OAHpYO9QuwGgNk/4PyKK64o63x/8MEHseyyy8bhhx8ev/nNb0q7unESPEujL7300rHJJpt4m6hrSqADNevFF18sATlLoR500EHxzW9+szS+Dz300Nhwww1jt912K+uMXXjhhTF69OiyhknjWeMAQG3IZUruvffeGDt2bInbFbme6FFHHVVmgmcCPEueN2b2GABUR67lnZ3mTz31VFkbNGd8Z2I729z5yOot2eleWaok2+ZJ+VQAmP0zv7OyWj5y0Nq4ceMaKq+deeaZsfbaa8dxxx0XgwYNKpVU99prr4bX0OamnskUATUjG8qNrbTSSqUsy1tvvVU6y1944YXYeOONy/pj2QjPBPiVV14ZnTt3LttKOVUAoHZkgzpnkP31r38t6303tsQSS0Tv3r3L/hzMNqlMjAMAs96kbenll18+fvazn0X37t3jjjvuiBEjRpQZZJV2+7zzzlva4jnzu5L8TqqyAcDsUUl+P/7446XCWi45lgPW+vXrF7fffnvMM888JfGdTjzxxFJh9f7772/SB6/NTT2TAAdqRqWh/OGHHzbs22GHHcp6oLn2d+Mk+BlnnFHWGPvkk08a1jPJ9U3MAAeA2upAzwZ1xu0f/ehHMWrUqFKWrXGyO8uhzzfffDrMAaAGZpD9+9//jr/97W+lDZ7lznP298ILL1zW/X7//fdLXM+2dy5ZstBCC3nPAKCKMvmdSe5MeOe632n8+PEx99xzl770kSNHxh/+8IeyP6u2/PGPfyxt70knokE9kgAHaspNN91USqG+/PLLDfu23377Ur4lG+Lnn39+Ofatb32rjFwbNmxYWc9kzJgxTUadAwDV7UDPsue53ncmvHOgWt++fWOzzTYrpdCzcsvbb78d//vf/+Kqq64qHeiZBAcAqrd26IABA8qssZw9NmTIkLIv1/7OmeAff/xxbLPNNrHnnnuWc95555047LDDvF0AMJvjdmM5SC1jdSa1H3vssbIv299ZiS2T4Hm88c9UKqiq2EJrMGe1LwCgsU8//bSMNL/ssstin332KWXXKjPBs5TL5ZdfXmaNHXPMMSUJnuXQswGeye9srAMA1VPpQM8Z37m+WC5nsuiii5aKLVl+LeN3HstR5/lYffXVy7rf55xzTmmAN06gAwCzXqUD/OKLL46bb765DDrPJUqy3PkHH3xQKrTlTPCM47mO6HPPPVcS3zmLLOW64HkuADBrNW4v5yzvfL7MMsvEfvvt1zAIff755y8TybJiSybC85FLljSmzU1r4RsqUBNBu/LvvfbaqwTla6+9tjTA991331hhhRUaSqSuvfbasf7660e3bt1KQ32DDTYoM8dyNBsAUH233HJL/PnPfy6zvL/5zW+Wsuc52zvXAV9zzTVLEjwb4XnOkksuWWaGt2/fvjTgcz8AMHvl7O6nn346Tj755OjRo0e8+OKLcffdd5fBbCkruGQFtuxgzzKqN9xwQ/Ts2bNUcNGJDgCzt2JLThB75pln4pVXXinrevfp0ycOOeSQcjwrsOUSorl06PPPP1/a4zmxDFojCXCg6snvG2+8sZQ3z9lh/fv3j5133rmUaclG9aWXXhq77bZbdO/ePe6///7S8M4Z35n8znNyNFsmxAGA2vDGG2+UAWqZ/B46dGiJ54888kjpXM/KLjnbO2eOZdWXPJ4D2bK0apcuXap96QDQajrRG5c+zUHoGadvvfXWeO+99+Kiiy4qg9S23Xbb0m7PdUVzMFvOBE+///3vS7v9mmuuKZVeAIDZ049+wQUXlGpqP/3pT0uJ8yx7nsuW5CC2gw46qJx7/fXXl8li+++/f2y33Xbl5yr96P8fe3cCZ3O9/3H8QxgzluxGSSOhoYgsuSEhlZtCuS0SSopKdomQfcsSEWUpSyuJNmVudUsSkVsZy5XRYqxZYoZB/o/3995z/mfGzBiznTNnXs/H4zzOnN/vd8785ncc3/P9fj7fz9eAXIQAOAC/l0hdunSp3XLLLRYeHu6y0lSqpX379m42mLLLFfAuWbKke45Knqujrg47jTYAAIE1gC6axb1x40a3fuiXX35pDRs2tAEDBrgqLhpIVxb6FVdcYUOGDLGxY8e6cqsqnaqqL6xDBgBA9g2ie8qX66bZYQpoq8y5Sqe2aNHCJbNt2LDB/vWvf7ljRUFwVW1RsNyzDQAAZB1Pu71r1y7btm2bC3bffPPNbpuSyjV+rr71jBkzXHK5xsxVyUXJ6R70tZEbEQAH4Dcqhaqbyp1rRphmgqnUmsq4aE3Qu+66yypVquQa9hMnTriguDrmZKwBABBYA+i//PKLyz5XElurVq3cmqE7d+50QW5VbylVqpQbLNea4GFhYe65CpQ//fTT7v7vf/87HXIAALKxfKoGy9esWeNmcN96663Wrl07l6gWFxdnxYoVc8ecPHnSLU2mhHSVUvVo2bKla9+TrikKAACyxqpVq1ySufrdviXNtXSJxs2feeYZV/pc7fM999zj2nwtTxYfH2/9+vVjyRLkSgTAAfjN8ePH7fLLL3fB72+//datFfrjjz+6AfIVK1a4YLeyy2vVquV9DsFvAAACawB96tSpLqFNpVPvvvtue+CBB9w636JBdGWpa4bYs88+a6dOnXIdcj1XbbonCA4AALK+7fbM/lJlNSWiq0rL119/7WZ5P/zww3bHHXfY/v37bfr06W5N8IIFC7pEdQ2gq+1WApteQzeC3wAAZE+7LRoj/8c//mFvvfWWm0DWoEED158WteehoaEWHR3t+tvly5d3/XIFv//5z3+6Nl7J6kBuQwAcgN+oHItmjKnx/ve//+2yyJWtdtttt7nb9u3bvWuM+T4HAAAExszvl19+2a0v1qNHD/v5559t8eLFdvjwYbceWcWKFd163wqOa9a3ZpNpPXC15SS0AQCQvTyD6Op7K/F89uzZbnkS/axZ3lrXW0no6pdfffXVLnlNCesdOnRw2z3l0gEAQPb1uT0VWbRU6PDhw117PHPmTFdd7YYbbnBts5LRlZhWoUIF73O01GjXrl2te/fuBL+Ra/HNFYDfKMitBjo2Ntat+3n99de7xlqNvEqskZkGAEDg8S17vnv3bhs3bpzLMhctXfLiiy+6bHUFxZVprvZdnXXdK/jNADoAAP6xbNky+/TTT12FlipVqrhtCnZrgFwB8VmzZln+/PmtdevW7uahxDWC3wAAZG/wW9VavvvuO9fvVgXVnj172ujRo90xTz31lGurNdt73bp1rtpaixYtEs0eL1u2LG8ZcjUC4AD8wrP2p2aIyYEDB1yDXqRIEZd9rjJrWgMcAAAEFnWmV69ebV26dHGlUZV17nHfffe5ewXB1eHu1KmTNW3a1LufAXQAAPzbD//Pf/5je/fudTO/lZwmNWrUcEHwV155xZ577jmXuNa4cWPv86jEBgBA9vAEvydNmuSWIFFlFq37rVLmCnRPnDjRxo4d69pmVVi79tprrX79+i6JTUg4B/4fAXAAfuFbxkUD6UuXLrU333zTZZUrc00NvH6mRCoAAIG1/pjutcaYqreok71x40a77rrrrHjx4t4guNr5oUOHuhJsmgXuwQA6AADZP4NMs8I0s7tt27ZuSRKtAa5lTNTnrlOnjjcI3rFjR4uIiEiU3AYAALLX999/bx9//LG98MIL3nZas781kezZZ5914+ijRo1yffMPP/zQ7r77bu9zqdgC/D8C4AD8To11586d7W9/+5uFhoa6NUPVUSdjDQCAwBpAV8UWPS5Tpoz16tXLrUU2Z84cK126tBtUL1q0qDvunnvuccuZ3HTTTX4+ewAAcnfbrdlhmzdvdkHwwYMHu8osCQkJLolNM77VH1cim+je8zPJ6AAA+IeWC1U7Xq1aNfdYY+RaKlSV1tq0aWOvvfaaq7Y2cuRI16aPGTPG9c21LywsjLcN+J//n4IJAJnY2b7Q45WNrrXHtHaoGnhKpAIAEFgD6DNnznQJa4888ohbd0yefvpp69Chg40fP95loR89etT73ObNm7sZ32rTAQBA9lVt8bTd48aNswkTJtjvv/9uX375pZs5tn//frv11ltdJZd9+/bZ3Llz7ZtvvjnndajaAgBA9rTbSSk5TX3rn3/+OdGs7osvvtgln/tSX1xLmmhJUfreQGIEwAFk2UD59u3b0xQM1/G+jX18fDydbQAAAoCnTVenet68eXbbbbdZ3bp1bfny5d4g+KBBg1wQXGuRKRP9+PHjiV6DAXQAALKPZ8mSRYsW2YoVK9y9qrU89thj9tNPP7nAt28Q/IcffnDBcQAAkL00s9vTbispTWPiUqVKFdcX13Khv/76q/d4bdN64KVKlXKPVd1FNDNcy4kWKVKEtxDwQQAcQKbYtm1booHyxYsXW58+fVxDfiHrimr2mDLUVbYFAAD43z//+U/79NNPXZnU7t27W/369V2Q+/3333elVGXgwIF255132tdff03JNQAA/CBp8rnWD1V51Kuuusr+/e9/u7527969XR9d7fnevXvtlltusSlTprjtAAAge6xbt86OHTvmndmtALba5tatW7ukci0PqrW+3377bXv++edtyZIlrq+tdcA1jq7EdFFFVc+s77Jly/L2AUkQAAeQYdOnT7fHH388Udm03bt3W3h4uBUoUCDNwW+tTTZs2DBr2LChhYSE8M4AABAAA+i//fabyzCvUaOGRUdHu5lkTz31lCuH/t5779nYsWNdez5q1Ci3T+16cmXcAABA1pc9X7NmjUsoV/t94MABO3LkiL311lvWpEkT69ixoxtc16xvJa599dVXVrt2bZYsAQAgm2jpEVVQU6K5KNF8/vz51qJFC6tcubJNmzbNJk+e7JLUZsyYYXv27LHhw4e7imueWeG+S41RcQ1I2X9TTAAgA6pWrWqXXXaZyxx/4oknXABbGWhhYWGJjvMMhnsC3kmD32rINfu7adOmvB8AAPh5AF1t8+WXX+461LpXx1ulVNXuP/DAAxYTE+PafnXWtT6ZpyS6b/sOAACybxkyzSDTTG8NmKs6i/rlW7ZscWVVFfhWonloaKi1atXKypQp49YM9WAAHQCArPfQQw+5yiwKaith7ccff7QXXnjBGjRo4PZPnTrVJa6pX61x9htuuMFVbVGbrslm6murmotn9jiAlPEpAZBhN998s+tIa21QNdjFihWzSy65xF5//XWXfa7HkZGRiQbDkwa/FfjWwLmy2wAAQPbzbZuVVa7M84ULF9oVV1zhyp4nJCS4NUL79u1rBQsWdI/VGdf6oddee617HoFvAACylyf4/dFHH9nPP/9sI0eOdMlqmhmmoPbQoUPtjz/+sDp16rjjoqKiXFWXHj16uMee4wAAQNbyBK6VSK52WG201vRWgrmHqq2Jyp+rjf/HP/5hFSpUSJT4RvAbSBsC4AAyJdO8cePG7udZs2bZuHHjXAf68OHDrtHWccpQK1eunFvD5I477rCrr77aO8BO8BsAAP+357pX+/3ZZ5/ZBx984ALbarc964l9/vnnFhcXZ+XLl3fHqs1XIFylUxX4ZgAdAIDsoVndansV6JatW7e6cqlaikylzX0pkU1rjWpG+O+//+6qtmidUQ+C3wAAZE/CuQLXniC4JpGpbX733XfdUmPVqlXzVlPVeLr66KrsovH0e++91/s6nrF4AOfHpwVAhoPfyjJXGVTN/urZs6ebDb5p0ya77777XKnUmTNnuhliogZds8Hltddes/Hjx9uYMWOY+Q0AgB/8+uuvbsD81KlTbgBcJVKVnPbdd9+5NtuXktlUek1l2G677Tb33Oeff94NwHuC5wAAIOupdGr79u1dW/zhhx+6Gd5du3a1okWLurKp4mmXb7zxRtdX13rgKnuuGWUaePesHQoAALKW+sueamnx8fH2yy+/uJ81Jq6+9aRJk+zTTz91+zyefPJJGzFihLVr1463B0inPGc9i/ICQDpKpKpkyyeffOKyyDUDTAFtZZcr6K21QjUbvG7duue8xqFDh2zYsGGufPrtt9/OtQcAwA80cP7II49YRESEGxRv2LChK6+m2d0qd967d2+7//77vcevXbvWNm7caAUKFLAHH3wwUQY7AADIHkpIe+6559ySY0pi073aYgXDVQK9WbNmNnHiRO/xWrZEbbcHbTcAANk/iUzj5aq4tmvXLlf+vGXLlm67yqGr/62x8hYtWlhoaGii16DaGpA+BMABpLvRnjNnjs2dO9d1rBUQV5kWrSUm6oDPnj3bTpw44TLRb7rppnNe6/jx41aoUCHeAQAA/EQD4Epk0yD6kSNH7PXXX7datWq52d9qx//zn/+4QHdKWed0xAEA8A/1w1955RW3dujixYutSpUqduzYMVu5cqWbMaYBdCWoJw14+ya0AwCA7KHKa6rCoopqpUuXtvr167slxTwJan369LEvvvjC+vXrZ23atEmUuAYgfSiBDiBN1KF2/2n8L/itLPNvvvnGOnToYA0aNLDrr7/eG/xesmSJK4Peq1cvt1aoMtuSQ/AbAAD/r0GmQXDda23vGTNmuAQ1LVfy8MMP25VXXmkLFiywd955J9nXoOw5AAD+SUxXP/zVV191A+jql2sZMgXDb7nlFhsyZIitWrXKVXkR30otBL8BAMhe27Ztc+2yguCqsKakNVVt0fKhXbp0se3bt7vlxapXr24ff/wxwW8gkxAAB3Be6lSvXr060Rphf/75p23ZssXN+hbffSqPqmx0BcTV8Vb5FgAAEFg8A+DqZGvd7549e9ru3bvdWmNae+zqq692nfHKlSu7JU+ioqL8fcoAAOB/iek33HCDC34PGjTIrfGtymtaG1xBcK0nqplkCpTrBgAA/Nv31mQxVUpVgFtLjS1atMj1tVV1bcKECd4xeFVcBZA5KIEO4LwU7FagW7O8VNpcmeae9UliYmJcGfRSpUp5y6pNmjTJduzYYS+++GKypdMBAEDgOXnypL3//vuuXQ8PD3frk6ns2rfffuuqvjz++OPM+AYAIADt2bPHJZ5v2LDBrQGuwXQtaaJKbRp0pz8OAIB/x9Zbt27tqrAp6fyee+6x5s2bW6NGjWzevHm2fv16N56uILnQbgOZgwA4gBQpwK1MtEcffdQNgGsW+IABA6xVq1buXsHwMWPG2KWXXmqjR4+24sWLu5ng3bp1c9uGDh3K1QUAIAfwrAeakJDgguBaU1TJb+qAa/1vddaFNb8BAAhMe/fudcHvzz//3CpWrGjvvvuuS1xjzW8AAPzHE8w+cuSIbdy40S677DKrVKmSd7+WMdFjKqgCmY8AOIAUjR8/3pVe6devn3Xs2NEOHTrk1gZVifMWLVq4EqnLly93M8XU2VbJ8/3797v1wdXZ1mxwOtsAAOS8IPjKlStdabbDhw/b/PnzLX/+/P4+PQAAkAY//PCDVatWzQW/mUEGAID/+SaSe9YDV//7u+++s3379tmyZcsYRweyAAFwAKl66aWXbOrUqW79MK0DqoFwlUT94osv7Pbbb7cnnnjCfv31V1uxYoUdPXrUlULv1KmTa7SZJQYAQM7im7imQXP9rJtnmRMAAJD1MiNwTdsNAEDg0XKimmxWqFAhK1eunI0YMcL1tWm3gcxHABzAeTvbWst72rRpLgj+yCOPuJngCowrCH7LLbdYr169znkNgt8AAORczBgDAMD/bfD27dtdWdS0BMN9k9ji4+MtNDQ0y88VAABcOFVd03KjHgS/gazBNA4AKXa2T5w44QLZjz/+uFsDdOLEia5DrZngjz32mPv5n//8pwuIDx8+PNHreMq6AACAwApiny9JTQPonuepykvZsmUTdc4BAEDmU0nUKlWqeNvgxYsX2xtvvGHvvPPOedth3+D30qVL7ccff7QBAwa4fjwAAAgcarOTVlej2hqQNQiAA0h2wHv27Nm2YcMG27Fjh5vh/eCDD7rstOeff94dp5ngCoKr7HlcXBxrfQMAEKDBb7XnR44ccet4161b1w2G+w6U+/LdvmDBArcWuNp+BcEBAEDWmD59ur333nuuDOr111/vtu3evdvCw8MvKPitgPno0aNtypQpBL8BAAjAhHMh4RzIHgTAAXh5Os1a81sd5549e9pVV11lYWFhrtPdvXt370xwNdQPP/ywPfPMM26/npvSYDoAAPBPQtvYsWNdEFtVXRQAL1q0qM2YMcMqVKhwTsfctx1/88033eC5BuIJfgMAkLWqVq1ql112mWt7n3jiCWvYsKFrt9XXTtrGi6e9Thr8Vl99woQJ1rRpU94yAACyCAnnQM5AABxAIjExMW5t73Hjxlnjxo0T7Vu9erVb81udbHWqy5QpY61atXL7WCsUAAD/8x0I/+yzz9xSJZrBrTZbbbxmmD3wwAOuPGqpUqW8xycdQFc7P2bMGGvRooWf/yIAAILfzTff7JLN582bZy+88IIVK1bMLrnkEnv99ddtzZo17nFkZGSihPPk2m7N/lafHQAAZA0SzoGcgwA4gEROnjxpu3btctnmHqdPn7YDBw64oLhKn2sN8OLFi9ttt93mPSa5ki8AACB7eQbCV61aZR9//LFdc801Vrt2bbetfPnyrpRqv379bPjw4TZ58mQ3AzylAXSC3wAAZC3fRHIloOvnWbNmub632ujDhw/bU0895Y5TG16uXDmrWLGi3XHHHXb11Vd7q7YQ/AYAIOuRcA7kLESsACSiAXBllysIfurUKbctX758rrOtoPj27dvdtrvuusttV3AcAAAEToc8Li7OFi9ebJ988on9/vvvifZfeeWVbpbZzp07LT4+3m1LWjqV2WMAAGRv8Pvnn392lVquvfZatxSZZoNv2rTJ7rvvPluxYoXNnDnTbrjhBndsdHS0mw0ur732mo0fP95VbWHmNwAA2Zdw/sEHH3gTzpVsruVLRo4caSVLlnQJ51pyLKVqayScA9mDGeAAEqlSpYpdd911bu0xlVxTJ1uZ5xpML1iwoF166aWJ/xPJx38jAAAEygC6ftZ6oZ41QL/++ms3M6xt27be6i5aYzTpmqLqvHtmhTOADgBA9pVPVd9bSWtHjx51g+gKaHfs2NH1wbU8WcuWLa1u3bru5uvQoUP23Xff2XPPPUfVFgAAsqn9ViK5Es7Xr19v1apVSzbh/KOPPnLHFS5cmIRzwI/ynNWnFgB8BtD130K3bt1cZ1prfGuNUDXqKoOuNUMJegMAEBh8s8kVxNbsserVq1uTJk3syJEjNnToUPvjjz9cJ7xNmzZ2/PhxGzBggF188cVuwF3PVcWXd955x2WtN2rUyN9/EgAAuSZxbc6cOTZ37lyXuKY2WQlqNWrUcPu09vfs2bPtxIkT1rVrV7vpppvOeS2164UKFcr2vwEAgNzYbmtWtyaKqY/tSTjv3r17ooRzVW5ZuHCha+MVAPf01bUUGQnnQPYiAA4gxYF0NcpbtmxxmeeXX365G0RXY+5p7AEAQGBQm60BdFVv0TImjz/+uD355JNudphmdqtjrnKqV111lWvHZ8yY4R57OvNa0oQENwAAso5mi91///3ex0pA06C5KrA99thjiY5dsmSJW+tbbfOzzz5rNWvWdO05AADIPiScAzkbAXAAqWa2qVOuxr5AgQLuMQPkAAAEVlut7PMePXpY79697YorrnDZ5SNGjHDVXJ566ik3E1xrjH3zzTeuRGr//v1dQltCQoK3fQcAAFnn1VdftW+//dZeeOEFbzK52u8777zTHnnkEXvwwQcTJZqrrf7tt99c0FyV2WrVquVt9wEAQPYi4RzImfj2DODc/xj+VwZdlHHuGRzXNmaHAQAQOMFvBbU3bdrkSqtFRkZasWLFrH379jZo0CCbOXOmTZ061ZU7f+aZZ9zguZY0ef31112CG8FvAACyh0qjeoLfKm0uJUqUcG2zliHRcmPap4RzCQ8Pt+LFi7ufNUNc7b7afwAAkPV821wlrCkZTclsb775pqvM8uKLL7q+ttrqYcOGuSXIVFFVFVRfeuklV21NCeeefjvj6YB/EAAHcgFPMPtCqNH2LfMSHx/v/RkAAPiH2mZPJ3rs2LGuzLlmen/++ee2evVq73EdOnSwwYMH28svv2wjR450QXAtZVKpUiWbP3++67gDAICspQot06ZNcwPhCnCrrdYaoOPGjXP777vvPnevwXQtW6IBcs0E11JkZcqUSfRazAAHACDrkXAOBI98/j4BANnXaJ84ccJ1pjV4rplivgHupHz3LV261HXGH3jgAddxBwAA/m3TNTCuQfRZs2bZwYMHbfbs2bZgwQI3cK7sc1G7HRcXZ5999pmb8a3sdM0Ef/755+3GG2/kLQQAIIuVL1/ezQQrUqSIdezY0VVrufXWW+2rr76ysLAwl8jWpUsXmzt3rrVs2dJq1Khh+/fvd+32jBkz3Guk1m8HAABZl3C+ZMkS+/PPP91j9b+bN2/uTThX26xjtF/J50o4HzVqlEs412uoPw7AvwiAA7lkoHzOnDmuRKoGzCMiIuwf//iHt9FOyreDrRliKuWi0i4EvwEAyH4qZd66dWsrV66ct23+9NNP7dprr7XatWu7bUWLFnXrkqmzLZ4geNeuXd3aomrXNZiucqtaH5xZZAAAZD2t5a02WjO+Vd5cwe4nnnjCzQb/4IMPXPusxyqFvmLFCjt69KjVrVvXOnXq5J0N7lkXHAAAZB0SzoHgk+dsemojA8hRJk2aZG+//bb17t3bQkNDXTnUbdu22ZdffmmlSpVKMfj9xhtv2IQJE2zMmDHWokULP509AAC5lwbHP/74Yxfc9gyEKyCu2d5XXHGFW8/bY+3ate64QoUKuUS3W265xbuP2WMAAPhnEF2UUK5S6H369HGJaaqwppnhX3zxhWuve/Xqdc5rEPwGAMB/Ced6rORx3752wYIFXZKaJ+Hct6+thPP8+fOf8x0AgP/wSQSC3NatW13pU3W227VrZ8WKFbPdu3fbxIkTLSYmxu1PLfg9evRogt8AAPjJ3//+d5s6daoLfv/zn/+0PXv2uFndmkG2ceNG1wn3qF+/vkt2+/XXX23dunWJXofSqQAA+GcZsuPHj9vjjz9uffv2dcuQvPLKK25Zkscee8wNoKt9HzJkyDmvw8xvAACyPuF88+bNVrp0aW/ymZYi+eGHH+w///lPor62ktXUrisZfeXKlYn62hpTV/BbCH4DgYMS6ECQSZplprU/1eHWWmKrVq2yfv36uY63sswHDhxoF198sbv37WAr080T/PadPQYAALKPJzFN7bqWMdHg+N/+9jfX8X7ooYdcKVUFx9V+9+jRwz2nXr16NmXKFKtatSpvFQAAflw7dPbs2bZhwwbbsWOHa7sffPBBS0hIcEFwHaeZ4AqCq+y5+u1UawEAIPsTzm+77TbXdishTf1oJZxrGVC110o491Rp8SSca71vJZz7jpmTcA4EJgLgQJDxdLbfeust1xCrwVYGmrLTZsyY4dYgu++++9wxf/zxh+tk+2aWL1682MaPH+9ulD0HAMB/fDvRNWvWtM6dO9t7771nL7zwggt4P/roo26fguBq/7WGqFSrVs3dUzoVAAD/tN1qm1VVrWfPnnbVVVdZWFiYFShQwLp37+766KrIprb74Ycftmeeecbt98wgYxAdAICsR8I5EPwIgANB6JdffnFrjJ08edI6dOhg4eHhbkb3U0895Q1+x8fHu7ItWj/UIzY21lavXs2a3wAABGB1Fw2S6/6dd95JFATXNmWmly1b1i134kHpVAAAsp+WGtPa3uPGjbPGjRsn2qf+thLVNeiuPnqZMmWsVatWbh9rhgIAkH1IOAeCHwFwIIdLLkP8kksusWuuucaVPFcAfMSIEdanTx97++233WC4Ms//9a9/uVJrKuviUa5cOXvuueesVKlSfvhLAABAchTg9gyKaxa4+AbBtR64gt+33347FxAAAD9TIvquXbu8a4GKli05cOCAC4qr9Lnabq0DrrKrHqwZCgBA9iPhHAhe/79QMIAcKbnyaPny5XPrk2zevNmWLFliFSpUsJdeesmVT122bJl9+OGHVrp0aVu6dKk7ViVSFUgXgt8AAARuEFwUBNdM7x9//NFGjhxphw8fttatW7s2XQPsAADAv330YsWKuSD4qVOn3Da10arMpqD49u3b3ba77rqLthsAgADra999993273//2yWc79271yWtjR071tq0aePvUwVwgZgBDuRQw4YNs5tvvtluuOEG91iB7cKFC9tNN93kZnlfeuml1rx5c/v666/tzjvvtJIlS7ryqFr3OzQ01N1EA+XqjAMAgJwzE7xTp0527NgxV2ZVM8g8aNMBAPCvKlWq2HXXXWdTpkxx1dnUZ1cfPS4uzgoWLOj66r5ouwEACKyqa0pm06QyJZwPHz7cJZwL4+hAzpLnrGfaJ4AcY8eOHTZnzhxXrlwZ5H/++acLcuvniy++2Pr372+RkZHuuPvvv98WL15sNWrUSFP5dAAAENh81wj1tOWsGwoAgP952mO1z926dbPvvvvOrfGtSmvr1693ZdA9ldgAAEBg8e1XT58+3SWcjx8/nmVKgByKADiQwyQkJLg1vFVKTQFvrQGqcuYNGjSwTZs22ezZs11JNWWVK2Pto48+cs8bNWqUyzYHAACBI73JaL6Z55oJriowAAAgsNp2VWHbsmWLm/19+eWX29ChQ10/XsuQaVY4AAAILCScA8GDADiQg+zevdtliz/00EMWFhbmOtH33Xef60Aru7xZs2buuKioKLdWyfz5892AuI5bvny5XXbZZf7+EwAAQDId6xMnTrjBcA2aq+1OLTDuu0/fCw4dOmQPPPCAhYSEcG0BAAiwNl7J62q7lcgulE8FACB7kHAO5G4EwIEcRJnjffv2tVq1arlO8+23327FihWzCRMmuJnhCoarvJrHf/7zH/v4449t27ZtLvOcDHMAAAJvYFzLmqiKi9r5iIgI+8c//mHNmzc/bwf+zTfftGHDhtmLL75oTZs2zdbzBwAAqfO02b5tN8uQAQCQPUg4B0AAHMhhDfdrr71mL7/8sh08eNBeffVVq1+/vpvtrSC49rdv395atmzpfY5vdjll1gAACCyTJk2yt99+23r37m2hoaGujVfi2pdffunWC/XlO2j+xhtvuLZ/zJgx1qJFCz+dPQAAuUN6A9e+z4uPj3dtPQAAyFoknAOQ/047ARDQ1Gn2NNwqi6qgdoUKFWzZsmWu7GmNGjWsX79+bv/ixYu9636LJ/gtzAAHACBwbN261T777DObNm2atWvXzlV10XInEydOtJiYGLc/teD36NGjCX4DAJDF1Bf3tMFasuT48eN27Ngxb/uckqRLlqivfvLkSd4vAACymKfamhLOX3nlFWvUqJH16NHD9u7da08++aQdOHAg1XZbfe7x48fb1KlTqbYG5GAEwIEc0tn2NNzXXnutLVmyxDp27Gg//vijjRo1yg4fPuwNgivIrcZ5zZo1/j51AACQpE33FRcX5wbR1YavWrXKdcR79uxpt9xyiytvrpnhqt6im2/Zc0/wW8cBAIDsm0HWv39/a9OmjavcorY7pVnhSZcsGTRokFWsWNFCQkJ4uwAAyAYknAMgAA7kkM62Sp8rU02D3poVdu+997r1vrdv3+4GwZWBrgH0Pn362N/+9jerV6+ev08fAAD48LTpb731lh05csQNgufPn98WLFhgAwYMcIPqWspE1Vv++OMPl+CmxDZPBRfNHFPJc90IfgMAkPWYQQYAQM5AwjmApAiAAzmgsz158mSbNWuWVa5c2S699FI7deqUGwzv3LmztW7d2n766Sd76qmnXPlUlXIZMmSI268ZYwAAIHD88ssv9uKLL9ry5cutWrVqFh4e7pLbunTpYvfdd593jVCVWL3iiiu8z4uNjbXVq1ez5jcAANmMGWQAAAQ+Es4BJPX/iwMDCNjO9sqVK23cuHHWsGHDRKXUoqOjXRC8QIEC9sUXX7iGvkmTJt7nsuY3AAD+49tme1xyySV2zTXXuLKpHTp0sBEjRrjqLSp3rnZbbfq//vUvO3r0qHXt2tX7vHLlytlzzz1npUqV8sNfAgBA7qzEltySJVp6rG/fvq4ay8CBA+3iiy929759cJYsAQDAfwnnJ0+edP1tT8K5Jo6RcA7kPgTAgQAfLD9w4IAdOnTIzf72pZlg6nSro61yqZoJHhYW5p57+vRpVz4VAAD4T3Lrgqp97tWrl1vKZMmSJXbXXXfZSy+9ZCNHjrRly5ZZ4cKF3RqhqvyiY1XNRYPwei2C3wAAZO8MMgW5fZcsmTFjhluyxDOIriVL1If3TT7XkiXjx493txYtWvCWAQCQBUg4B3A+lEAHAizT3DNYrkw1KV26tOtsf/311+6xZ79miCnQvX//fve4UKFCbp8af4LfAAD4z7Bhw1y5cg8FtjVjzLM0iZYzad68uWvb1ZaXLFnSLXeycOFCe/XVV13VF7X92qcB9eQC6QAAIOuwZAkAADk34Xzz5s0u4bxChQou4bxmzZquX/7hhx+6sfalS5d6E841li4knAPBJ89ZzyccQMCUWVOm+bp161yZlqZNm9oLL7zgBsBVuuXGG290xyQkJFjHjh3d7O/bb7+ddw8AgACwY8cOmzNnjitXriD2n3/+aXfeeaf7WSVSNWssMjLSHXf//fe7WWIqqZqWbHYAAJD5kmtzlYTWs2dP144rOU0BcS1ZcvDgQVfFxbNkiRLS33333URJ6KrixiA6AABZl3B+88032w033OAeeyqp3XTTTW78/MSJE64/rrFzJZd72mhVbQkNDXU3T1vPJDIguBEABwKMGmatF1a3bl378ssv7bbbbnNZau+8844VLVrUDZJfffXVLkiu0ujKWGOtbwAA/E8dbA2Inzp1ygW81XYru7xBgwa2adMmmz17tm3fvt3NAO/cubN99NFH7nmjRo2yggUL+vv0AQCADyWrKdj99NNPuyVLFPzWkiVbt271Llmix2rzfZcsAQAAWYOEcwAXggA4EEAWLVrkyrJogFyzwxQIHzp0qJs5VqdOHYuOjnYlVTWDrGzZsjZp0iRvZ5sgOAAA/rN7926XlPbQQw9ZWFiYxcXFufVB1U5369bNmjVr5o6Lioqyf//73zZ//nw3eK7jli9fbpdddhlvHwAA2YgZZAAA5BwknAO4UP9fowmA3/3444/Wtm1bF/zesGGDC4D37dvXXn75ZYuPj3ezxVQ6VZnlGlBXdjnlWgAA8L+jR4/axx9/bHv37nVts5YnGT16tE2YMMGVRFegu1WrVi4Qrpt+1vHbtm2zSy65xN+nDwBArptBpoH0evXquccqda6lx9TPVkK6Z8kSJbNpyRItP+ZZsqREiRKJyqdTPhUAgOxPOF+wYIFrt9X/Vh9b1VQ9CedatsSTcK7lSkg4B3InZoADAULrk7Rr186VPH/wwQdt/PjxVqxYMevdu7d3JniVKlWsa9eu3jW/WR8UAIDA8Ndff9lrr73mktZUIlXrhdavX991vhUE1/727dtby5Ytvc/xTWKjmgsAANmDGWQAAOQsW7ZscZPEatWq5U0417i5+tpq15WwpiRzj//85z/ehPPJkydTORXIpZgBDgQIrf05YsQIN0CudUJjYmLs8ccf9wbHlcV23XXXuQC5B+uLAQDgX0pG003VWZRhrs54hQoVbNmyZS5xTbPF+vXr5zrmixcvdm23py33nTHGUiYAAGQ9ZpABAJDzqG999913exPOW7dubdWrV3cTx9TXfuONN1yf2pNwfuWVV9pjjz1GwjmQy+X19wkA+H81a9a02rVruww1DYpr5pgC4l9//bU1atTIevbs6RpzzRIDAAD+pTZaAW0Fv+Xaa6+1JUuWuDKpWtZk1KhRdvjwYW8QXG341KlTbc2aNbx1AAD4ccmSMWPG2MCBA23jxo1uyRIlsWnJkhUrVrjjVEq1V69erl3XrDL1x1myBACA7KVkc/W7k0s4P3TokLevrf1KOP/oo4+8zyXhHAAl0IEAtHDhQhs3bpzdc889Fh0d7dYj0zonargpew4AgP95OuGi0ufr16+3kydPWocOHaxBgwZuEP2DDz6wqlWr2pAhQ1xnXeXQ1VEfNGgQM74BAPBT+82SJQAA5Kw+t6esuSqofvHFF27Gt/ragwcPdqXQ1dd+/vnnbe/evW4ZUfXJAYAZ4EAAUrmWBx54wK1Tctlll7mscwW/NfObsucAAPifpyOu9cRmzZpllStXtksvvdROnTrlgtudO3d2Zdl++ukne+qpp6xdu3auM65gONVcAADIXswgAwAg5yac9+jRw5U615Kh9957r1vve/v27a6Ky7Fjx9xM8D59+tjf/vY3q1evnr9PH0CAYAY4EMA0iJ4/f373s0q8+JZuAQAA/rV161YX3FbWecOGDRNVaVEGujrhixYtchnqR44ccRVePO06AADIHswgAwAgZ1LC+TvvvOOC3ip5riVJbrrpJjdmrv619oWHh7slTrp27Wo333yze54mkSnxHEDuRjQNCGCeQXINqBP8BgDAv5IuQ3LgwAHXCdfsb1+xsbHWt29ft7Zo+/bt3UzwsLAw91wS2gAACIwlSzSYfvz4cbdkiWaQqUqLZwaZlixhBhkAAP5NOF+5cqVbJjRpwrmWDFXVtQIFCriEc7X1TZo08T6X4DcAoQQ6kANQ9hwAAP8PoHvaYw2cS+nSpV2y2tdff+0ee/arE65A9/79+93jQoUKuX0ktAEAkL1YsgQAgJxB/WVf50s4/+yzz1zCuWaJa01w9c3VDwcAD2aAAwAAAGmcPfbWW2/ZunXrXJm1pk2bus64Zo6VKFHCbrzxRndMkSJFrGzZsm7Wty8S2gAAyH7MIAMAIOf0uZVwHhISkijhvE2bNqkmnAsJ5wCSIgAOAAAApMLTEVfptTfffNPq1q3rgt67d+92649p3bGXX37Z1q5da1dffbULksfFxdltt93GdQUAIJuxZAkAADkHCecAsgoBcAAAAOA8Fi1aZO+//767j4yMdIHwoUOHWr58+dw6olqDLCoqyq0tqtnfCohr3bEzZ86w/hgAANmEGWQAAOQsJJwDyCoEwAEAAIDz+PHHH61t27Yu+L1hwwYXANe6Ywp0x8fHW+fOna1///6u864ybSrPprJsCpADAICsxwwyAAByJhLOAWQFRuQAAACAVJw4ccIFwFXS/NixY7Zs2TJr2LChdenSxa33rZngMTEx1rVrV7v99tvdc1h/DACA7MUMMgAAciYSzgFkBQLgAAAAQCoKFixoI0aMcDPLNm3a5ILdjz/+uDc4rjXBr7vuukRrfmsGOAAAyF7MIAMAIGch4RxAViEADgAAAJxHzZo1XVD72WefdWXN69ev7wLiX3/9tTVq1MjN/hbW/AYAwH+YQQYAQM5CwjmArEIAHAAAADgPz4zuqlWruhLoI0eOtOjoaPvzzz/toYce8pY9v+iii7iWAAD4ATPIAADImUg4B5AVCIADAAAAadSyZUv7/fff7aeffrLLLrvMlUbXjHBmfgMA4F/MIAMAIGci4RxAVshzVlNVAAAAAKTZqVOnLH/+/O7n06dPuyA4AADwLw1xeZYsUcLa3Llz3ZIl3bp1s+uuu44lSwAACGB//PGHvfzyyy7h/JJLLnEJ5+p3k3AOID0IgAMAAAAZHGgHAACBY+HChTZu3Di75557vEuWLF261CWs0XYDABDYSDgHkBmYqgIAAACkE8FvAAACD0uWAACQc3mqrSlpjWprANKLGeAAAAAAAAAIOswgAwAAAHInAuAAAAAAAAAIWpQ9BwAAAHKXvP4+AQAAAAAAACCrsGQJAAAAkLsQAAcAAAAAAAAAAAAABAUC4AAAAAAAAAAAAACAoEAAHAAAAAAAAAAAAAAQFAiAAwAAAAAAAAAAAACCAgFwAAAAAAAAAAAAAEBQIAAOAAAAAAAAAAAAAAgKBMABAAAAAAAAAAAAAEGBADgAAAAAAAAAAAAAICgQAAcAAAAAAAAAAAAABAUC4AAAAAAAAAAAAACAoEAAHAAAAAAAAAAAAAAQFAiAAwAAAAAAAAAAAACCAgFwAAAAAAAAAAAAAEBQIAAOAAAAAAAAAAAAAAgKBMABAAAAAAAAAAAAAEGBADgAAAAAAAAAAAAAICgQAAcAAAAAAAAAAAAABAUC4AAAAAAAAAAAAACAoEAAHAAAAAAAAAAAAAAQFAiAAwAAAAAAAAAAAACCAgFwAAAAAAAAAAAAAEBQIAAOAAAAAAAAAAAAAAgKBMCBTHb27FmuKQAAuRDfAbjOAIDARlvNtQcA5Hy05wDSggA4kEmOHj1q/fv3t/Xr13u3dejQwd0CUdWqVW3atGnu57Vr17rHuk+LCz0+vZYuXep+z2+//WaBIhDPCQDgX4H0HUDtk9optVeBomnTpvb0009nyXVOC/1unQMAIPcKpLY6p/TXM7P9nDFjhs2ZM+eCnkPfGwAQyO15IPa9M0N2jfsD2SFftvwWIBeIjo629957z+666y7vtqFDh1pOUL16dXvzzTftyiuv9PepBLwmTZq4a1WmTBl/nwoAIEAE0ncAtU9qpypUqGC54ToDAJDeNoT+evaZOnWqPfHEE9n4GwEAwSiQ2vNg7XsTJ0AwIQAOZKGcElAuXLiwXXvttf4+jRyhRIkS7gYAQCB+ByhQoABtOgAAaUB/HQCAnI++d+YiToBgQgl04H9OnDhhzz//vLVo0cKuvvpqq127tnXu3Nlllnl88cUXdu+997qB5YYNG9qQIUNc6RWVBHnwwQfdMbr3lF3xLcHy0EMPWdu2bc+53t27d7c77rjD+1glXB544AGrWbOm1atXzwYMGGB//PHHBb9Px44dsxEjRlijRo3c+Soz7vPPP09zaZPvv//enbOuw/XXX2+9e/e2vXv3Jvv8hIQEd2z9+vUTXa/z0d/Vp08fu+GGG+yaa66xO++805YtW3bOcZs2bXLXXcdoBvYrr7ySaP+ff/5pY8aMsebNm7tjbr/9dnvnnXcSHaPSbZMnT7bRo0db3bp13bmqZM7hw4cTlXjT+6Xn3nTTTVarVi3r2LGjbdmyJcUybHpOp06dbMmSJXbLLbe4fzv6O/71r38l+v0bN2609u3bu/dCf8Orr77qnpcZJWEBABkTTN8BkpZh073aRr22vgvoZ7VX//znP+3nn3927Zx+380332wffPDBOe2d2uA2bdpYjRo1rFWrVvbxxx9bepw6dcrGjx/v2nxdQ12TXbt2JTpm9erVdv/999t1113n2ml9R4iNjXX7UrrOsmrVKnd99bfp9UeOHGlxcXHpOk8AQGAKprY6p/TXfb8T6LuD2lldC11nXzExMdajRw9vG69r+t1333n369xl+vTp3p9l27Zt9uijj7q/QbfHH3/cfv311ws+PwBAzhFM7Xkg9r3Pd31XrFjhfpfaYF/qU2v75s2bk/3eof3qq2usXK9766232qJFiy74/IDsRgAc+B8FQxXE7Nq1q82dO9cGDhxo27dvd4OvZ8+etc8++8x1zkqWLGlTpkyxvn37uv/8e/Xq5UqDqDEW3SdXekWN7E8//ZRosFeNtwKlCpjKunXrXFC0YMGC7nc888wz9u2337pGXQ1YWp05c8Y1+GrUdM5ab+uKK65wHcq0rJupxk5fAk6ePOkGq5977jn78ccf7eGHH7bTp08nOlaPdQ20X9ctMjIyzefZr18/27Fjh3v9l19+2apVq+a+cHzzzTeJjhs2bJj9/e9/t9mzZ7uGdsKECe79EF0XNcD6W7t06eL+Vg2cDxo0yF566aVEr7N48WLbsGGDC5brfdUXKl0fvb8e+kKgQLnKs+n3HDp0yF2Lffv2pfh36G/Xembq9L/44ot20UUX2ZNPPmlHjhxx+/U36n2VSZMmuX36W3wHBQAA/hNM3wGSo7Zaf4sGEWbOnGmhoaHub3jsscdcUpbaS5VvUxu8Z8+eRM/V392sWTM3aF2xYkXr2bPnOQPfafHhhx+6azp27Fh3jdR26vp5KAFO313KlSvn2kq9B0oeu+eee+zgwYMpXme1//p+o+85aoPVfi9fvtwNcPi27wCAnC2Y2uqc0l8XJaKp7/rUU0+5Ncnz5Mnj+r1qm+U///mPCzQoCDB48GCbOHGiO0aD/Lo2ovKwcvfdd3t/3rlzp/teotcZN26cjRo1ygW/77vvPu9rAwCCTzC154HY9z7f9dXksbCwsEQBeHn//fetcuXKbmw+KSXo6TuKrr++s+j7wGWXXWbDhw93QXsgkFECHfhfRvTx48ddh61ly5bumij7S1nZGqg9cOCA+89dnUU1QurQecqMai0rNY6eciu6T670ijKv1DFVg6JGQz755BPX+dWMZVGGlhq4WbNmuSCqKDNMwV81XppBnBZq1NUAaSBYDZsoK1wdSgWX69Spk+rz1RgXK1bMNZQhISFumxpnNZZqND3++usvN4NZGWHz5s1zDeGF0JcLXQvPOeqa6/fquvpSNrs6wqLsv08//dT9HZqlrSw5Za298cYbLjguyqLXFw41yvrCodeUvHnzuvMsUqSIe6xS5vr9X375pTVu3Ng7m1x/v+caKetO5/faa6+5LyzJ0XN0Hp41X/RFQgMSOkdl+un91O/UzHV98RENcOjcAAD+FWzfAZKj9lod7nbt2nkHADSAoMFpZYOL2illqWuAPDw83PtcZdJ7zlntqzLS9f3ixhtvvKBzKFu2rGuX8+fP7x5rQEIDArrOajc1YK7sfl0HD2Wr6z1Rkpk68kmvszrwep7OS/ceERERbkBDgwUaZAAA5GzB1lbnlP665zV0npUqVXKP9fvUxmoGumeQXtdZ/WWVTBW1vbpmCs6ruppnuTV9v/D8rOepbzx//nzv8xo0aOCuh/rNCgwAAIJLsLXngdb3Tsv1LV26tBurVoK6JyFdz1Higed3J6VkN52LJpt5aAxelWX0HUPXDghUzAAH/teQanBVjYPKhqnTqYCqZ5axGhBlWasz5ml8RcevXLnSSpUqdd7rqMFdPV8NjIeyrdTJ06BwfHy86wSrUdOArgK4uimjSp1NlQVNK80s1gCzyn57P+x587q/STOj0vJ8BYQ9nWlPw6aSLb4Z4xpsVta6MuRU1uVCqaHUFxtlkL/99tuuIVZHVwPevnwHANRJ1vXWFwhPEP3SSy/1Br99M/6UEe+biabr4Ql+ex7ny5fPZf55lC9fPtHv00CCXtv3mKQUSPcEv8Xz5UXvqejfk66nJ/gtek2dNwDAv4LtO0BKfNtJZdOLb0fVkyzmaV891NH10N+vcm3//ve/LzgzXgllnuC3p731/D7NAtu/f793QMJDbavO2zODLCmVkVPWvNpzzzXTTUudaDA9M64bAMD/gq2tzin9dSlevLg3+O3bfisJXNRGKzHdE8QW9bEVRNDAvgbVk6P3UIPymn3nuZZ6DfXFv/7663SdKwAgsAVbex5ofe+0XF/RTPhffvnFvbZERUW5fb4l4n2p4qoC6GrT1bbr2ip5wPc1gUDFDHDgfzQLWOtDazC1UKFCdtVVV7lGUzS4qkbR02illxoYleXUmtJqtJUlpd/pafSUJaZS4Lol5du5PR+ta63GVJ3o9NDz0/K3asBag8xaz1olSvVF4kKo1Liy1z/66CP3RUbn+7e//c2VUPENDvsGjkXHecqaqsy4steS8nwp8v0ykfT89Drq0HtKlSd3jOhaqHxOSpKen+dLmt5P0RoyyV3PtHxxAwBkvWD6DpAS34HplNqv5CgRzJeug66HzlmD1mnluZ4enu8o+rv1vSOldlHbNAiSHM/zlOGvW1KpLV8CAMhZgqmtzin99eTa76R9XfWlU2q/9Z5o1pner+T+Bg2g+wYofBPMAQDBKZja80Dse6d2fT1j6ZqQpu8ESgxQorrulZTmOxvdl8a1VW5epej1PeDyyy/3Th5j2TEEOgLggJnLevKU4lYGk7K+9B/6okWLXMOhWcN6rP/wfWmGsbKp0lrqQ9lmCtYq4Kt7NaoqzSJqlPQ7VE5M2dLpaSg9dL7qUKoR8s2Y0wCytp2v9Jmen/RvFZUS9c0oHzFihGsgb7vtNjfwrNKmF0K/R+uA66aGWRlneg29ltYZS4uLL7440bouHppJJgpwe2g9b18qf6Ntvh3spMeIZqZn5MuXvkDoNZLS2mYqhQ4A8J9g+w6Q2fR9wndgW+2ZysR5stYzg+e1kmsr1Z77tuW+ihYt6u5VHl3fR5L7jgAAyPmCra3OKf31tFBbm1L7LSm14foblPzuKQfrSzPIAQDBJ9ja80Dre5/v+nooAa9Vq1auTLzKtWvWuyajpURLgmrcXsuWaHa7ZpprJv1bb72Vwb8YyHqUQAfMXPkONaZdu3Z15TY9nVBP46DGTx1JT8kQ37W79BzNMPKsGZIaHaMGRq/z8ccfuwbJk4Wl7LBq1aq5BkXlyTy3ypUruzLhylZLK2VhnTp1yp2fhzrSAwcO9JYoOd/z1fj5ljFRZ1x/q+9MaDXK+iKhNboVvNYXi7T6/fffXbkZXQdRIPiRRx5xneDdu3en+XWU0a7X2rhxY6LtyvRTWTllsnnoevj+TTpnlbnRFyOPmJgY27Fjh/exSsbotX2PuVA6R/1b0r8x3+v522+/pfs1AQCZI9i+A2Q2ZXn7fpfQ+mnXXXed6/RmFq2/pu8T6oD70lqoWmPUszRK0uus7w5KUFN76nvdlM2udd1SmjkOAMhZgq2tzgn99Qvp6+p6aaa3b6K5ZpPp+ni+LySd7a7AvNYU1fvmuZZXX321G1z/9NNPM/08AQD+F2zteaD1vc93fX1na2uWvGbca41xXS9PgkBKS69ov2aOe87F8x3GUxEGCFSkVQJmLsNaWcYTJkywhx56yHUkly5dap9//rm7PnFxcW6d6m7durnOY+vWrV0W1qRJk1wjWqVKFdu6das7Vs9RFrRKjCRHDczcuXNdBzBpqRW9thqpPn36uHU31HHUsVqbpHv37ml+r5o0aeIysp5++mnr2bOny/h67733XGBXWeDno9+lEmmPPvqoWy9Ma41MmTLFBZNvuOGGc4LN9957ry1btsxGjRrlAthpmXGlEueaGT1y5EjXWVbDrIZaWev6vWnVtm1bW7x4sctw03ukNcm09tmSJUvc+mme2WESGxvr3kP9TfpZ71+jRo1cA+6hLwPKfuvVq5f7AjB9+nT393To0MHSS6+n0m5aM0X/vlS6ZurUqe7fgG/GPwAg+wXbd4DMNn78eNeJVpD67bffdt8lVEo1M+l66O/XwL/n71dFFk8b7JkdphkBSa+z2ushQ4a4NltrkKqN1Qw3JbCdbwYdACBnCLa2Oif019NKfW4Ngus8dG2UhL5w4UKXxPbKK694j1O/fMOGDbZu3ToXwNffoPPS33Dfffe52XlvvvmmG/x/4YUXMu38AACBI9ja80Dre6fl+nroWirZQGPqqhSTXNl2D32/WLFihXt9jeWrPVflVo1payY4EMiYAQ6YubUrNFNIg6VqZDWQKgsWLHD/ma9fv94Nqmq9ak85EQUwlU2mRkWUKXb77be7siIqDZISNcxqZDRjKems4oYNG9qcOXNcBpYafJX01IDuvHnz7Nprr03ze6XnqHFXdpbOU+erMuFqzH1nRKdEmXD62zU7Wh1yBamVcaZs9OSyzvRlQqVSNFg9bty4NJ+nBrYVgNY5qmF+/fXXXQda55tWyg7Uuer90evo/VNmmjr3Tz75ZKJjVdpGgXb9Tcrqa9OmjTsHX5dccok7F62X8swzz1hERIS98cYbGSr1qn9fel/1JUbvq9Y+12x3ZeMntx4aACD7BNt3gMw2bNgwV9pM7bPKmeq7hGe9r8ykhDYNeGu9Ul3jsWPHuuDAO++849rLlK5zu3bt3PunTrgSznS+SobT+6eAAgAg5wu2tjqn9NfTQtdVg+e6Xkpk0/JmSip/7bXXXLDdQ220Et7VD1Yyuq6z3gu9f7qOup76nqGZaKnNQgMA5FzB1p4HWt87Ldc3aZKAgv9KAkiN+uYqP68kPb0nqiqjpVV0HZO+JhBo8pxlpXoAuUDTpk1dmTU12ilRBv63337rZpBnpjVr1rhMeN8vLZqhpgEBfclStjwAAIFEmeIayFbnVgFlAAAAAABA3xvIKSiBDuQgyso6X86KMrrSsh5KVtH56TzPR+eYW8p/ax02zWpTiR2Vizl8+LDLKlQpV2UtAgCQ074DaK2vtKz3pRJsAADkBoHWVieH/joAADmrPafvDaQfI1JADtKpUyc3Q/l8a2tn9gzmC6HzS8uM5jFjxrhyp7mBZ90VlXhXubewsDA3G13XoESJEv4+PQBADhBo3wFUojTpMiLJYQY5ACC3CLS2Ojn01wEAyFntOX1vIP0ogQ7kID///LMdP3481WO05lfVqlXNX44dO+bW7zwflVMtXrx4tpwTAAA5XaB9B9C6Yvv27TvvcTqf5NYjBQAg2ARaW50c+usAAOSs9py+N5B+BMABAAAAAAAAAAAAAEEhr79PAAAAAAAAAAAAAACAzEAAHAAAAAAAAAAAAAAQFPJZkKtTp44lJCRY6dKl/X0qAABcsP3797u1hdavX59rrh5tNwAgp6LdBgAgZ6HtBgAgONvtoA+Anzx50s6cOePv0wCC1tmzZ12Sif7TyZMnj79PBwg6p0+fdp+z3IS2G8g6tNtA1qLdBpDZaLuBrEXbDSAz0W4DgdNuB30AvEyZMu4+KirK36cCBKW4uDiLjo62yMhICwsL8/fpAEGnWbNmltvQdgNZh3YbyFq02wAyG203kLVouwFkJtptIHDabdYABwAAAAAAAAAAAAAEBQLgAAAAAAAAAAAAAICgQAAcAAAAAAAAAAAAABAUCIADAAAAAAAAAAAAAIICAXAAAAAAAAAAAAAAQFAgAA4AAAAAAAAAAAAACAoBGQDfu3evVa1a9Zzb0qVL/X1qAAAgibVr1ybbbuvWrFkzrhcAABlw+PBhGzJkiDVu3Nhq165t9913n61fvz7F43/77Td79NFH3bENGza0KVOm2JkzZxIds2jRItdG16hRw+6//37bvHkz7xEAAAFs2bJl1rJlS7vmmmvs73//u3300Uf+PiUAAAJaPgtAW7ZssZCQEFu1apXlyZPHu71IkSJ+PS8AiSUkJNj06dPdAFydOnWsZ8+eVqBAAS4TkMvUqlXLvvrqq0Tbvv/+e3vyySete/fufjsvAIkpAPavf/3LvvvuO9u/f7/dfPPNdtFFF3GZgADXu3dv95mdNGmSlSxZ0hYsWGAPP/ywvfvuu3bFFVckOvbUqVNuX0REhL3xxhv2yy+/2KBBgyxv3rzWo0cPd4yeN378eBsxYoRVq1bNZs+ebZ07d3YD6SVKlPDTXwkgOfrsq6+t+9KlS7u+t+4B5C7vvfeea8+feeYZa9SokX3wwQfu+0F4eLjrjwMIDPS5gcASkDPAt23b5jrsZcqUcV/sPbeCBQv6+9QA/E///v2tUKFCNmDAAHv77bfdvR5rO4DcRYkvvu21/i8YM2aMtWnTxu666y5/nx4AM1dJ6corr7TbbrvNBg8e7O71mApLQGDbtWuXrV692oYNG+aCYBUrVrRnn33W9ZVXrFhxzvErV6603bt3uwB3lSpVrHnz5m6A/NVXX3XJq/LSSy/ZAw88YHfccYf7f2D06NEWGhrqvtMDCBzFihVzn3UlssTHx7t7PdZ2ALnH2bNnberUqfbggw9a+/btrUKFCtatWzf729/+Zt9++62/Tw/A/9DnBgJPQAbAt27dapUqVfL3aQBIgYLcEyZMcDNQXnzxRfv444/dvR5rO0FwIHfTwLoG6ZQYAyAwOuJ33323K5f42WefuVngutdjbScIDgSu4sWLuxna+rx6qEqabkePHj3neM0OrV69ul188cXebddff70dO3bMoqOj7eDBgxYTE2MNGjTw7s+XL58Lrq9bty4b/iIAaaEg95EjR9zPqtSgChC6F20nCA7kHjt37rTff//dWrVqlWj7nDlz3JInAPyPPjcQmAJ2Bvgff/zhstqUzaY1zjRQB8D/NHNk8uTJVrZsWbe+YKdOnaxUqVLuXo+1Xfs9M0wA5C5qv+fPn2+PPfYYA3NAgJRg69Onj91+++1u3cB69epZWFiYu9djbe/bt+856wMDCAxFixa1G2+8MdEyQ5rlrZnhKoGa1J49e1w5VF+aMSqxsbFuv5QrV+6cYzz7APiXyp17gt+6V3JK48aN3b3vdh0HIHcEwCUuLs4tc6Iktnbt2tk///lPf58aAPrcQEALuDXAT58+bT///LMrxfb0009b4cKF3bomXbt2tXnz5iXKVPdo1qxZiq+nTr4GAPQlAUDGac1vfU6HDBnigtya5Smee5VV1bq/U6ZMsSeeeIJLDmRCuTPN8sopFi9ebEWKFLF77rkn1eNou4HsoSRSzfbU9+gTJ06c02736tXLmjZtap9++qkbXAcQ2O32hg0bbODAgdaiRQtr0qTJOfv1OVfQ3FdISIi7P3nypPez7xtQ9xyj/Smh3QayjyoyiGZ8q0KDb9ut5Qquuuoq27JliztOlR0ABHefW1VcRBXWNM6m5FUlw3Xv3j3FsXKh7QayB31uIHDb7YALgOvL/dq1a+2iiy7yrvl99dVX2/bt211pl5Qa9dQoSEenAMgcKqsoWqbA93OlwXVR8ornOD53QMapDfMMXOcEmlHaunVrbxueXrTdQOb47rvv3L2+WyfXbmu757jSpUtz2YEAbrdXrVrlBr1r165tEydOTPYYtb9JKzF5Atuq/uBpn5M7RoG19KLdBjKPZ2Z3ly5dkm27NQO0X79+7jj63EDw97nz58/v/ey3adPG/RwZGWmbN29ONQB+PrTdQOagzw0EbrsdcAFwKVSo0DnbKleubF999VWyx0dFRaX4Wsp2U0aAvhgAyDhlmb/99tu2Y8cOV3ZRWejqiEdERLhBszVr1niP43MHZFzSGVqBTDNRfv3113PWJksObTeQvYPoKnGudjlpu63EU7nuuutot4EAbrcXLlxoo0aNsltvvdXGjRuX4u9R9TMtKeZr37597l5LFXlKn2ubElp9j9H+lNBuA9lHCWm//PKLvfLKK25936Rt9wMPPOA9jj43EPx9bk/7XKVKlUTbNQHl888/T/F5tN1A9qDPDQRuux1wAXDN9FbZ1JkzZ1r9+vW923/88UfvzNILpenwynYHkHE9e/a0QYMG2fDhw93SBB7qiOs/n5EjR7pKDjou0DsRQE4QyKXYklLlh5IlS7qyjBlF2w1kjptvvtkNmE+aNMlVaPBttzUTdPLkyVaxYkV3nGc2OIDAare1vMiIESOsQ4cO7nt4ar+jbt267rOucqlaTky++eYbl2Su9lnfz/WZV/KLZ8aYljdSG37//fen+xxpt4HMo89jmTJl3OxOfT491Rl0r8dKOvUcx1gXEPx97urVq7t2fNOmTd4lEkQJbxUqVEj369J2A5mDPjcQuO12XgswykK/4oorXHBNX+Y1y3TMmDH2/fffW7du3fx9ekCup0EzrRe6d+9eK1++vM2dO9dluulej7Vd+wl+A7mPBumqVq3q79MA4ENB7eeff97ef/99tzyBgl7Hjx9393qs7SqlTPAbCEw7d+600aNHu4E1zQQ9cOCA++6t259//unKv+lnT0nz5s2bu1mhSkZVkExl05UA89BDD3m/n+tnlUx999137T//+Y8988wzbu3wu+++289/LQDRZ/jiiy92P+teVVo+++wzd++7naVLgNxBSataEuHFF190391VIUITx1avXm2dO3f29+kBuR59biBwBdwM8Lx589pLL73kBurUaT969KhVq1bNddCTlnoB4B/jx49395o19uSTT3q3a+a31iLz7AeQu2gAvlixYv4+DQBJtG3b1t555x3r06ePNW3a1Ltds0C1XfsBBKaVK1faqVOn7NNPP3U3X1oHVLcHH3zQXnvtNVdBTWuhqWzyc889Z//4xz9ckEwzu7t37+59nrYreD5lyhQ7fPiwXX311a6/XaJECT/8hQCSo8+mvlcfOXLEJbOon+2hz7X2A8g91I6rCoTG4TTxRBPIpk2blqh6KgD/oc8NBKY8Z7VAdhDTGuDnW/cEQPpopokGzlStQWWYKHsOZL7c2I7lxr8ZyA5aB1wBtO+++87NIqPsOZD5cmMblhv/ZiA7E0zV19a9Znyr783MbyBz5cZ2LDf+zUB2oM8NBFYbFnAzwAHkHCqj+MQTT1h0dLRFRkZS9hwAgAAvzda4cWM3cK52m7LnAAAENrXZ6m97+tys+Q0AQOCizw0EloBbAxwAAAAAAAAAAAAAgPQgAA4AAAAAAAAAAAAACAoEwAEAAAAAAAAAAAAAQYEAOAAAAAAAAAAAAAAgKBAABwAAAAAAAAAAAAAEBQLgAAAAAAAAAAAAAICgQAAcAAAAAAAAAAAAABAUCIADAAAAAAAAAAAAAIICAXAAAAAAAAAAAAAAQFAgAA4AAAAAAAAAAAAACAoEwAEAAAAAAAAAAAAAQYEAOAAAAAAAAAAAAAAgKBAABwAAAAAAAAAAAAAEBQLgAAAAAAAAAAAAAICgQAAcAAAAAAAAAAAAABAUCIADAAAAAAAAAAAAAIICAXAAAAAAAAAAAAAAQFAgAA4AAAAAAAAAAAAACAoEwAEAAAAAAAAAAAAAQYEAOAAAAAAAAAAAAAAgKBAABwAAAAAAAAAAAAAEBQLgAAAAAAAAAAAAAICgQAAcAAAAAAAAAAAAABAU8vn7BAAAAAAAwPnNmjXLvvrqK1uwYEGy+6dNm2bTp09Pdl/btm1tzJgx7ufOnTvb119/nWh/vXr1UnxdAAAAAAByEgLgAAAAAAAEuEWLFtmUKVOsTp06KR7z0EMP2b333pto27x58+z111+3Tp06ebdt3brVhg0bZs2bN/duy58/fxadOQAAAAAA2YsAOAAAAAAAAWrv3r02dOhQW7t2rUVERKR6bKFChdzNY/Pmzfbaa6/ZiBEjrGrVqm7bwYMH3a1mzZpWunTpLD9/AAAAAACyG2uAAwAAAAAQoH766Sc3O3v58uUuaH0hhg8f7maMt2nTJtHs7zx58ljFihWz4GwBAAAAAPA/ZoADAAAAABCgmjZt6m4X6rPPPrONGzfasmXLEm3ftm2bFSlSxAXHV69ebWFhYXbrrbda9+7drUCBAsm+VrNmzVL8PbGxsRYeHm5xcXEXfI4Azi8+Pj7RPYDMdfbsWZcYBgAAggsBcAAAkCk0wD579mz79ddfrUKFCvbEE0/YbbfdxtUFAkRCQoJNnz7d1q9f72aE9uzZM8VgF4CcT2t/33TTTRYZGXlOAPzkyZNWo0YN69y5s0VHR9v48eNt9+7d7j69/7/odQBknZiYGC4vkAXUhoWEhHBtAQAIMgTAAQBAhr333ns2aNAge+aZZ6xRo0b2wQcfWO/evd2MsFq1anGFAT/r37+/TZ482U6fPu0ev/322+4z26tXr3QHvAAELgWztWa4EtOS0szvAQMG2MUXX+weV6lSxZVY1/8H+r+iVKlS5zwnKioqxd+l2eGaPZc00A4gc2jmt4LfERERFhoaymUFMhkJoQAABCcC4AAAIEM06D116lR78MEHrX379m5bt27d3CzTb7/9lgA44GcKaE2YMMHKli1rQ4YMsUqVKtmOHTtcEEzbhSA4EFxWrVplJUqUsBtuuOGcffny5fMGvz0qV67s7vfs2ZNsAPx8VDpWpdQBZB0Fv/mcAZmP8ucAAASnvP4+AQAAkLPt3LnTfv/9d2vVqlWi7XPmzLFHH33Ub+cF4L8lHTXzW8Hv3377zTp16uSCW7rXY23Xfh0HIHgoCa1evXou2J1Uhw4dbODAgYm2/fDDD24WuGaYAgAAAACQ0zEDHAAAZDgALnFxcfbwww/b5s2brXz58m4WeNOmTVMsl5qS2NhYVzpdrwcgY7Tmt8qea+a3gtwqoyqe+8GDB9uTTz5pU6ZMsSeeeILLDWRCVZTsnEl25swZ++OPP6xIkSJWsGBB73a1xXfddVeyz7nlllts9OjRbg3whg0buuC3qkCoDS9cuHC2nTsAAAAAAFmFADgAAMiQY8eOuXutJ6oAWt++fW3lypXWvXt3mzdvnjVo0OCCX1OBuujoaN4ZIBNmgYrKnvt+prSWqFx55ZXe4/jMARmn9iskJCTbLqWSxpRUNmbMGGvbtq13+/79+61YsWLJPueBBx5wQfoFCxa4QHjp0qVdVYiuXbtm23kDAAAAAJCVCIADAIAMUclU0cyxNm3auJ8jIyPd7LOUAuBRUVEpvp4G8jWDTq8BIGPq1Kljb7/9tlvzu1GjRm7mt4LfKnOstUTXrFnjPY7PHJBxBQoUyNLLOHbs2ESPVXFl69at5xy3adOmVF+nffv27gYAAHKGvXv3WuPGjc/ZnjQJDgAA/BcBcAAAkCFaQ1iqVKmSaLtmln7++efpek3NTAsLC+OdATKoZ8+eNmjQIBs+fHii2Z0KfitQN3LkSLdGsI7L6sAdkBtkZ/lzAACQe2zZssVVmVm1alWi7xtaBgVAYPj999/t6quvtj///NN9Nn/88Ue79NJL/X1aQK6V198nAAAAcrbq1atboUKFzplttm3bNqtQoYLfzgvAf2ej9urVy80Y0UzRuXPnutLIutdjbdd+gt8AAABA4FL/WlWcypQp45Yv8dwKFizo71MDYOYSVNTHPnz4sJ05c8bd63F2Lo8EIDFmgAMAgAxRh7tLly724osvutngNWrUsA8++MBWr15t8+fP5+oCfjZ+/Hh3P3nyZHvyySe92zXzu1+/ft79AAAAAAKTljypVKmSv08DQDIU5E5ISHA/h4eH22OPPWYvvfSS7dmzx23X/pMnT3LtgGxGABwAAGRY9+7dXUllBdg0o1Qd82nTpln9+vW5ukAAUJBb5c6nTJli69evd2t+U/YcAAAAyDkzwIsXL27t27e3nTt32uWXX27dunVLdl1wANlb9twT/D548KCbJBIdHe2SzU+cOGElS5Z0+3Uc5dCB7EUAHAAAZIrOnTu7G4DApDLnTzzxhOuMR0ZGUvYcAAAAyAFOnz5tP//8s1155ZX29NNPW+HChV3Vta5du9q8efOsQYMG5zynWbNmKb5ebGysm6UaFxeXxWcOBD+t+S36TCn4HR8f7x7rXhNFtF0zwXWcguAAMubs2bOWJ0+eNB1LABwAAAAAAAAAgACkpYvWrl1rF110kXfNbwXTtm/fbnPmzEk2AH4+mpGqxFgAGfPnn3+6e5U99/1MxcTEuHstGahqbDqOzxyQcZ5lBdKCADgAAAAAAAAAAAGqUKFC52yrXLmyffXVV8keHxUVleJraXa4ZtCpKhSAjClSpIgdPnzYrfmtsuea+a3gd0REhJsBfvvtt3uP4zMHZE51w7QiAA4AAAAAAAAAQADSTO977rnHZs6cafXr1/du//HHH11Z9PRQ+diwsLBMPEsgd9LnsHz58q7Mudb8VtBbdK/H2u45js8ckHFpLX8ueTPh9wEAAAAAAAAAgExWqVIlu+KKK2z48OG2fv1627Fjh40ZM8a+//5769atG9cb8KNLL73UOyO1ZMmS7vO6bNkyd6/Hov06DkD2CvgA+M6dO61WrVq2dOlSf58KgCQGDBjgSjDVqVPH3esxAAAAAAAAgMyRN29eV165Ro0a1rNnT2vTpo1t2rTJ5s2bZ1WqVOEyA3528uRJbxBcM7615rdn5re2az+A7BfQJdBPnTplffv2tbi4OH+fCoA0lJoYP368u2kdIQAAAAAAAAAZV6pUKTfrG0BgUpD7999/t6uvvtr+/PNPt+a3yp4z8xvwn4AOgE+bNs0KFy7s79MAcJ7gtzLZEhISEu0nCA4AAAAAAAAAyA0U7FYQPDo62iIjI1nzG/CzgC2Bvm7dOnvzzTdt7Nix/j4VAD58y5wrSeX48eP29ddfu3s9Tu44AAAAAAAAAAAAINfOAD969Kj179/fBg8ebOXKlTvv8c2aNUtxX2xsrIWHh1NGHcgkKnHu8dBDD1l8fLz7Wfd6/OSTT3qPGzp0KNcdyCBVU0huyQEAAAAAAAAAAJBDAuDDhg2zWrVqWatWrTLl9VSaWWUnAGQelT33/VzFxMS4+4suusjOnDnjfuZzB2ROGxYSEsKlBAAAAAAAAAAgJwbAly1bZuvXr7cVK1ak+TlRUVGpzg7X7DmtuQAgc4Ny+lxp5reC3xERERYaGuoNfgufOyBzkk0AAAAAAAAAAEAODYAvWbLEDh48aE2aNEm0XaWUP/zwQ3vllVcu+DVVOjYsLCwTzxLIvbQ8gacM+ty5c13Zc1HwW499j+NzB2Qc5c8BAAAAAAAAAMjBAfCJEyfaiRMnEm1r0aKF9ejRw+644w6/nReA/xo3bpw3AK71vnXzLXvuexwAAAAAAAAAAACQqwPgZcuWTXZ7yZIlU9wHIHtpWQHfWalJg9/aDwAAAAAAAAAAAGS3vNn+GwEEBQW5Vebclx4T/AYAAAAAAAAAAIC/BNwM8ORs3brV36cAIBkqcz506FCLjo62yMhI1vwGAAAAAAAAAACAXzEDHAAAAAAAAAAAAAAQFAiAAwAAAAAAAAAAAACCAgFwAAAAAABygFmzZlmHDh1SPWb58uVWtWrVc26//fab95iPPvrIWrZsaTVq1LDWrVvbmjVrsuHsAQAAAADIHgTAAQAAAAAIcIsWLbIpU6ac97itW7davXr17Kuvvkp0K1eunNv/zTffWL9+/ezee++1d9991xo0aGBdu3a1HTt2ZMNfAQAAAABA1suXDb8DAAAAAACkw969e23o0KG2du1ai4iIOO/x27ZtczO+S5cunez+l19+2Zo3b24PPvigezxgwADbuHGjvfrqqzZ8+HDeIwAAAABAjscMcAAAAAAAAtRPP/1k+fPnd6XNa9asmaYZ4JUqVUp2319//WUbNmxws7591a9f39atW5dp5wwAAAAAgD8xAxwAAAAAgADVtGlTd0uLI0eOuBnj69evt8WLF9uhQ4fcOt8qeV6xYkU7evSoxcXFWXh4eKLnlSlTxvbs2ZPi6zZr1izFfbGxse719LoAMl98fHyiewCZ6+zZs5YnTx4uKwAAQYYAOAAAAAAAQWD79u3ewfwxY8bYiRMnbObMmXb//ffbihUr7PTp025/gQIFEj0vJCTETp48me7fm5CQYNHR0Rk8ewCpiYmJ4QIBWUBtmNpBAAAQXAiAAwAAAAAQBOrUqWNr1qyx4sWLe2ezTZ8+3Zo0aWJLly61du3aeQf7fSn4HRoamuLrRkVFpTo7XAH3yMjITPs7APw/zfxW8DsiIiLVzymA9EmaFAYAAIIDAXAAAAAAAIJEiRIlEj1WwKx8+fKuNHqxYsUsLCzM9u3bl+gYPS5btmy6f6eC7XpdAFlHn2U+Z0Dmo/w5AADBKa+/TwAAAAAAAGTcm2++afXr10+0HvexY8fc7NErr7zSDfLXrl3bvv3220TPW7t2rZs9DgAAAABAMCAADgAAAABADnTmzBnbv3+/W+tbGjdubH/99Zf179/frQf+ww8/2JNPPulmhbdt29Yd07lzZ/vggw9s3rx5tmPHDhs/frxbv7tjx45+/msAAAAAAMgcBMABAECGqaxq1apVz7lpvVEAgWHPnj1WsWJFa9CggbvXYwA5W2xsrDVs2NA+/PBD97hcuXI2f/58NwP8vvvus06dOlmRIkXstddes5CQEHeMjh89erS9/vrr1qZNG/vmm2/spZdeskqVKvn5rwEAAAAAIHOwBjgAAMiwLVu2uIH1VatWJVpDTYPuAPyvUKFCiUoia71fBcq0lujx48f9em4A0m7s2LGJHmtt761btybaVr16dZs7d26qr9O6dWt3AwAAAAAgGDEDHAAAZNi2bdssIiLCypQpY6VLl/beChYsyNUFAij4rc/pmDFj3L1ou/YDAAAAAAAAwYIAOAAAyDDNPqN0KhB4VObcE/w+dOiQ/fTTT3bzzTe7ez0W7accOgAAAAAAAIIFJdABAECmzAAvXry4tW/f3nbu3GmXX365devWzRo3bpzs8c2aNUt1PdPw8PBE5ZoBpE/NmjXdvWZ8FyhQwOLj491j3YeGhrrP6q5du9xx+uwCyJizZ88mWgoEAAAAAABkPwLgAAAgQ06fPm0///yzXXnllfb0009b4cKF7YMPPrCuXbvavHnzrEGDBhf8mgkJCRYdHc07A2SQZ5b3o48+mugzFRMT4+67dOlizz77rDuOzxyQcWq/QkJCuJQAAAAAAPgRAXAAAJCxLxP58tnatWvtoosu8q75ffXVV9v27dttzpw5yQbAo6KiUnw9zQ7XDLrIyEjeGSCDVJlh3759NmvWLOvRo4eb+a3gt2aEawb4XXfd5T2OzxyQcaq0AAAAAAAA/IsAOAAAyLBChQqds61y5cr21Vdfpev1VD42LCyMdwbIoE2bNlm5cuVc0FszUxX0Ft3rscqfe47jMwdkHOXPAQAAAADwv7z+PgEAAJCzaaZ37dq13SxwXz/++KMriw7Af8LDw72Bbc3yrlatmn300UfuXo9F+3UcAAAAAAAAEAyYAQ4AADKkUqVKdsUVV9jw4cPtueeec0G1t956y77//ntbsmQJVxfws+PHj7sqDXFxcW7Gt9b89lDwW/sBAAAAAACAYMEMcAAAkLEvE3nz2ksvvWQ1atSwnj17Wps2bVw55Xnz5lmVKlW4ukAAUJA7NjbWypQpY/nz53f3ekzwGwAAAAAAAMGGGeAAACDDSpUqZWPGjOFKAgFMZc537txp0dHRFhkZyZrfAAAAAAAACErMAAcAAAAAAAAAAAAABAUC4AAAAAAAAAAABDhVdKpVq5YtXbrU36cCIIn27dtboUKFrE6dOu5ejwH4DwFwAAAAAAAAAAAC2KlTp6xv374WFxfn71MBkESePHls8eLFibbpsbYD8A8C4AAAAAAAAAAABLBp06ZZ4cKF/X0aAJI4X5CbIDjgHwTAAQAAAAAAAAAIUOvWrbM333zTxo4d6+9TAeDDt8z5oEGD7Pjx47Z+/Xp3r8fJHQcge+TLpt8DAAAAAAAAAAAuwNGjR61///42ePBgK1euXJqe06xZsxT3xcbGWnh4OKXUgUzgW/b8mWeesfj4ePez7vV41KhR3uNefvllrjmQQWfPnk1zVQUC4AAAAAAAAAAABKBhw4ZZrVq1rFWrVpn2mgkJCRYdHZ1prwfAEn2mYmJizrkkfOaAzGm/QkJC0nQsAXAAAAAAAAAAAALMsmXLXDnlFStWXNDzoqKiUp0drhl0kZGRmXCGADz0mdLMbwW/IyIiLDQ0NNHF4TMHZFyBAgXSfCwBcAAAAAAAAAAAAsySJUvs4MGD1qRJk0Tbhw4dah9++KG98sor6XpdlY8NCwvLpLMEcq/777/fWwZ99OjRruy5KPitx77H8ZkDMi6t5c+FADgAAAAAAAAAAAFm4sSJduLEiUTbWrRoYT169LA77rjDb+cF4L8WLVrkDYBrvW/Pmt/JHQcgexEABwAAAAAAAAAgwJQtWzbZ7SVLlkxxH4DspSUFUpuVqv0Asl9eP/xOAAAAAAAAAAAAIMdTkFtlzn3pMcFvwH+YAQ4AAAAAAAAAQA6wdetWf58CgBTKnL/88ssWHR1tkZGRrPkN+BkzwAEAAAAAyAFmzZplHTp0SPWY7du3W9euXa1+/frWoEEDt0bo7t27vfvPnDljNWrUsKpVqya6TZs2LRv+AgAAAAAAsh4zwAEAAAAAyAEzSqZMmWJ16tRJ8ZhDhw5Z586drXbt2rZgwQJLSEiwsWPHWpcuXezdd9+1kJAQi4mJsZMnT9p7773n1g/1CAsLy6a/BAAAAACArEUAHAAAAACAALV3714bOnSorV271iIiIlI9dtWqVRYXF2fjx4+3ggULum0TJkywJk2a2IYNG9yMcJVNLVy4sF111VXZ9BcAAAAAAJC9KIEOAAAAAECA+umnnyx//vy2fPlyq1mzZqrHKsA9Y8YMb/Bb8ub9b7f/6NGj7l4B8EqVKmXxWQMAAAAA4D/MAAcAAAAAIEA1bdrU3dKifPny7uZr9uzZLiBet25d93jbtm12+vRpe/jhh23Lli1WtmxZ69ixo915550pvm6zZs1S3BcbG2vh4eFu5jmAzBcfH5/oHkDmOnv2rOXJk4fLCgBAkCEADgAAAABAENI64AsXLrTBgwdbiRIl3Lbt27fbX3/9ZT169HCB6y+++MIGDhxop06dsrvvvjtdv0drjUdHR2fy2QPwFRMTwwUBsoDasJCQEK4tAABBhgA4AAAAAABBNptt6tSpNnPmTOvWrZt16NDBu+/999+3M2fOWKFChdxjrQW+e/dumzNnTooB8KioqFRnh+v3RUZGZsFfAkAzvxX8joiIsNDQUC4IkMkKFCjANQUAIAgFZAD84MGDNnbsWPvyyy/t5MmTrlTbgAEDWKcMCDDJlYjS4BcAAAAA/9BMbs3oVqBb9506dUq033d9cI8qVaq4NcYz0i8ICwtL9/MBnJ+C33zOgMxH+XMAAIJTXgtAjz/+uO3atcutVfbOO++4Dro67ax3BAR+B4GOAwAAAOA//fv3t48//tief/75c4LfR48etXr16tnSpUsTbf/hhx+scuXK2XymAAAAAADkkhngR44csUsvvdQeffRRl4Uu3bt3tzvvvNOtVVajRg1/nyKQ650vyK39zAQHAAAAspZKmf/xxx9WpEgRlziuwPaHH37oguAKdO/fv997rI4pWrSoXX/99TZ58mQrWbKkXX755fbJJ5+42d+zZs3i7QIAAAAABIWAmwF+8cUXu0x1T/Bbnfn58+dbeHi4XXnllf4+PSDXSxr8Pn78uK1fv97d+2ImOAAAAJC1YmNjrWHDhi7oLSp7LuPHj3fbfW+eY0aPHm0tW7a0oUOHWqtWrdz2F154wRo1asTbBQAAAAAICgE3A9zXs88+a2+99ZYVKFDAZs6cmeJaR82aNUt1QEDB87i4uCw8UyB3UtDbszSB7vW4UKFC3v187oCMUzUFEkoAAICMHTs20YUoX768bd261ft47ty5571QhQsXdmuD6wYAAAAAQDAK6AB4x44d7Z577rFFixa5dcEXL15s1atXv+DXSUhIsOjo6Cw5RyA38/1cxcTEpLofQPqoDQsJCeHyAQAAAAAAAACQ0wPgnpLno0aNsk2bNtnChQttzJgx5xwXFRWV4mtodrhmz0VGRmbpuQK5kT5Xmvmt4HdERISFhoaesx9AxqgKCgAAAAAAAAAAyKEBcK35vWbNGrvlllssX77/nl7evHldMHzfvn3pek2Vjk2pfDqA9FO5c8/a3wp++5Y/Fz53QMZR/hwAAAAAAAAAgLTLawHmwIED1rt3bxcE9zh16pRt3rzZKlWq5NdzA/Df9Yh9Kehdp06dc4LfSY8DkDvs3LnTatWqZUuXLvX3qQBIokKFConabT0GAAAAAAAAgk3ABcCrVKlijRs3tpEjR9q6dets27Zt9vTTT9vRo0etU6dO/j49AGkIbhP8BnInJaz17dvX4uLi/H0qAJKpJvHrr78m2qbHVJkAAAAAAABAsAm4ALhMmjTJGjRoYL169bJ27drZ4cOHbdGiRXbJJZf4+9QAnCfITfAbyL2mTZtmhQsX9vdpAEjifEFuguAAAAAAAAAIJgEZAC9SpIgNGzbMvvrqK9u0aZPNmTPHKleu7O/TApBMsFtrgK9fv97dE/wGci9VbXnzzTdt7Nix/j4VAD58y5zfdNNNidptPU7uOAAAAAAAACAny+fvEwAAADmblinp37+/DR482MqVK5em5zRr1izFfbGxsRYeHk4pdSAT+JY9f//99y0+Pt79rHs91lrgnuNYvgDIOCWEUlUBAAAAAAD/IgAOAAAyRFVbatWqZa1atcq0K5mQkGDR0dGZ9noALNFnKiYm5pxLwmcOyJz2KyQkhEsJAAAAAIAfEQAHAADptmzZMldOecWKFRf0vKioqFRnh2sGXWRkJO8MkIn0mdLMbwW/IyIiLDQ09Jz9ADKmQIECXEIAAAAAAPyMADgAAEi3JUuW2MGDB61JkyaJtg8dOtQ+/PBDe+WVV9L1uiofGxYWxjsDZNBll13mLYN+++23u7LnouC3Hvsex2cOyDjKnwMAAAAA4H8EwAEAQLpNnDjRTpw4kWhbixYtrEePHnbHHXdwZQE/++WXX7wBuc8++8y75ndyxwEAAAAAAADBgAA4AABIt7Jlyya7vWTJkinuA5C9tKRAarNStR8AAAAAAAAIFnn9fQIAAAAAspaC3Cpz7kuPCX4DAAAAAAAg2DADHAAAZKqtW7dyRYEApDLncXFxFh0dbZGRkaz5DQAAAAAAgKDEDHAAAAAAAAAAAAAAQFAgAA4AAAAAAAAAAAAACAoEwAEAAAAAAAAAAAAAQYEAOAAAAAAAAAAAAAAgKBAABwAAAAAAAAAAAAAEBQLgAAAAAAAAAAAAAICgQAAcAAAAAAAAAAAAABAUCIADAAAAAAAAAAAAAIICAXAAAAAAAHKAWbNmWYcOHVI95tChQ9anTx+rW7eu1atXz5577jmLj49PdMxHH31kLVu2tBo1aljr1q1tzZo1WXzmANIjT548VqhQIatTp46712MAudPBgwetX79+dv3111utWrWsa9eutmPHDn+fFgAftNtAYCEADgAAAABAgFu0aJFNmTLlvMf16NHDdu3aZfPnz7epU6faF198YcOGDfPu/+abb9wA+r333mvvvvuuNWjQgEF0IAClFOwmCA7kTo8//rhr32fPnm3vvPOOFSxY0Dp16nROkhsA/6DdBgIPAXAAAAAAAALU3r177bHHHrOJEydaREREqsdu3LjRvv32Wxs3bpxVr17dBbeHDx9u7733nnsdefnll6158+b24IMPWqVKlWzAgAHu2FdffTWb/iIA53O+IDdBcCB3OXLkiF166aU2cuRIV71F7Xf37t1t3759tn37dn+fHpDr0W4DgYkAOAAAAAAAAeqnn36y/Pnz2/Lly61mzZqpHrt+/XorXbq0Gxj3UBl0Dcp999139tdff9mGDRtcYNxX/fr1bd26dVn2NwBI/yD68ePH3Wdb96kdByB4XXzxxfb8889blSpV3OM//vjDVXoJDw+3K6+80t+nB+RqtNtA4Mrn7xMAAAAAAADJa9q0qbulhWZ5lytXLtG2AgUKWLFixSw2NtaOHj1qcXFxbsDcV5kyZWzPnj0pvm6zZs1S3KfX1evpdQFkLgW9PeWNda/HWgvcg88dkHFnz57NUQklzz77rL311luufZ85c6aFhYUlexxtN5D9aLeBwGq3CYADAAAAABAEFCDTgHhSISEhdvLkSTtx4oR7nPQYz/70SkhIsOjo6HQ/H0DyfD9XMTExqe4HkP42TO1gTtGxY0e75557bNGiRW5d8MWLF7ulTC4UbTeQ+Wi3gcBqtwmAAwAAAAAQBAoWLOgGBJJScFszxDwDBUmP0f7Q0NAUXzcqKirFfZphpiz8yMjIDJ07gHPpc6XEFgW/IyIizvmc8rkDMi65xLFA5il5PmrUKNu0aZMtXLjQxowZc85xtN1A9qPdBgKr3SYADgAAAABAEFAp8lWrViXapmD34cOHXZlzlUJXIHzfvn2JjtHjsmXLpvv3qgRdSiVYAaSfyp171v5W8Nu3/LnwuQMyLieUP9ea32vWrLFbbrnF8uX773B+3rx5XTA8aZueVrTdQOaj3QYCq93Om6VnAgAAAAAAskXdunXdWt67du3ybvv222/d/XXXXecGC2rXru3d5rF27VqrU6cO7xIQAFRRIelguj6fSYPfSY8DELwOHDhgvXv3dkFwj1OnTtnmzZutUqVKfj03ILej3QYCFwFwAAAAAAByoDNnztj+/fu9a3vXrFnTBbh79epl//73v+2bb76xIUOGWOvWrb0zvDt37mwffPCBzZs3z3bs2GHjx4936xVqTVEAgeF8wW2C30DuUqVKFWvcuLGNHDnS1q1bZ9u2bbOnn37ajh49ap06dfL36QG5Hu02EJgIgAMAAAAAkAPFxsZaw4YN7cMPP3SPNcN7+vTpVr58eRfQ7tmzpxswHzZsmPc5On706NH2+uuvW5s2bVyQ/KWXXmIGGZBDBtMJfgO506RJk6xBgwYuya1du3ZueZNFixbZJZdc4u9TA0C7DQQk1gAHAAAAACAHGDt2bKLHCnRv3bo10baSJUvaCy+8kOrraEa4bgACm4LdcXFxrkpDZGQka34DuViRIkVcQptvUhuAwEK7DQQWZoADAAAAAAAAAAAAAIICAXAAAAAAAAAAAAAAQFAgAA4AAAAAAAAAAAAACAoEwAEAAAAAAAAAAAAAQYEAOAAAAAAAAAAAAAAgKBAABwAAAAAAAAAAAAAEBQLgAAAAAAAAAAAAAICgQAAcAAAAAAAAAAAAABAU8vn7BAAAQM538OBBGzt2rH355Zd28uRJq1u3rg0YMMAqVark71MD8D958uQ551qcPXuW6wMAAAAAAICgwgxwAACQYY8//rjt2rXLZs+ebe+8844VLFjQOnXqZPHx8VxdIECD36ltBwAAAAAAAHIqAuAAACBDjhw5YpdeeqmNHDnSatSo4WZ9d+/e3fbt22fbt2/n6gJ+dr4gN0FwAAAAAAAABBNKoAMAgAy5+OKL7fnnn/c+/uOPP2z+/PkWHh5uV155JVcX8KOkwe3jx49bdHS0RUZGWqFChRIdRzl0AAAAAAAABAMC4AAAINM8++yz9tZbb1mBAgVs5syZFhYWluxxzZo1S/E1YmNjXfA8Li6OdwbIRAp+e5Yl0L0e+wbB+cwBGadEEqoqAAAAAADgXwTAAQBApunYsaPdc889tmjRIrcu+OLFi6169eoX/DoJCQluliqAzOP7mYqJiUl1P4D0UfsVEhLC5QMAAAAAwI8IgAMAgEzjKXk+atQo27Rpky1cuNDGjBlzznFRUVEpvoZmh2sGnUo0A8g8+kxp5reC3xERERYaGnrOfgAZowooAAAAAADAvwiAAwCADNGa32vWrLFbbrnF8uX771eLvHnzumD4vn370vWaKh+bUvl0AOmjcucqey4KfvuWPxc+c0DGUf4cAAAAAAD/y2sB6PDhwzZkyBBr3Lix1a5d2+677z5bv369v08LQDIDfBo8r1OnjrtnwA/InQ4cOGC9e/d2QXCPU6dO2ebNm61SpUp+PTcgt1M1BV++7XZqxwEAAAAAAAA5VUAGwDWIvnHjRps0aZItWbLElWN8+OGH7eeff/b3qQH4n5SC3QTBgdynSpUqLmlt5MiRtm7dOtu2bZs9/fTTdvToUevUqZO/Tw/I9c4X3Cb4DQAAAAAAgGAScAHwXbt22erVq23YsGFudkrFihXt2WeftTJlytiKFSv8fXoA0hDkJggO5D5KWmvQoIH16tXL2rVr56q5LFq0yC655BJ/nxqAVILcBL8BAAAAAAAQbAJuDfDixYvb7Nmz7ZprrkkUTNNNM8kA+FfS4LbWEo2OjnaVGnzLqeo4BtWB3KNIkSIueU03AIFJ7XJcXJy33WbNbwAAAAAAAASjgAuAFy1a1G688cZE21auXOlmhj/zzDPJPqdZs2Ypvl5sbKyFh4e7wT4AmUvB7/j4ePez7vXYNwjO5w7InIAVVRUAAAAAAAAAAMihAfCkNmzYYAMHDrQWLVpYkyZN0vUaCQkJbqYLgMzl+7mKiYlJdT8AS3cbFhISwuUDAAAAAAAAACCnB8BXrVplffv2tdq1a9vEiRNTPC4qKirFfZodrtlzKvMIIHPpc6WZ3wp+R0REWGho6Dn7AWRMgQIFuIQAAAAAAAAAAOT0APjChQtt1KhRduutt9q4ceMyFABQ6VjWOAQyn8qdq+y5KPjtW/5c+NwBGUf5cwAAcre//vrLpk+fbm+//bb9+eefVrduXRsyZIhddtll5xw7bdo0d2xy2rZta2PGjHE/d+7c2b7++utE++vVq2cLFizIor8CAAAAAIBcHgBfvHixjRgxwjp06GCDBg1i8B8I4PWIkwa9fY8DAAAAkDEzZsxwfeSxY8daeHi4TZgwwbp06WIrVqw4J1H8oYcesnvvvTfRtnnz5tnrr79unTp18m7bunWrDRs2zJo3b+7dlj9/ft4qAAAAAEBQCLgA+M6dO2306NF2880326OPPmoHDhzw7itYsKAVKVLEr+cH4NwgeFIEvwEAAICMS0hIsLlz57qlwZo0aeK2TZ482Ro1amSffPKJ3X777YmOV3Kqb4Lq5s2b7bXXXnMJ5lWrVnXbDh486G41a9a00qVL8zYBAAAAAIJOwAXAV65caadOnbJPP/3U3Xy1adPGZb0DCNwgOMFvAAAAIHNs2bLFLTnUoEED77aiRYtatWrVbN26decEwJMaPny41alTx/WlfWd/63t8xYoVeZsAAAAAAEEp4ALgjz32mLsBCHwKdsfFxVl0dLRFRkay5jcAAACQifbs2ePuy5Url2h7mTJlvPtS8tlnn9nGjRtt2bJlibZv27bNVVZTcHz16tXuO/ytt95q3bt3P6ekukezZs1S/D2xsbGuNLv6BQAyX3x8fKJ7ANlb5RAAAORMARcABwAAAAAA/x/wShqYDgkJsSNHjqR6ibT290033eQSVZMGwE+ePGk1atSwzp07u2TW8ePH2+7du919eku163UAZJ2YmBguL5AF1IapXQUAAMGFADgAAAAAAAGoYMGC3sF5z8+iAHZoaGiKz1Mwe+3atTZ79uxz9mnm94ABA+ziiy92j6tUqWL58+e3Xr16Wf/+/a1UqVLnPCcqKirF36XZ4Zo9lzTQDiDzEmEU/I6IiEj1cw8gfVKqfgIAAHI2AuAAAAAAAAQgT+nzffv2WYUKFbzb9bhq1aopPm/VqlVWokQJu+GGG87Zly9fPm/w26Ny5cruXmXVkwuAn49Kx6qUOoCso+A3nzMg81H+HACA4JTX3ycAAAAAAADOddVVV1nhwoXdbG6Po0eP2ubNm61u3bopXrL169dbvXr1XLA7qQ4dOtjAgQMTbfvhhx/cLHDNMAUAAAAAIKdjBjgAAAAAAAFalvWBBx6wiRMnuhndl156qU2YMMHCw8OtRYsWdubMGfvjjz+sSJEiiUqkK0B+1113Jfuat9xyi40ePdqtAd6wYUMX/Nba3w8//LALtgMAAAAAkNMRAAcAAAAAIED16NHDTp8+bYMHD7YTJ064md9z5sxxM7Z/++03twb3mDFjrG3btt7n7N+/34oVK5bs6ymgrnKvCxYscIHw0qVLW6dOnaxr167Z+FcBAAAAAJB1CIADAAAAABCgLrroIuvXr5+7JVW+fHnbunXrOds3bdqU6mu2b9/e3QAAQOA7fPiwTZo0yT7//HM7duyYVa1a1fr06WN16tTx96kBABCwCIADAAAAAAAAABCAevfu7aq7KAhesmRJV8VFS5e8++67dsUVV/j79AD8j6osJXX27FmuD+Anef31iwEAAAAAAAAAQPJ27dplq1evtmHDhrkZ3xUrVrRnn33WypQpYytWrOCyAQEc/E5tO4CsRwAcAAAAAAAAAIAAU7x4cZs9e7Zdc801iQJquh09etSv5wYgbUFuguCAfxAABwAAAAAAAAAgwBQtWtRuvPFGK1CggHfbypUr3czwRo0a+fXcAJwb3D5+/LitX7/e3fsiCA5kP9YABwAAAAAAAAAgwG3YsMEGDhxoLVq0sCZNmqR4XLNmzVLcFxsba+Hh4RYXF5dFZwnkTgp6x8fHu591r8eFChXy7uczB2Tc2bNn05xQQgAcAAAAAAAAAIAAtmrVKuvbt6/Vrl3bJk6cmKHXSkhIsOjo6Ew7NwCW6DMVExNzziXhMwdknNqvkJCQNB1LABwAAAAAAAAAgAC1cOFCGzVqlN166602bty4RCXRkxMVFZXq7HDNoIuMjMyCMwVyL32mNPNbwe+IiAgLDQ09Zz+AjDlf++eLADgAAAAAAAAAAAFo8eLFNmLECOvQoYMNGjQoU9YS1muEhYVlyvkB+C+VO/es/a3gt2/5c+EzB2TchbSBBMABAAAAAAAAAAgwO3futNGjR9vNN99sjz76qB04cMC7r2DBglakSBG/nh+Q2yVdjzhp0Nv3OADZiwA4AAAAAAAAAAABZuXKlXbq1Cn79NNP3c1XmzZtbOzYsX47NwDJB8GTIvgN+AcBcAAAAAAAAAAAAsxjjz3mbgByZhCc4DfgP3n9+LsBAAAAAAAAAACAHE3Bbq0Bvn79endP8BvwLwLgAAAAAAAAAAAAAICgQAl0AACQYYcPH7ZJkybZ559/bseOHbOqVatanz59rE6dOlxdIEBQjg0AAAAAAAC5ATPAAQBAhvXu3ds2btzoguBLliyxyMhIe/jhh+3nn3/m6gIBGvxObTsAAAAAAACQUxEABwAAGbJr1y5bvXq1DRs2zM34rlixoj377LNWpkwZW7FiBVcX8LPzBbkJggMAAAAAACCYEAAHAAAZUrx4cZs9e7Zdc801iQJquh09epSrC/hR0uD28ePHbf369e4+teMAAAAAAACAnIo1wAEAQIYULVrUbrzxxkTbVq5c6WaGP/PMM8k+p1mzZim+XmxsrIWHh1tcXBzvDJCJFPSOj493P+tejwsVKuTdz2cOyLizZ8+SUAIAAAAAgJ8RAAcAAJlqw4YNNnDgQGvRooU1adIkXa+RkJBg0dHRvDNAJvL9TMXExKS6H4Clu/0KCQnh8gEAAAAA4EcEwAEAQKZZtWqV9e3b12rXrm0TJ05M8bioqKgU92l2uGbQRUZG8s4AmUifKc38VvA7IiLCQkNDz9kPIGMKFCjAJQQAAAAAwM8IgAMAgEyxcOFCGzVqlN166602bty4DAUBtB5xWFgY7wyQiVTu3LP2t4LfvuXPhc8ckHFqvwAAAAAAgH8RAAcAABm2ePFiGzFihHXo0MEGDRpEAAAI0PWIkwa9fY8DAAAAAAAAggEBcAAAkCE7d+600aNH280332yPPvqoHThwwLuvYMGCVqRIEa4wEEBB8OT2AwAAAAAAAMEir79PAAAA5GwrV660U6dO2aeffmoNGzZMdFNJdAD+l1KQm+A3EPj++usve+GFF6xRo0Z27bXX2iOPPGK//vpriscvX77cqlates7tt99+8x7z0UcfWcuWLa1GjRrWunVrW7NmTTb9NQAAAAAAZD1mgAMAgAx57LHH3A1AYFOwOy4uzqKjoy0yMpI1v4EcYsaMGW6pkbFjx1p4eLhNmDDBunTpYitWrLACBQqcc/zWrVutXr16NmnSpETbS5Qo4e6/+eYb69evn/Xv399uuOEGe+edd6xr1662bNkyq1SpUrb9XQAAAAAAZBVmgAMAAAAAEIASEhJs7ty51qNHD2vSpIldddVVNnnyZNuzZ4998sknyT5n27ZtbsZ36dKlE90uuugit//ll1+25s2b24MPPugC3gMGDLDq1avbq6++ms1/HQAAAAAAWYMAOAAAAAAAAWjLli12/Phxa9CggXdb0aJFrVq1arZu3bpkn6MZ4CnN5FY59Q0bNiR6Palfv36KrwcAAAAAQE5DCXQAAAAAAAKQZnpLuXLlEm0vU6aMd5+vI0eO2N69e239+vWubPqhQ4fcOt8qeV6xYkU7evSoWwpBpdTT8noezZo1S3FfbGysez29LoDMFx8fn+geQOYvE5QnTx4uKwAAQYYAOAAAAAAAAcgT8Eq61ndISIgLdie1fft272D+mDFj7MSJEzZz5ky7//773Zrhp0+fTvH1Tp48maFS7dHR0el+PoDzi4mJ4TIBWUBtmNpBAAAQXAiAAwAAAAAQgAoWLOgdnPf8LApWh4aGnnN8nTp1bM2aNVa8eHHvbLbp06e79cOXLl1q7dq1876er5RezyMqKirV2eEKuEdGRqbjLwSQlkQYBb8jIiJS/ZwCSJ+kSWEAACA4EAAHAAAAACAAeUqf79u3zypUqODdrsdVq1ZN9jklSpRI9FgBs/Lly7vS6MWKFbOwsDD3fF96XLZs2XSfp4Ltel0AWUefZT5nQOaj/DkAAMEpr79PAAAAAAAAnOuqq66ywoUL29q1a73btI735s2brW7duucc/+abb1r9+vUTrcd97NgxN3v0yiuvdIP8tWvXtm+//TbR8/T6mj0OAAAAAEAwIAAOAAAAAECAlmV94IEHbOLEia4M+ZYtW6xXr14WHh5uLVq0sDNnztj+/fvdWt/SuHFj++uvv6x///5uPfAffvjBnnzySTcrvG3btu6Yzp072wcffGDz5s2zHTt22Pjx49363R07dvTzXwsAAAAAQOYgAA4AAAAAQIDq0aOH3X333TZ48GC777777KKLLrI5c+ZY/vz5LTY21ho2bGgffviht2T6/Pnz3QxwHdupUycrUqSIvfbaaxYSEuKO0fGjR4+2119/3dq0aWPffPONvfTSS1apUiU//6UAAAAAAGQO1gAHAAAAACBAKeDdr18/d0tKa3tv3bo10bbq1avb3LlzU33N1q1buxsAAAAAAMGIGeAAAAAAAAAAAAAAgKBAABwAAAAAAAAAAAAAEBQCvgT6rFmz7KuvvrIFCxb4+1QAJJEnT55zrsnZs2e5TgAAAAAAAAAAAPCLgJ4BvmjRIpsyZYq/TwNAGoPfqW0HAAAAAAAAAAAAcuUM8L1799rQoUNt7dq1FhER4e/TAXCBQW7tZyY4AAAAAAAAAAAAsltAzgD/6aefLH/+/LZ8+XKrWbOmv08HQCrB7+PHj9v69evdfWrHAQAAAAAAAAAAALlyBnjTpk3dLa2aNWuW4r7Y2FgLDw+3uLi4TDo7AB4KesfHx7ufda/HhQoV8u7ncwdknKopkFACAAAAAAAAAEAODoBntoSEBIuOjvb3aQBBx/dzFRMTk+p+AOlvw0JCQrh8AAAAAAAAAADklgB4VFRUqrPDNXsuMjIyW88JyA30udLMbwW/IyIiLDQ09Jz9ADKmQIECXEIAAAAAAAAAAHJTAPx8VDo2LCzM36cBBB2VO/es/a3gt2/5c+FzB2Qc5c8BAAAAAAAAAEi7XBEAB5B16xEnDXr7HgcAAAAAAAAAAABkp7zZ+tsABIXzBbcJfgMAAAAAAACZb9asWdahQwcuLQAAqWAGOIBMmQnuux0AAAAAAABA5lq0aJFNmTLF6tSpw6UFAgxj5UBgCfgA+NixY/19CgBSoGB3XFycRUdHW2RkJGt+AwAAAAAAAJls7969NnToUFu7dq1FRERwfYEcEPz2bGfCGOAflEAHAAAAAAAAACBA/fTTT5Y/f35bvny51axZ09+nAyANwe+07geQS2eAAwAAAAAAAACQWzVt2tTdAASWpMHt48ePe6ulFipUKNFxzAQHshcBcAAAAAAAAAAAgkSzZs1S3BcbG2vh4eFuWUMAmUfB7/j4ePez7vXYNwjOZw7IOCWSpLWqAgFwAAAAAAAAAAByiYSEBDdLFUDm8f1MxcTEpLofQPrbr5CQkDQdSwAcAABkqlmzZtlXX31lCxYs4MoCASS5DFlKsAEAAADBJyoqKtXZ4eoHqEQzgMyjz5Rmfiv4HRERYaGhoefsB5AxBQoUSPOxBMABAECmWbRokU2ZMsXq1KnDVQUCSErloViHDAAAAMh91A8ICwvz92kAQUXlzlX2XBT89i1/LnzmgIxLa/lzIQAOAAAybO/evTZ06FBbu3aty3IFkHM6BwTBAQAAAADI+HrESYPevscByF55s/n3AQCAIPTTTz9Z/vz5bfny5VazZk1/nw6AFILfykZfv369Nys9peMAAAAAAMD5nS+4TfAb8A9mgAMAgAxr2rSpu6WV1hxLSWxsrIWHh1tcXBzvDJCJFPTWemSiez32zU7nMwdk/gwQAACAzDZ27FguKpBD+gEEvwH/IQAOAAACTkJCgkVHR/v7NICg4vuZiomJSXU/gPS3XyEhIZl6+f766y+bPn26vf322/bnn39a3bp1bciQIXbZZZcle/z27dttwoQJtmnTJsubN687/umnn7ZLLrnE7T9z5ozVqlXLTp48meh5TzzxhD355JOZeu4AAABAbqFgtxLL1beOjIxkzW/AzwiAAwCAbBcVFZXq7HB1GtRZAJB59JnSzG8FvyMiIiw0NPSc/QAypkCBApl+CWfMmGGLFy92s71UIUXB7S5dutiKFSvO+X2HDh2yzp07W+3atW3BggUuIK/n6fh3333XBef1f4CC3++9956VLFnS+9ywsLBMP3cAAAAAAPyBADgAAAg4KhvFQDyQuVTu3LP2t4LfvuXPhc8ckHGZXf5cAey5c+da3759rUmTJm7b5MmTrVGjRvbJJ5/Y7bffnuj4VatWuVkn48ePt4IFC7ptCpjruRs2bLAGDRrY1q1brXDhwnbVVVdl6rkCAAAAABAo8vr7BAAAAABkjaTrjSnoXadOnXOC36xLBgSmLVu2uMQVBa49ihYtatWqVbN169adc7yO04xxT/BbVAZdjh496u4VAK9UqVK2nD8AAAAAAP7ADHAAAAAgiCm4ndqsVILfQODas2ePuy9Xrlyi7WXKlPHu81W+fHl38zV79mwXENda4LJt2zY7ffq0Pfzwwy7AXrZsWevYsaPdeeedqS5PkpLY2FhXml0zzwFkPi1f4nsPIHu/KwMAgJyJADgAAACQSwf2CH4Dgc0T8Eq61rfW8j5y5Mh5n691wBcuXGiDBw+2EiVKuG3bt2+3v/76y3r06OEC11988YUNHDjQTp06ZXfffXe6S7VHR0en67kA0iYmJoZLBWQBtWFqVwEAQHAhAA4AADLV2LFjuaJAAFKwWzM0FaSKjIxkzW8gB/CUMtfgvG9Z85MnT1poaGiqn/epU6fazJkzrVu3btahQwfvvvfff9/OnDnjXQpBa4Hv3r3b5syZk2IAPCoqKtXZ4fp9+n8FQNYkwij4HRERkernHkD6JE0yAwAAwYEAOAAAAAAAAchT+nzfvn1WoUIF73Y9rlq1arLP0UxuzehWoFv3nTp1SrTfN5DuUaVKFVu+fHm6z1MVJsLCwtL9fADnp+A3nzMg81H+HACA4JTX3ycAAAAAAADOpdnZhQsXtrVr13q3HT161DZv3uxd0zup/v3728cff2zPP//8OcFvPbdevXq2dOnSRNt/+OEHq1y5Mm8BAAAAACAoMAMcAAAAAIAALcv6wAMP2MSJE90a3pdeeqlNmDDBrd3dokULV8r8jz/+sCJFiriZ3Qpsf/jhhy4IrkD3/v37va+lY4oWLWrXX3+9TZ482UqWLGmXX365ffLJJ27296xZs/z6twIAAAAAkFkIgAMAAAAAEKB69Ohhp0+ftsGDB9uJEyfczG+t150/f3777bff3BrcY8aMsbZt27qy5zJ+/Hh38+U5ZvTo0TZt2jQbOnSoHTx40CpVqmQvvPCCNWrUyE9/IQAAAAAAmYsAOAAAAAAAAeqiiy6yfv36uVtS5cuXt61bt3ofz50797yvp5LqWhtcNwAAAAAAghFrgAMAAAAAAAAAAAAAggIBcAAAAAAAAAAAAABAUCAADgAAAAAAAAAAAAAICgTAAQAAAAAAAAAAAABBgQA4AAAAAAAAAAAAACAoEAAHAAAAAAAAAAAAAAQFAuAAAAAAAAAAAAAAgKBAABwAAAAAAAAAAAAAEBQIgAMAAAAAAAAAAAAAggIBcAAAAAAAAAAAAABAUCAADgAAAAAAAAAAAAAICgTAAQAAAAAAAAAAAABBgQA4AAAAAAAAAAAAACAoEAAHAAAAAAAAAAAAAAQFAuAAAAAAAAAAAAAAgKBAABwAAAAAAAAAAAAAEBQIgAMAAAAAAAAAAAAAggIBcAAAAAAAAAAAAABAUCAADgAAAAAAAAAAAAAICgTAAQAAAAAAAAAAAABBgQA4AAAAAAAAAAAAACAoEAAHAAAAAAAAAAAAAAQFAuAAAAAAAAAAAAAAgKAQkAHwv/76y1544QVr1KiRXXvttfbII4/Yr7/+6u/TAgAAKaDtBgAgMNrYQ4cOWZ8+faxu3bpWr149e+655yw+Pj7RMR999JG1bNnSatSoYa1bt7Y1a9bw9gEAEMDocwMAEAQB8BkzZtjixYttxIgR9sYbb7gGvkuXLpaQkODvUwMAAMmg7QYAIDDa2B49etiuXbts/vz5NnXqVPviiy9s2LBh3v3ffPON9evXz+6991579913rUGDBta1a1fbsWMHbyEAAAGKPjcAADk8AK5O/Ny5c12nvUmTJnbVVVfZ5MmTbc+ePfbJJ5/4+/QAAEAStN0AAARGG7tx40b79ttvbdy4cVa9enUX3B4+fLi99957tnfvXnfMyy+/bM2bN7cHH3zQKlWqZAMGDHDHvvrqq7yNAAAEIPrcAAAEQQB8y5Ytdvz4cddR9yhatKhVq1bN1q1b59dzAwAA56LtBgAgMNrY9evXW+nSpV1g20Nl0PPkyWPfffedmz2+YcOGRK8n9evXp78NAECAos8NAMCFy2cBRpnsUq5cuUTby5Qp492XVLNmzVJ8vdjYWAsPD7e4uLhMPlMgcHz//fd24MCBdD9fJRKPHTuWrueePn3arSkYGhpq+fKl77+UwoUL2+WXX24ZUapUKbcmIhBszp496watAxltN5C72u3MaLtptxGsMrvdvtA2VrO8kx5boEABK1asmOsbHz161PWN1UdOy+t50OdGbpbRdjsQ2m7abSBl9LmB4EOfmz43gteFtNsBFwDXl3pPJ91XSEiIHTlyJN1lYqKjozPl/IBAs3//fluzZo3Vrl073a9RoUIFC4T/uDJi5cqVbkBPM16AYKI2TG1gIKPtBnJfu53Rtpt2G8Eqs9vtC21jdXzSYz3Hnzx50k6cOJHi62l/etHnRrDKjHY7UNpu2m0gefS5geBCn/u/6HMjWF1Iux1wAfCCBQt6/wjPz6LOuLJdkxMVFZVqprq+5EdGRmbB2QL+p3/bKoOY22eA33LLLcwAR1BKbhA70NB2A7mr3c6Mtpt2G8Eqs9vtC21jdYyOTUrHh4WFeQcKkh6TWn9b6HMjt8qMdjsQ2m7abSBl9LmB4EKf+//YuxM4m8v3/+OXfUtEtpKISFkqeyGRVpVoj0K+tFGylIiSJbsKZa2slSWlhaJNhUJfZYkSbcYuskv+j/f1/X/O7wyDGWbmnDnzej4e8/jMZznHZ848xv257+u+r+t/6HMjViWl3Y66AHiQrm3Tpk3xZshqv0yZMif1nloOr84+EKsuu+yyiP3bSqGoDAt6uODvDEh+0Z7+XGi7gaSh3QZiV3K320ltY5XafM6cOfGOKdj9119/eZpzpULXM7teH077hQoVOun7pM+NWBbJdlvocwMpiz43EHvocwOxKyntdkaLMhdccIHPTF24cGHomNIar1ixwqpUqRLRewMAAEej7QYAIDraWB1TLW+tNg188803vq1UqZIPFiiVc3AsoPevXLkyv0YAAKIQfW4AAJIuczQuX2/SpIkNGDDA8uXLZ2effbb179/fZ7JfffXVkb49AABwBNpuAAAi08YeOnTItm3bZrlz5/b05xUrVvQAd7t27eyZZ57xlaPdunWzhg0bhlZ4N2/e3Fq1amUXXnih1a5d26ZNm+YZnXr16sWvEQCAKESfGwCAGAiAS9u2bb3GUdeuXW3fvn0+i33MmDGWJUuWSN8aAABIAG03AACp38b+8ccfVq9ePevTp481atTIV3gPHTrUnn32Wbvvvvu85ve1115rnTt3Dr1fzZo1rXfv3jZ8+HAbPHiwlSpVyl555RUrWbIkv0IAAKIUfW4AAGIgAJ4pUybr2LGjfwEAgOhH2w0AQOq3sUWLFrVVq1bFO5Y/f3578cUXj/ueWhGuLwAAkDbQ5wYAIGmirgY4AAAAAAAAAAAAAAAngwA4AAAAAAAAAAAAACAmEAAHAAAAAAAAAAAAAMQEAuAAAAAAAAAAAAAAgJhAABwAAAAAAAAAAAAAEBMIgAMAAAAAAAAAAAAAYkJmi3GbNm2yQ4cOWb169SJ9K0BMOnz4sB04cMCyZs1qGTJkiPTtADEnLi7OMmXKZOkJbTeQcmi3gZRFuw0gudF2AymLthtAcqLdBqKn3Y75FeDZsmWzzJljPs4PRMyGDRts27ZtBL+BFKI2TG1ZekLbDaQc2m0gZdFuA0hutN1AyqLtBpCcaLeB6Gm3MxzWlBQAOElBdoW5c+fyGQIAEOVotwEASFtouwEASDtot4HoEfMrwAEAAAAAAAAAAAAA6QMBcAAAAAAAAAAAAABATCAADgAAAAAAAAAAAACICQTAAQAAAAAAAAAAAAAxgQA4AAAAAAAAAAAAACAmEAAHAAAAAAAAAAAAAMSEDIcPHz4c6ZsAAAAAAAAAAAAAAOBUsQIcAAAAAAAAAAAAABATCIADAAAAAAAAAAAAAGICAXAAAAAAAAAAAAAAQEwgAA4AAAAAAAAAAAAAiAkEwAEAAAAAAAAAAAAAMYEAOAAAAICIOHz4MJ88AAAAAAAAkhUBcAAAAACprmPHjjZr1iz7999/+fQBAEgjpkyZYmvWrIn0bQAAAADHRQAcQLrFqjMAACJDQe+tW7da9+7d7fPPPycIDgBAGqA2++mnn7bJkyfbunXrIn07AAAAwDERAAeQboPfGTJk8O/Xr18f6dsBACBdyZgxo40cOdJq1qzpK8EJggMAEP2uuOIK69q1q82ePdvGjRtHEBwAgCiTUIa1Q4cOReRegEgjAA4gXT4IBMHvYAb70qVLI31bAACkK5kzZ7a+ffsSBAcAIA0NqDdp0sRatWplH330EUFwAACirK3WZHNZsWKFffPNN3bw4EHLlClTpG8NiIgMh8kBDCCdPgiowz5jxgz78ssv7bLLLrMHH3zQKlasGOlbBAAgXWRgCde2bVv7+uuvrV+/flanTp1QWw0AAKKn/dYgepYsWfzYa6+9ZqNGjbJrrrnG7r33XitevHikbxMAgHQrfMx78ODBNm3aNNu9e7cVKlTI2+tzzjkn0rcIpDpGlgCkK8GDgFacPffcc1akSBHvsK9atcofBhYvXhzpWwQAIOYzsPzyyy+2bNkyW7Roke+/+OKLVqtWLevUqRPp0AEAiNL2W9/v3LnTv2/WrJk98sgjNmvWLFaCAwAQRcHvN954w5566ikbPXq0HThwwB5//HH7/fff+R0h3ckc6RsAgNSmdOda/a3B9ksuucSPffLJJzZx4kR/MNCM9goVKvCLAQAgGVeOBR3yIUOG2Lx582zjxo2WPXt2n4ymY1r9rXrgTzzxhH9fu3ZtVoIDABAlA+pa8a3sab/++qvlz5/fM6jdddddfs3LL7/sQXKtBD/33HP5nQEAkApU2vOKK64ItdU//fSTj3FrzLtatWqeAn3Pnj3eH2/RooWNHTuWleBIV1gBDiDd+eeffzx1W+7cuUPH6tat6533+fPn2/Dhw6kJDgBAMgpWjo0YMcImT55sHTp0sPfee8+uv/56+/bbby0uLs4noCkQrrIkDzzwgH333Xf8DgAAiKBgQH3QoEE+WVxlSjRJbf369Z5VbcOGDXbPPfd4MPzjjz+2oUOH+jEAAJCygjTnmogWVDlW+7xp0ya76KKLbO3atZ6hRX1rbf/++2+fcK5FYQqKA+kBAXAAMU0PAUdSI79r165QY69UMHLVVVfZ2WefbT///LM/GOhBAQAAnJxDhw7F26rtXbJkiT399NNWo0YND3BPmjTJnn/+edu3b58Hx2XgwIH20EMPWcWKFfnoAQCIsDVr1vhqMgW+mzRp4v1o1RRV+nOlU/3jjz88CK4J5RpcL1iwYKRvGQCAmHfTTTf5BDVNVlNpTyldurSXFtu8ebOXKDnjjDPsyiuv9G3evHlt+fLlNnXqVMuRI0ekbx9IFQTAAaSLdG3qmKvjLnoQUOrzxx57zGfFZc2a1Y9v27bNA+Bajfbf//7Xvv/++4jePwAAaZUGwwcMGGB79+61TJkyhY6vW7fOM7B88cUXXoesXbt21rBhQ/vxxx9t+vTpvmpM17dt29YyZ87sWVsAAEDqUHu8YsWKeMcU7FZgWxlaPvvsMw98t2/f3vvNmjiu7C2iVeBKha4+eEIT0QEAQPLQJPOSJUt6n1mB7latWnl/WuXFnnzySStQoIDNnDnTLr30Ui9Nsn//fitevLivGH/llVc8Q1uwahyIZdQABxCzguC3UsK8++67PlNdgW/NjuvUqZN17tzZbr75Zu/AK+2qHhjUudeAvGbEqT6pzgMAgKRRh1pBbs1EP+uss+yCCy6wG2+80TvkGizXJDO1xVotFrTZmoV++umnx3sfdegBAEDqUPC7R48ePkD+ww8/+EoyrRrLkyePpzx/4403vB99++23++C7JqrlzJkz9PpgQD3oiwMAgOQXTDLXYi+lOy9Xrpz3s3VcY9nbt2/3oPfWrVt9NbiysO3YscNKlSoVmqhGW430gCdSADEnSLUqSq2qTnqbNm285snKlSs9rWrhwoU91arSwIwfP96/cuXKZa+//rq/Llu2bN7ZBwAASadAtzKtaCBdKdYUANfguQbMv/rqK6tQoYJde+21fq0mn82dO9dnsJOKDQCAyKldu7b3kRs1amRdunTxdObK3KKVZK+99po1btzY2/LAX3/95VnUwikIDgAAUtb8+fPthhtu8IlnysxSrFgxGzNmjL399ts+eU0lxUaNGmW33nqrB8IVICf4jfQmw2FyHQCIEZr1psHzgAbYly5d6g8ADRo08GOqPap0q0r/ovRsCnprVpz+K9QqM3XWX331VQ+cT5482UqUKBHBnwgAgLQnmE3+8ccf27PPPusrw7QKXClSVXdswoQJ1rNnT7v44ot9wplmpisIrpRtysiiNpnBcwAAIkMZ1DRZXJPSNFFcq8qUIa1Dhw7ef65cubKdc845nkFNAXANtJOxBQCA1PXzzz97VjVNTrvnnns8y5oC4L/88ouPfasEqNpvtdX6XqvDlbmFNhvpCQFwADHhiSee8NltqnMS1C5r2bKlbdmyxfr162c33XSTH9eguoLg6rwXLVrUhg0b5ulWdb2OacBe9UpfeOEFu/DCCyP8UwEAkHYcmUZt48aN3sFetmyZvfTSS95OB+2u0qNropraXE1Ua9asWajmNx1yAABSTzDxLNguWLDA22IFv7/88ksbPny4VatWzdvzt956y48po5pWfvfu3dsnrykLW5COFQAAJK9jpSzXxPLZs2d7RrWsWbN6W61V32vXrrUmTZrEy9pCW430iAA4gJjw2Wef2WWXXeaN/bZt2yxfvnzeOX/xxRd9hrpWnYX77rvv7N5777XbbrvNunXr5sc++OADK1SokAfGtQUAAEnvkGvmuVZ0S6VKlXxg/MMPP/Tgd/78+X0g/bTTTrNdu3b5NkCHHACAyLXfO3fu9IlpmrCmfrX2tbLs22+/tVdeecWqVKnibfW+ffs8g0swYY3JawAApI7//ve/Xp5EGdZEWU01vn3jjTfaf/7zH5/IpjJkWgymse3nn3+e7GpI1wiAA0jTjkyT+uabb/ogu1aCq97olClT7LnnnrPrr7/eG/1wq1ev9pTpzFQHACB52uKBAwfa+++/bwcPHrTNmzf7YHnz5s2tbt26PtFMwW+1u0qres011/g5AAAQ2fZb7bMys2jQXP3oGjVqWNu2bX2yWseOHW3hwoXer9Z5tema4HbkewAAgJRd/KXU5gps33///Xb55Zd7IFzt82+//eYrvwNaAa7yn5rkRluN9IwAOICYolXfr7/+uge2H374YStTpowHwXv06OF1wPv06XPUa1hxBgDAqVOqVHW6Bw0a5B1xlSFRZ1wB7/bt23tGFk1S++ijj3ym+ujRo311OAAAiJyhQ4faxIkTPeCdM2dOL1OijGk1a9b0fvSOHTvs2WeftU8++cQH06dPn84kcgAAIpD2/Ouvv/ZSJWq3Vbqzdu3aVqdOHa8DrnToQQnQ470HkJ4QAAeQZh2rEdfKM6VoU+e8TZs2oSB4r169PE26ZrcDAIDkpdnomoD2yCOPhNroH3/80QfUy5cv76vDj6wzStpUAAAi5/fff7fHHnvM2+orrrjCj2mSmjKraXK5jjds2NCPr1y50kqXLu3BbwbUAQBIOeHt7Jw5cywuLs5KlSrlGVhUpkRlxxQMVyD87LPPtvXr13tAvH///pY7d25+NcD/97+CPQCQxmjgPHgQmDlzpj8IbNiwwW699Va74YYbLHv27F73+6WXXvIguGp9q57Zxx9/TGcdAIBkbpNV81urxRQADyi4rTSqqkWmleBqp1WvTIHvIAge1A8FAACp78CBA96XzpMnTyg7mmqAN2nSxGbNmuX1v4MAeNmyZUPXUEYMAICUH/NWLe+3337bjymwreymLVu2tAoVKviXUqErs5qyt6hPftppp/FrAcKQ/wBAmhNeu0R1vXv37u2z3pSSrVWrVjZ48GCfva7Z6qqBMmzYMFu+fLnde++9Nm7cOH+I0Ew6AACQ9Db4yDZUbbI62lWrVrW5c+famjVrvK0NrwmqQfN8+fLFy9xCzVAAAFLPsfrAO3fu9LY7fAKb2vXzzz/fA+RHIvgNAEDKCfrJym6q4PcLL7xg8+fPt2LFivm+At5a5CUqKfbggw/aq6++6iVBg4nmAP6HADiANPsgoNqiSvkyYsQIGzt2rH322We++lsz1SdMmGD169e3Fi1a2JIlS2z27Nmh14bPpAMAAIkfOFc7GrSham81seyDDz7wAXLVG9NWpUbWrVvnA+Saha6a36oJTr1vAAAiQ+1z0H6rPIm+tm7d6plbGjVq5OXC1J9W263sLLpe6dGLFy/OrwwAgFSkcevNmzf7Qq9nn33WJ5qrDMnatWu9XVb/WwHvffv2hfrpyoQaLPhiojnwf6gBDiBN0qw2DbrnzZvXB9oLFSoUOvfUU0/ZwoULfWBeg+3z5s3z2t/MVAcA4OQo40q2bNns0Ucf9Y61sq+88847Xn9MHew6depYt27dvCyJJqVt2rTJSpQo4Z1ypUqdPn26t8nhWVwAAEDKUnY0ZULLnz+/7w8cONCmTZvmA+TqS6vN1qB5165dPX3qPffc4/tLly71ALlWmlGuBACA1LVx40Zr2rSpdenSxc477zwv81m+fHlr1qyZl/nUJDVlWVPpT9KeA8dG0T0AaY4666VKlfJB919//TV0fP/+/T44/8gjj9h7773nK7+rVatmtWrV8vPUKgMAIOmUXk2zzdUJV90xtcGqCapZ54ULF7Y333zTZ6FrdrqC4KpF9vnnn3umlqJFi9rtt9/ug+dKqcogOgAAqWPRokUewF68eLGNGjXK06cq+K1JbJqo9u6771rjxo39mgEDBthrr71mM2bMsLPPPtvbb71G7Tb9aAAAUpf63fXq1fNMagsWLPBFXZdeeqmf0ypw7Z977rmWI0cOfjXAcbACHECaCHgnlLJcg+/t2rWzcuXKeV2UgNLCtG/f3mt/a/UZAAA4OcGK7b///tt69uzpgXCtIitYsKAHvOXgwYO+gkyrvxX8ViaWI2ehM3gOAEDqUturrGhjxozxieIXXnihpzy/++67/fzy5cs99bna9rfeesvOOeccrwd++umnh96DyWsAAERmHDxog7XqW6u/Ndatc6r5XbduXbvjjjv8evrawLFRBBdAmgl+a3WZUrsosP3VV19ZlSpVbNCgQZ6erXXr1j6jXbPcleYtT548PhMOAACcPAW/1RZrBrrSo6ptVWmR1atXh65RavMWLVp4DfBgEtqePXvivQ9lSAAASN0JbGp7r7vuOmvevLnvT5o0ydvswEUXXeSpVRUUV7aWNWvWxAt+6zVkbgEAIHUF4+BBFhZNTlMG1M8++8xatmzp9cFvvfXWUFtNXxs4NlaAA4ha4XVC+/Xr5+naSpcubdu3b7d169b5jLeHH37YvvnmG+vUqZNt2LDBrr76ap/drpnsSpF+rNXjAAAg8YL2dNeuXdanTx+fdKbBcgW+1d4GK8GHDh3qqdKVXpX2FwCAyPenNXj+4YcfehutAPi4cePsjDPOCF23YsUK69ixo6dZVdpzAAAQPX1wBb7VThcqVMjbb2VfU3vOym/gxAiAA4h6WtXdt29fe/LJJ61SpUper0xpVvv37+/HlApGQXDVHVVa1hEjRnjqVQ3Eh89wBwAAyRME79Gjh68Cv/766z0IHqwQUydc1wQrxwmCAwAQ+SC42mSlQw/6ygqGhwfBlQa9WLFirCIDACAKbdu2zfvhRYsWjZceHcDxEQAHENXeeecdmz17tge9X3vttVBNUTX6mp2utOg6XqRIEQ+UP/74417bTKnRj6w/CgAATk0Q1FZNcAXBf/rpJ7vhhht8Mlr4pLPwLC4AACA6guDqP6smeM6cOb20WN68eeNdy2oyAACiC31r4OSRFxhAVFO6c9UTVT2yP/74I3Rcwe3q1avbli1bbMeOHT4Yr5rgqv/99ddfW+fOnf0BAQAAJB+1t0FNcGVeueCCC+z111/3AfVwBL8BAIgOapPVN1Ybrswtqh+6b98+u+uuu3xieTjqiAIAkDLUj06IJp8l1u+//24HDhxIxrsCYht5EgBEjYRSpWpFWcGCBW3IkCE2ceJE3y9ZsqSfU+2Tc889N5TyRR37ypUr+0C8UqEz+A4AQMoGwTXhbMKECdagQQM+agAA0kAQ/LrrrrO9e/fa4sWLLUeOHJG+NQAA0tWY95IlS3wxlzKoaTFXtmzZjrnKO/z4+PHjPUvqwIEDfUwcwImRAh1A1D0IfPLJJ57yPC4uzmeolylTxleWKeX5eeed54PsefLk8ZRtmrE+efJkaowCAJDKSJMKAED0TSI/nmAgPbwNp44oAAApJzyI/fzzz3sQW5lYFAA//fTTbfjw4VasWLGj+tfhr3vzzTetX79+9txzz/lYOYDEIQAOIKqoMX/33Xd9Jtv69eu94b/99tutTZs2HgRXinOlQtcMueLFi9vTTz9tWbNmTXLHHwAA/M+x2tATBbjDO+RKxaa2W20yAABI3fb7p59+8kxpiekTh7fvu3fvtly5cqX4vQIAkB6F95k//fRT69OnjwfBle103bp1NnToUB//nj59up155pmh68Nf98Ybb1j//v39tVdffXWEfyIgbSFaBCBqzJgxI7TSW2ld5s+fb/Xq1bP33nvPxo0bZzfccIO1bdvWV4EXKFDAa5ZpoP3gwYMEvwEASIZUbOqUf/nll7Z//34fHFfHOyFHpmJTKvTt27fzOwAAIIWtXr3at0H7PWnSJGvfvr2v5D4Rtd9B8FuD7UqjqjYfAAAkv6DPPGfOHHv//fetfPnydumll1rRokWtZs2a1rNnTy/j2aNHD5+gdqzgd+/evQl+AyeBADiAqLF27VqrWrWqlS1bNlTX+9lnn/WHAwXADxw4YDfddJPXAf/5559tzJgx9v3333vKGAAAkDRBLVDRLHQNnj/11FP+1bhxY/vtt99CaVKPfF14KrYhQ4bY3XffTR0yAABSmFaKPfzww7ZgwYLQMa0cK1y48AmzsBw5oP7MM8/44LtqjwIAgOSntnfPnj0+We2jjz6yP//8M975UqVKWf369X1MfO/evX4svK0eMGCAB7+vueYafj3ASSAADiAqHgb0tWzZMtuwYYMfU+ddAW9RB18PCP/97399XynR77vvPlu8eLE/DATXAQCAk0vF9sknn/gqsClTpngH+7TTTrMmTZrYli1b4q0EP3LwXKVLlIqNOmQAAKS8MmXK2DnnnOOTz5SxRTQhPGfOnEe18+FZXI5svzWgrhVldevW5dcGAEAyZ1kL/15ttNpdZTaNi4vzSeTKZhpQu35kO67V4loV3qtXL4LfwCkgAA4g1R2Zmk0dcX1pNpvqn7zzzjt+PJjBvm3bNp8Rd9ZZZ4U68VqZ1q5dO3vwwQepNwoAQBKRig0AgLRHq8SUES1Hjhz24osv+iRy9ZO1IlwlxFauXBmvjy0JpVJlQB0AgJTNsqYg9iuvvGKfffaZ5cuXz5588km75JJL/Lja4127dtnGjRtt2rRpnsklV65c/joFx3fu3GkjRowg+A2cogyHj1XYDwCSmVZ3q0EPqLFXCnPV877uuuusYMGC1qFDB9u9e7cHuG+99VZP56Z6KFrlPXr0aH+ICK9XCgAAkk5dAKVYe+SRR2zRokV24YUXerscbvjw4fbhhx/a5MmTfUV4ePutGewMngMAkDqO7ANr9bcGxkWZWhQAP/300/069bmLFCliJUqU8BJi5cqV8+u04kyZW0ilCgBAyho8eLCNHTvWJ6n9+uuvnt20TZs2tn37dl/Z/fXXX3sJkgsuuMBLjqnvrf2gvdfisaA8KICTRwQJQKpQJ7tbt262Zs0a39esc6VaVYB7xowZXn9s06ZNXvM7f/781rdvX6tevbq1bt3aNm/e7J17gt8AAJw8UrEBAJC2g9+//PKLZ027+OKL7bHHHvPB8qVLl9pdd91lM2fOtJdfftkuv/xyv1arwcuWLevfjxs3LlS2hDqiAAAkf1sdUCZTle18/fXXffLZ008/bcOGDbMXXnjBzjjjDB8Dr1OnjmdnOffcc32VuNpzLf4K2nuC30DyYBoJgFSh1d2ala5GXY388uXLfSZc+fLlbd68ef69Hgj0EKBUbj/++KNfozoo1apV81ntzH4DACB5UrFp8Pyiiy7yNlmp2Lp37+7H1em+5ZZbPBvL8VKx1apVi18FAACp2H6r7vdHH33kbfGll17qAe377rvP9uzZY59//rldf/31VqVKFf8Kp9VmGojXZPOrr76a3xkAACk0UU1j38q0pgxqmoSmkiX33HOPX6MMavLoo4/aU0895X1wZWNTxjVNZAtKgQJIPqRAB5CiwuuNTZo0yaZMmeKp2fRgoAH0oHH/4osvPAiuzrtqe9eoUSPe+ygdjILgAADg5JGKDQCAtDegPmbMGO8vqwSJ+tc5c+a0ChUq+DnV/h45cqTt27fPWrVqZVdeeeVR76WJbcGENgAAkPzj3s8//7xPIv/77799f+jQoXbVVVeFrp0wYYJfc+edd1rXrl19gpqC4kuWLLEWLVpYkyZN+LUAyYwU6ABSlB4CgjQwd999t9f11qozpWP7/fffQ9fVrl3bWrZs6cFxrQRXbfBwBL8BAEg6UrEBAJC2aOK4BMFvZWDRirKmTZv6RHGVCguC3xpoV9pUTSLXZPJPP/00wfck+A0AQPL3tYPgtzKZfvXVV77Y66WXXvKMp+PHj7fPPvssdL0C3G3btvWMp2rblQ5dK8HVtl9xxRX8eoAUQAAcQIoPuqvjrvTlorQvauzz5Mnj9U9++umn0PU1a9b0lC9169b1tKwAACD5UrGpRmiQii1v3rzeJnfp0sXrhaoemdpmdcAvueSSUCo2dcxJxQYAQOpQvVANoCsDWkAryTSwrlXfEn5u4cKFvipcAfFu3bp5STEAAJBy1H+Oi4sL9bVV51tt8cUXX+wlSurXr28dOnSw/fv322uvvRYvCK5MLZroliVLFu9r58uXz5577jkvAQog+REAB5Dig+56EFBHXIFvNf6NGzf2WmUKfqsm+M8//xx6Xb169XzwXSu+wzv2AADg5GqGKs1amzZt7MEHH/TOtwbWA1pNpvRro0aNsp49e3oQXLXISpYs6Z11teEAACB1NGrUyF588UXvDyu1uWhwXJPTpk6dalu2bPFzwQTzwoUL+woyqVSpkrf94dlfAABA8nn//fdtxYoVVqBAAd/X2PXmzZvthx9+iDe+Xa1aNc/OovIkWgk+e/bs0DmtGld/XUFwCfrtAJIff10AUkTQePft29cGDRrk++qcq/ZYkA69WbNmtmrVKq9XphntRyLtOQAASUcqNgAA0hZNFlfKVKUzVz9Yk9U6duzo/WlRpjRRuTDVDM2cObMPuqsfXbBgwXjvxUA6AAAp44YbbvDsaWqHP/nkE9uwYYOv6lZZz++++84GDx4cLwj++OOPewnQb7/9Nt77BKnTAaSszCn8/gDSMc1u09fEiROtVKlSnrpNAe/Ro0d7ijatBFeDrzQxxYoVswsuuCDStwwAQJpOxdawYUMrUqSI72v19scffxxKxSann366d8q1ulvq1KnjW3Xa//Of/3i7HJ6KjUF0AABSXtGiRT07Wu7cuT1bmsqVXHvttfbll1966nNlctHg+tixY+3666/3/rRWnKnNHj58uL+HVpMxoA4AQMoI2ln1kVVeTKVHLrvsMl/p3aJFC8/OouC4JrJpYptUrVrVhgwZYmXKlOHXAkQAAXAAKUarvc8991wPfn/zzTf26quv2rJly+zAgQM2c+ZMT/WiFG+5cuWyq666it8EAACnmIpNQewjU7EF2VfCU7EpCK5UbCpNcs011/g5UrEBABAZnTp18klqWvGtAXQFux955BEfRFcbrzZa+0qFrr70zp07rUqVKp5VLVgNTgY1AABSTvgks4oVK1rz5s3tnXfe8dIlCni3bt3azykIriC52m258MILfUtbDaS+DIc1dQUAUkDwEJA/f377/vvvfaZ6/fr17brrrvMvpY0JHgaEBwEAAE4t9bk62krFphnmqkv2+uuv28CBA70zrsB3QBPTVPu7du3avgUAAJFruwPDhg3zVOjt27f3SW1Kd66V4Z9//rlPWAtvywP0owEAiEzbrcVeU6dO9cwsCoIXKlTIRo0a5RPOlVHttttu41cDRBArwAGkGAW5d+zYYXFxcT7wXr16dV/trQcFBcU1MB+OGesAACQdqdgAAEjbA+j79u3zQPbDDz/sdcBVJkwrzbQS/IEHHvDvNcFNAfEePXrEex/60QAApB613UEbrlXgoiB4sBJcbbcC4Q0aNODXAkQYAXAAKUIPAlmzZrV7773X97ds2WKLFy/2mmaawa564KoBDgAATg2p2AAASHuT14Lg98iRI23JkiW2Zs0aX+GtPrTKhimDi67TSnAFwZX2fM+ePdT6BgAgyoLg6pNPmzbNevbs6RPVGjZs6NeprIlKlQCIDP76AKSI8DRu6rRPnz7d3nzzTW/0ixYt6jPjqFUGAEDyCTrg999/v2/DZ6ErE4uOKRWbZqOHp2Jj5RgAAJGZvKY6oW+88YY99thjdsEFF1jOnDl9IvlDDz0UWgketO1PPfWUn9drg+wvAAAg8kHwZs2a2a5du2zdunV2xhlnhK4h+A1EFjXAAaSKgwcP2qpVqyxHjhxWokQJfzhgFhwAAKlXj6xgwYI2c+ZMT8VGRxwAgMjSIPnjjz/uwe/atWvHO/fVV1/Zueeea7NmzfIgeP/+/e3GG29MsG44AACInPB2OZigRlsNRAdWgANIsqQ24ro+S5YsVq5cudAx1Tdj8B0AgORFKjYAANKG/fv326+//up95YAmiat8WN++fT31ueqIaiXZddddF7qG4DcAACnjZDKshC/y0mu1Evy0007jVwREAaaMAjjp4PdPP/3k+yf8jyZjRn+ACOzdu5d0qwAApHAQXJSK7ZprrvEMLKRiAwAgemiQPG/evB4EV8Y00eB54cKFPSiu/rY0btzYj2twHQAApAz1oYPg9759+2z37t0ezJbwce0j6VywyCsoAapJbgAijwA4gERZvXr1//7T+P/B70mTJln79u0T1QkPnz2nBwGlb+NBAACA1AmCP/LII972hh8DAACRVbp0aatUqZINGTLE5s+f71nSZM+ePZY9e3Y7++yz411PBjUAAFJ+wdeYMWOsU6dOdsstt3ipkjlz5hxzVXj4mLcC3126dPHSn9myZeNXBUQBAuAATmjo0KH28MMP24IFC0LH1q9f7zPTs2bNetzXhj8IvPHGG/bMM89YzZo1eRAAACAJjjfj/ESp2CRIxUbaVAAAIi+YkKZU5xdffLFPLu/Vq5cNHz7cJ679/fffvvIbAACkvKCfPGjQIBs9erTVqlXL2rZtaxs3brQ2bdp4eZITjXn369fPXnjhBatbty6/MiBKEAAHcEJlypSxc845x2emf/nll35MKdly5sx5VMMfPkB/5IPAgAEDfAUaDwIAACQeqdgAAIgtQZkw9ZdfeeUVu/vuu+3PP//0leBnnXWWTZs2zVd8B6vCAQBAylq1apV9+umn9tJLL9ltt93mZUq0AEzj2evWrfPzxxrz1nh379697eqrr+bXBESR/xUnAIDjqF+/vq/YfvXVV+3FF1/0BwB1yidPnuwddO2XLVs2XjqYYz0IqA4pAAA4uVRsS5cutR9//NGKFy9ut99+u1111VWJSsWmDCzDhg0jAwsAAFFC7XTQzrdr187rgKv9DrKsKYsLac8BAEj5vnZQgkR1vytUqOBpzzt27GgdOnTwsezOnTtbnjx5fCuZMmUK9bUZ8waiFwFwAIl6EKhdu7Z/P2LECE/Tpob+r7/+skcffdSvUzr0IkWKeJ2Tm266ycqVK+ev40EAAIDkScU2ZcoUr0GmWeWjRo3yVGzz5s2zM888M95rEpqERio2AACieyW4gt1B+61jBL8BAEjZNljeeustD3Jr8Zcyno4fP95LkqgO+F133eXXbNu2zdvmIPAtkyZN8rTn+mLlNxCdSIEO4ITB719++cVTvag22WOPPeYPBFqBpoeAmTNn2ssvv2yXX365X7ty5UpfDS7jxo3zh4A+ffqw8hsAgJNEKjYAANKG8JJgiaWgd/jktb1798bLrgYAAFLGb7/95pnS3n33Xbvwwgt9gZcmkLds2TIU/Fa7vG/fPjvvvPNCr4uLi7OvvvrKx7wJfgPRK8Phk3k6BxDTwjvfqvv90Ucf2c6dO+3SSy/1gPa3337rQe8NGzb4avAqVaoc9R7bt2/3dKtKn96gQYMI/BQAAMRGKrbvvvvO2rdvb7NmzbIvvvgilIrtjjvuOG4qNrXZlB8BACD1228NlKt+t/rWp512Wrw+9pHCz02fPt370k2aNKFsCQAAySihtljlRrTY6++//7bXX3/dA+Lqe2/dutXuvPNOL0uiPvjmzZvt7bffjpedZcuWLUdlYwMQXUiBDuC4tUaVbnXAgAH+gJAzZ07Lnj271apVyxv8kSNHekrWVq1a2ZVXXhnvfc444wwfdM+VKxefMAAASUAqNgAA0nY/WhnTfvzxRytevLjdfvvtdtVVV51wMF6T1zSJXCvRlHUNAAAkn4Qmoml8u127dh7snjZtmjVu3NheeeUV69mzp82YMcMnsancp0qC6lpNblN7r/ci+A1EP1KgAwjVLfH/FP5/p/3gwYO2YMECa9q0qdWoUcOqV69uFSpU8HN6IFCHXA8Ie/bssU8//TTBT5HgNwAAJ4dUbAAApB1BP1oTxEePHu2Txtu2bWsbN260Nm3a+Cqx4wW/33jjDc/c8sILL1jdunVT/f4BAIhVmlymdOUBBbbnzJnjwWw5++yzfaLa119/7SvC8+fPb4MHD7YJEyb4qnBlP1VtcJ1TxjXKlABpBwFwAN6Y60EgaPhFqV80Y12rviX83MKFC31VuALi3bp18wcJAABwchKqSHTWWWdZ+fLlvWMuzz33nO8rM4sysLz22mv28MMPe4kSZWIJFClSxJ599lm77rrr+HUAAJCKVq1a5ZPDX3rpJbvtttssb968tn79eu87r1u3zs8fK/iteqPKoEYdUQAAks+aNWvswIEDVrVq1dB494svvujtrmp8L1q0yMe89f3s2bNtxYoVodfmy5fPcuTIEWq3w9OfA0gbCIADsEaNGnnjr1ls8+fPDzXyl1xyiU2dOtVnq+ucZrpJ4cKFPcW5VKpUyWe7K+UbAABI3lRs6oAr80qxYsU8FVvFihV9xvoHH3xgBQoU8FqhQSq2IJBOKjYAAFLekX1gZUfbvXu3TxTXBDat/FZd0WuuucbTm2sSm9prfYWnPQ+C37oOAAAkDwW+S5Ys6RPEtYJbY9xLliyxWbNmeYrzPHnyWIcOHXxC+aZNm7wd1iKxffv2HfVerPoG0iamrQDpmFKynX/++da6dWsPcGsV+BNPPGE33nijbzX7rU+fPvb00097h1xBb3XWtTJc6WESSvkGAAASRxlU6tevb5dffrnvBzXGrrzySm+Xw1Ox3XzzzaFUbNu2bfOZ6MFsdE1QYzY6AACpK+gDv/XWWz5orjJhGmAfP368DR8+3Dp16uR9alHbrYlqat/Dy5Ap7bm+WPkNAEDyUQYWTRZv0aKFZzfVJDW1z0Eq83r16lmVKlVs7ty59v3331v79u29L67rNm/ebOeccw6/DiAGEAAH0rGiRYv6arLcuXPbfffdZ2XLlrVrr73WvvzyS3840Iz1li1b2tixY+3666/3mex6CFB9cHXoj0zdBgAATi0VmzrkSnGuQXO1yxo4v/vuu72dVjscZGkJkIoNAIDI+e2332zYsGG2f/9+a9q0qWdL04ruRx99NBT83rt3r68mO++880Kvi4uL8wnomnBO8BsAgOSlUmFa6b1x40YPeDdo0MAXd6mNHjNmjAe6tQBMgXB96Xtdv3r1ai9HBiA2ZDicUNFBAOmGAuAvvPCCz3RTsPuvv/6yl19+2T7//HN/OHjkkUfs999/t5kzZ/rDg9KqNmvWLJRuNXwGOwAAODEFvrNmzeoTyoJUbEpnXqNGDVu6dKkHwH/66SdfAd68eXP78MMP/XW9evWy7Nmz8xEDABABCU3+1qC60pxrIpvSpiogrr711q1b7c477/T2/osvvvCJ5G+//Xa8jC0qNUbZEgAAUqZMybhx42zUqFHeJquNrlatmq/2VhBc5++55x5f8BXepgftNGPeQGxgBTiQDqmRD9K1PfDAA96oDxgwwDv0//nPf/yYvPfeez44rxqkDz30ULz34EEAAICkIxUbAABpU0KZzzRQrv6ygt3Tpk2zxo0b+yRz1RYNSpuUKFHCRowYEZpErr643ovgNwAAyUtj2/pSW6s2WEHtYsWKeZtcunRpz6rWsWNHD4KrFIna4+uuuy7UpgdY8AXEBlaAA+k4+K00bOqA58qVy0aPHu1B8A4dOvhK8O3bt3snXWnZLrnkEuvRo0ekbx0AgDTvxx9/9LZWbWuQii1v3rzeAdfKcKVLVfq1wM8//xxKxab633TEAQBIXc8884zVr1/fLr/8ct8PAttXXnmlt8vqVz/77LPejvft2zc0gK663zly5PCvI1eWAQCAlBvzDvrSyqCmLKdvvPGGlSlTxrp27er9b60EHzhwoKdI7969u2djAxB7ePIG0pFgBpwoveqSJUu8BqlmrN97773eYVfjH74SXGnPVReFWt8AAJw6zTq/9dZbQ6nYGjZsaBdddJE9/vjjHgRXx1yD6UEqtlKlSnl7TCo2AABSn/rL6idXrVrV95Xq/MUXX/QSJupTd+rUycqWLesT2O6++2677777fHWZ5MuXL/Q+6k8T/AYAIOWD30p9vmjRItu/f781bdrUs7Ts3r3b3n//fa8D3q1bN2+rVbJEk9qCNh5A7GEFOJAOqea3BthVqywuLs4uvvhiq1Onjp8bM2ZMaCX4/fffb7t27bKcOXP6QwRBcAAATj0Vm2p+K9idJ08eq1Spkg+en3HGGaF6ZLpO9ciCVGwAACD1KfCtGt4qC6aAt9rvAgUK+CqxpUuXegD8p59+srPPPtuaN29uH374ob+uV69evuIMAACkLmVNU3utoLeym9aqVcsztqgtnzBhgp8rXLiwL/hq1aqVZ3gRSn0CsYkV4EA6s27dOk/9otRstWvXjndO6c6vueYaH3jXAHzBggVDaViPTCMDAAASJ2hDg9qhmnimOqFBKjYNlCsVW1CPTNlYNFlNqdlIxQYAQOpbv369TZ8+3Vq0aOETwpUVbfz48R4IVyrzevXqWZUqVWzu3Lk+gU2ryJQWXddt3rzZzjnnHH5tAACkolWrVtns2bN9zLtmzZrxFnKtXLnSJ6tpYpv64eqfB4vBhFJjQGwiAA6kM0r/8uuvv3rHPaAO/JYtW/wBQanPVQNcK9HCV54R/AYAIOlIxQYAQNqjlWGzZs3y2qDqLzdo0MDTpmqiuLKmKdCtyeIKhOtL3+v61atX21lnnRXp2wcAIOYdmalUY9ta9X3++efHu07ZT5XptHPnzp5pTWXINLlNr1UbT4kSIHaxnBNIZ9S4a0WZguBK/yJq6JX+RUFxpXCTxo0b+3E9CAAAgJMTTCBTKrYRI0Z4Z1ypUtUGa5a5ZqGrA758+XJ79NFH7bbbbvPBdtUl03mlYgMAAKmrdOnSduutt9onn3xib7/9tveNL7roInv88ce9fVYGlw8++CB0falSpeyBBx7w+uC03wAApPxE8yD4rcVeojIlGtv++uuvfT84r1XfGt9WhhbJlSuXn1MAneA3ENtYAQ6kw4686o0OGTLEZ6Zffvnl3kHXDHbVKdOgfDgeBAAAODWkYgMAIG3QYLi+NIFNKc01YF6sWDGbMWOG96WDciVaCT5p0iQfQA8yp4X3nUmlCgBAymdZe+utt+zbb7/1hV1169b1Cefvv/++5cuXz6644gq/Jnfu3FaoUCFf9R0ufPU4gNiU4bCe7AGkqwcE/dk/+OCDtnjxYk/VduaZZ9qiRYs8VYzqnBH0BgAg+VKxffXVV75i7N133/WOd3Beqdjuu+8+T8V25ZVX2u7du0nFBgBAFAyoy88//+yTxFUrVCu+y5QpY127dvWMaqr7PXDgQM/a0r17d6tRowa/NwAAUpFKeb755ptWpUoVmzdvnk9Iq1ixok2dOtVOP/10n7RWrlw5D5IrNbrGvJmgBqQvpEAH0pEg+K1B91deecXuvvtu+/PPP23+/Pm+GnzatGke/CbdKgAAJ4dUbAAApO3g97hx46xt27a+ynvdunV25513+sRxlQtTHfBdu3b5oHr79u3tsssus6pVq0b69gEASFcmTpxo7733nm9VakyT0bTyW6XFmjZt6llb5s6da6+99pqvAFdQnBIlQPpDCnQgnVHwO+jct2vXzmuQKiiueiiiFG+sAAcAIOlIxQYAQNoUBL8HDx7sg+QKemu1mPrLGjBv3ry51xXVuUcffdR27txprVq1sm7duvnrNImcVWUAAKSOZcuWWaNGjaxs2bK2ZMkSXwneoUMHGzVqlO3du9fb7U6dOnn7rvZb4+GMeQPpDwFwIJ2vBFewO0jTqmMEvwEAOPn29chUbJqFvn79ek9xrkFzdcgXLlwYSsW2Z8+eUO1QAAAQOatWrbLZs2d7O16zZs14JU1Wrlzpg+maOK6U6Grz69SpE3otwW8AAFLHvn37PACufrSyssyYMcPb7ZYtW/pqb60GVwYXTVRr0KCBv4YxbyB9IgAOxGCt0cTQ9eGv0+y4HDlypNAdAgCQ/lKxaTa6AuHqgGuCmVKxaQBdqdgWLVrk9cAVEA9SsTF4DgBA5PrRW7Zs8VXf559/frzr4uLifFVZ586d7Z577rGGDRtazpw5WU0GAEAEZM+e3Z577jnPwLZ06VIPdj/88MOh4LgmoleqVCneRPOkjpsDiA0EwIEYSreqRl4D6OrIn3baaccNjIefmz59unf0mzRpYtmyZUvV+wcAIJaQig0AgLTVj96/f7/3gwsUKOBpUr/++mu75ZZbQv1lrfpW2tTNmzf7fq5cuXzLajIAACKjYsWK3k4//fTTPtm8WrVq3rarDa9Vq5av/hYmmgPpGwFwIEY67WPGjPFZbz/++KMVL17cbr/9drvqqqtOGPzWyrRnnnnGhg0bRvAbAIBTQCo2AADSVj9a5Ui+/fZbK1y4sNWtW9dXf6t8Sb58+eyKK67wa5ROVVlbtOo7HKvJAACIjKANLlOmjKdA79mzp2db+/vvv61Fixah8W+yrAHpW4bD+p8AQJo2aNAgmzJlij3++OOexlzpVFevXm3z5s2zM88885jB7zfeeMP69+9vffr0sauvvjpCdw8AQOz473//6wPrKi0yYsQIT8Wm2eivv/66zZkzx1OxtWnTho44AAARplrfmhCuVKnqOytVqlaUTZ061U4//XSrUKGClStXzoPkypimzGkMpAMAED22bdvm4+DLly+3s846y1OjK5sLK78BCCvAgTRu1apV9umnn9pLL71klStXti+//NLWr19vAwYM8BooW7du9dlwxwp+9+7dm+A3AADJhFRsAABEv4kTJ9p7773n27Jly3ogvHv37p5GtWnTpr6KbO7cubZo0SJf/a3BdQW/GVAHACB6KGPLE088YQcPHvTAt6hsidpzAOB/AiANp2uTPXv22O7du312ulaWdezY0Tp06GDXXHONde7c2fLkyeNbCWarq3MfBL91HQAASB6kYgMAIPotW7bMGjVq5MHvJUuWeB9Z/WgFupXFpXnz5tapUyfve2tAXe07A+oAAESnIPitxV8EvwEE/i+KBiBNCK9VtmPHDq/brUZ+/PjxPuNNnfR77rnHG3ulgfnrr7888B0EvydNmuQpz/VF8BsAgJRx/fXXW5MmTbwkyTnnnGPTpk3ztlkrx6gZCgBA5Ozbt88D4OpL79q1y2uH1qxZ01q2bOllxT766CNfDa4J5lmzZvV2mwF1AACiH31tAOFYAQ6kQb/99psNGzbM9u/f7+nZChcu7Cu6H330Ubvrrrv8Gs1aV8f+vPPOC70uLi7OvvrqK2p+AwCQwkjFBgBAdMqePbvXCFV2taVLl3rpsIcfftjPqQ+tmuCVKlXymuABBtQBAACAtCXDYU1jBRC1wut2B5R67bHHHrO///7bXn/9dQ+It2/f3ut933nnnT5L/YsvvrDNmzfb22+/HS/1y5YtW+zMM8+MwE8CAED6lVB7DgAAItsuP/300/bnn3/a2LFjPSD+4IMPevC7VatWfh01vwEAAIC0iQA4kEatWbPGg91PPvmkNW7c2IPfPXv2tFWrVtlpp51mJUqU8H2lR1enXanTGXgHAAAAAOB/JkyYYH379rU77rjDVq5c6ZPMp0+f7pPImbwGAAAApF0EwIEo9cwzz1j9+vXt8ssv933VJVNg+8orr/R63krN9uyzz9qBAwe8wx6s8lbd7xw5cvhXsFo8fAU4AAAAAAD4X/951KhRtnz5cjvrrLM8NXowiVz9bgAAAABpEwFwIEpXd48ZM8YD3Op8axb6zTff7N/nyZPHOnXqZGXLlvXr7r77bps0aZJVqFDhqPdhxjoAAAAAAMd38OBB728Lk8gBAACAtI8AOBBltKJbNbyDDvjUqVOtQIECVqNGDVu6dKmNHDnSfvrpJzv77LOtefPm9uGHH/rrevXqZdmzZ4/07QMAAAAAkCYxiRwAAACIDeRFBqLI+vXrvd5YixYtLGfOnLZnzx4bP368B8I1C71evXpWpUoVmzt3rn3//ffWvn17T4uu6zZv3mznnHNOpH8EAAAAAADSpAwZMkT6FgAAAAAkA1aAA1Hkxx9/tA4dOtgll1ziAe8GDRpY3rx5rX///r4y/K677rIbb7wxdP3PP/9ss2bNstWrV9vgwYOpUQYAAAAAAAAAAIB0jQA4EEX+/fdfGzdunI0aNcq2bt1qr7/+ulWrVs1XeysIrvP33HOPXX/99aHXhNcnO3ToEEFwAAAAAAAAAAAApFsZI30DAP5XZ0zB7YwZM3pKcwW1ixUrZjNmzLDt27dbhQoVrGPHjn5+0qRJobrfEgS/JVOmTHycAAAAAAAAAAAASLdYAQ5EWBD4Dk9rnj17dvv888/tjTfesDJlyljXrl09FbpWgg8cONA2btxo3bt3txo1akT03gEAAAAAAAAAAIBoQgAciJLgt1KfL1q0yPbv329Nmzb14PaYMWPs/fff9yB4t27dfHW4guBaGd6lSxdWfAMAAAAAAAAAAABhCIADUWDw4ME2depUu/POOz3lea1atezKK6+0gwcP2oQJE/xc4cKFbefOndaqVSurX7++v46a3wAAAAAAAAAAAMD/+b/iwQAiYtWqVTZ79mzr27ev1axZ0+uBZ8iQwc+tXLnSmjdvblmzZvWU6FotXqdOndBrqfkNAAAAAAAAAAAA/B8C4EAqCw9wy5YtW3zV9/nnnx/vuri4OOvQoYN17tzZ7rnnHmvYsKHlzJnTX/vPP/9Y5sz8+QIAAAAAAAAAAADh/ld8GECq1fwOgt+q9S0FChSwLFmy2Ndff+37wXmt+lage/Pmzb6fK1cuP6cAOsFvAAAAAAAAAAAA4GgsIQVSMfitFOby1ltv2bfffut1vevWreurv99//33Lly+fXXHFFX5N7ty5rVChQr7qO1z46nEAAAAAAAAAAAAA/yfDYS0nBZBqVOv7zTfftCpVqti8efPsuuuus4oVK9rUqVPt9NNPtwoVKli5cuU8SK7U6NOnT6fWNwAAAAAAAAAAAJAIrAAHUtHEiRPtvffe823ZsmU9EN69e3dPad60aVNbuXKlzZ071xYtWuSrv0eNGuXB70OHDhEEBwAAAAAAAAAAAE6AADiQipYtW2aNGjXy4PeSJUs8AN6hQwcPdO/du9eaN29unTp18lTpqguudOeqA07NbwAAAAAAAAAAAODE/leQGECK27dvnwfAs2XLZrt27bIZM2ZYzZo1rWXLlvb444/bRx995KvB58yZY1mzZvXgtyoUEPwGAAAAAAAAAAAAEocV4EAqyZ49uz333HP277//2tKlS23dunX28MMPh4LjqgleqVIlrwkeUBAcAAAAAAAAAAAAQOIQAAdSUcWKFT2o/fTTT/vK7mrVqnlA/Ouvv7ZatWpZq1at/DpqfgMAAAAAAAAAAABJRwAcSEXBiu4yZcp4CvSePXvaypUr7e+//7YWLVr4OaU9z5QpE78XAAAAAAAAAAAAIIkIgAMRcP3119uff/5py5cvt3POOcdTo2tFOCu/AQAAAAAAAAAAgJOX4bCWmwKIiIMHD1qWLFn8+3/++ceD4AAAAAAAAAAAAABODgFwIApoHkqQHh0AAAAAAAAAAADAycl4kq8DkIwIfgMAAAAAAAAAAACnjgA4AAAAAAAAAAAAACAmEAAHAAAAAAAAAAAAAMQEAuAAAAAAAAAAAAAAgJhAABwAAAAAAAAAAAAAEBMIgAMAAAAAAAAAAAAAYgIBcAAAAAAAAAAAAABATCAADgAAAAAAAAAAAACICQTAAQAAAAAAAAAAAAAxgQA4AAAAAAAAAAAAACAmEAAHAAAAAAAAAAAAAMQEAuAAAAAAAAAAAAAAgJhAABwAAAAAAAAAAAAAEBMIgAMAAAAAAAAAAAAAYgIBcAAAAAAAAAAAAABATCAADgAAAAAAAAAAAACICQTAAQAAAAAAAAAAAAAxgQA4AAAAAAAAAAAAACAmEAAHAAAAAAAAAAAAAMQEAuAAAAAAAAAAAAAAgJhAABwAAAAAAAAAAAAAEBMIgANR6vDhw5G+BQAAgDSPZyoAANIm2nAAAACcLALgQJTZuXOnderUyRYtWhQ61rRpU/+KRmXKlLGXXnrJv1+4cKHva5sYSb0+NX8WAABSU926de3JJ59M9Q892tri5LRhwwZr1aqV/fnnn5G+FQBAjIhUe30if/zxh7fn06dP931tta/jiZHU61PagQMHrHfv3jZz5sxI3woAIA2gPw0gIZkTPAogYlauXGnvvPOONW7cOHSse/fuaeI3ctFFF9mbb75ppUqVsrRI9164cOFI3wYAIB0aOnSonXbaaan+76b1tvt4vv76a/v8888jfRsAgBgSqfY6qerUqePte8GCBS0t2rRpk73++uvWp0+fSN8KACANoD8NICEEwIE0IK0MSmsg4OKLL7a0Ki3fOwAgbbvwwgsj8u+m9bYbAID00F4nVb58+fwLAID0gP40gISQAh1IZvv27bOBAwfa1VdfbeXKlbNLL73Umjdv7iu7A1qNdOedd/qAc82aNa1bt26e+lzpR++9916/Rtsg7Xl4CvQWLVpYo0aNjvp3H3roIbvppptC+0qh3qRJE6tYsaJVrVrVnnjiCdu2bVuSf55du3bZc889Z7Vq1fL71cr0zz77LNFpVP/73//6PetzqF69uj3++OO2cePGY6Y507XVqlWL93klxpQpU/xz0T1WqFDBbr75Zvvwww9DKVDLli1rEyZMiPcafR5a+fbaa68lmAL9xx9/tEceecTvW9fpM+jZs6f/jgEAsZMqbfDgwZ5ms0qVKt4GqRTJX3/9lag2Rv79919/D72X2n5t9Sxw8ODB0DXvvfeet9N6vdqVDh06xGsPw1O2XXPNNda2bduj7lX/7oMPPhjanzNnjt9X+fLl7fLLL/c2as+ePUn6+Y9su9UOXnvttfbxxx9bgwYN/L3173733Xfept92223+M+jc/PnzQ++j1+ln+PTTT/31ev64/fbbTyq1uj7PkSNHWv369f3z1Ocxfvz4eNfouahLly5+nVa56T71bPX999+HUrl27tzZv69Xr15UpqsFACReem+vg1XR6tfXqFHDLrnkEu/vq31ObErzY41DJETH9XPo512/fn2S7vNEP6+eGdTGa1zhxhtvDLX1M2bM8PO6Z7XdorZc9wAAiE7pvX2Oxv70V1995a/Vs4J+J/qZ16xZk+BndaznhsTej37Pep647LLL/GfVNeE/l+h9tUJfn7V+dn0PpBYC4EAyUyM/bdo0rzk5duxY77D99NNP1r59ezt8+LA3HK1bt7b8+fPbkCFDvMFWg9uuXTsPsqrREG0TSn2uxn758uX266+/xuucfvHFF96gyrfffmvNmjWz7Nmz+7/x1FNP2TfffONB9aQEbw8dOuQBadXd0j0PHz7czjvvPHv44Yfj1Sg/lhUrVninfP/+/davXz979tlnbdmyZXb//ffbP//8E+9a7esz0Hl9bgpYJ9bEiRP987rqqqtsxIgRNmDAAMuaNat/tgp+K625JgG8//778V43a9Ys/53ccMMNCQ4u3HPPPbZ37157/vnnbdSoUX6dBuDHjRuX6HsDAES/SZMm2ZIlSzzNptprDRCr3VMbcaI2RtRGTJ482dtHtWF33XWXjRkzxl5++WU/v3jxYn8+0OQ4XatngwULFvi/lRC19boHTUILqMOqiVlBW6+2Wf+e2uVhw4b5hK13333XJ8Tpvk+Ffi61fQ888IC98MIL/pyhAQRNYlOHXf+e/g212+HPFZpYpoH5u+++21+n5xC1+Umd1PbMM8/Yiy++6J/DK6+84h1uDajo3w03e/Zsmzt3rnXt2tUGDRpkW7ZssTZt2vjzi4LiweCGOtj6XAAAaVt6bq93797t96uB544dO3rbli1bNu+vr1u37oSvP944REL/1n/+8x9v/9X3PeussxJ9n4n9eTdv3mw9evTwMQpNZitatKg/Q+jzU9r2YHBcbTkD5QAQ3dJz+xxt/enff//dfwZNJNDn16tXL1u7dq3HKTTRIClOdD8a77/vvvu8T66fRe21xuBbtmx5VBBc/XpNelM/XxMUgNRCCnQgGWkFszqLGoi9/vrr/ZgCr2pw1fBpYFYzqBTcVaOQIUMGv0YNvxoSNXpBunNtE0p9rsZegWTNfFNDLR999JEP9mr2mGiWXIkSJfzBIlOmTH5MM7UUwFVwXoHdxFBQfenSpd4w60FFNMtOjakeNCpXrnzc16txy5s3rz+8qHMu6szqAUWTAgJqgDXzTJ35V1991ScCJIXuRw1w+OD22Wef7TPL9JCkn1sPOJoIoNnrQQdeAXHNUCtQoMBR77l69Wr/Pen3EtR407WaRaf71IMDACA2ZMyY0duf3Llz+75ShqqNnTdvXqLaGE0yUwdTWVKCtj9Hjhyh99N16iyq7VCbL2off/jhB+/4Bs8D4R12PS9oYLphw4Z+TO3+6aef7rOw9RoNHCgzibaB4sWL+wQ4dfYVAD5ZmvylSXi1a9f2/Z9//tmfLdR5vvXWW/2YZsarE6/OdDBpTa9T8Dq4Zz0z6PlBA9ua0Z8Yer+33nrLBweCtlar1PQZ6blGne8zzjgjNHlOAyNBO61nMHXQ1SHX76NYsWJ+XPengXUAQNqWntvrt99+2/7880/fBu2usqzp39UEeK0KP57jjUNonCKgwWwFnbWqTpO/k9J+JuXn1TODniuC+9Y1V155pV+joH7wM6otTytp5wEgvUrP7XO09aeVEU3xBU1AKFSokB9TUFpBav2bQd85sT/H8e7nnXfe8UkF6r8r7iD6mZWtTZ+rYhABxRCUIRdIbawAB5KRGmENxCr4rQ6jgsRvvPGGz7YOAuRaFa3GIrxx1vVaxXTmmWee8N/ImTOnv/6DDz4IHVMgVx1HNWxqnBS0vuKKK7xB1+Cwvs455xwrWbKkB3ATSw8YWbJkiZdyTA81+pk0My4xr1fDFwS/RelXPvnkk3grvNUoauadZn8rXUpSKXiumYOaUad0MmqANcMw+MyDiQO6j+Bzi4uL8/sLZv4dSYPtSpmu1+hBRQ8Kmjmn2W/BewIAYoPauaBzHexnzpzZB5QT08YozZvaVwVnR48e7e2GMqAEbYzSjql91kQ1dXyVRUXtjNrSIzvrojZbg9pHtvVaCa1njV9++cVnles+g3ZeX/p31KFNSlt/LPr3A8HzSdCpDQYcJDx1qj6zYDKeaJBCzwH6HBNLz056fjnyZ9O+BuXVdgc0UTC8Ax908PVZAwBiT3pur9X+KRgd3o9WcEDjCFpNdjwaCE/sOIRW2GnCtzKq6OdLiqT+vEqFG9DgvJxMangAQGSl5/Y52vrT+jc0lq1AuwLumoRwwQUX+ArtpAS/E3M/WuWtRWVayBZ8hlqgpwltyvC6Y8eO0GuTkukVSE4EwIFkpobluuuu8wZBs9uUPiWYnabGVYO6Sjt2KvQAoIcBzbLSbG11UIP632o4taJaKWHUAIV/aVWzUnsnlup4qEFW0Ptk6PWJ+Vk1200PGa+//vox64Mfz2+//eYz9PQeekDSJIQgxXqQtkaNvDr8QRp0PQRpwCBY2X4kfYYKzGvWoWYjqg66VpSFB/MBALEhCJwG1O5plbE6bIlpY5TiS2ndNMCstkPthjqKCuYGk780S1odcc2MVyYWPSccWdf6yLb+66+/tu3bt/vMdpU+CQYAgnpqyghzZFuvrDNJaeuPJaHOsdrN41HHXp3kcHoOCK//diLBtfoMw3+uYHA//DnhyPsJnleSmtoNAJA2pOf2OrF964To80nsOITaWd2fssAps0pSJPXnDW/Hgzb8VNPOAgBSX3pun6OtP63JclrQpUD41KlT/bNVfXOt2E5qG3ui+9FWJU2O/AxVBlV0LnxBHxAJpEAHkpEadaV4CeqaqGHWTDTNbFNgXLPhtK9VxOG0okmNevhMsOPRam/NsPrwww99q6CsVjhLrly5/N/Qw0VCta1P1NiG0/2qMTsynYxmj+vYiVKV6/VH/qyiVDLhM78UXFagWRMH9PChWuOJpUFupcDRSnU17HpfNc6aIKBZheE0SUDX6qFHgXDVHDnW56EHq9dee83vR59tMJMxSFUDAIgd6hSH06xlHVPqtsS0MergqxOur61bt3o7pzIgWj2l2eOaCKf0avrSzHW1+aqp2bNnT2/7K1SocNQ9qU3UeaVt0wx1pYmrVKmSn1PqtmCVltrPI+XJk8ciIaGOuSbqJWXAPvjZNClOzzRHSkodUgBAbEnP7bX6o3/88cdRx1VzVe9zvInaGoRP7DiEUqSrj6zUtBosV3m3xIrW5xMAQMpKz+1ztPWnRZ+H2nOtsFcGmTfffNM/T60E1+cS/I7CJZSB5UT3o2cTpY0PTyMfjjJkiAasAAeSkdJ7qBOpxl21qoKgsYLfoo6kGvsgJXp4rW29RjPMgprdx6NrbrzxRn+fWbNmecA9mEmlzq1qZKlxVzrx4Ov888/3+idaLZ5Yqs9x8OBBv7+AAt+dO3f2AH9iXq8HlfCU4Qqe62ddvnx5vBllCuSr3qdSjSuwn1h6oNIKcgWm9XMGM9OCew5fBab0OPq39JCkf/9Y6c9FDwhKrar6M0HwW7PhtYqelWUAEFvUZoS3VWqLNCu9dOnSiWpj7rzzTu9cizqDGjRW511ZWTSDvG/fvt6eqA3Vs4BSgqlWtaxfvz7Be1KnXNfpXpSeVJO4gueK8847z/8dDYSHt/Waea+UcGprI0Ez9oNnnmBfn9WJ6pIe+ewQtO/hP5sG7VWnNCmz3082gw0AIDql5/Za7aPqqP7000+hYxp7UHBAQYXj0YSyE41DBNRfLlOmjE+o10R+lVdLrOT8eRMzLgIAiA7puX2Otv60FnPp59bvQxMH9FotPAv/rBQ7UJbacOGlxhJ7P5o8oBKj+izDP0fFApTKnrYc0YAV4EAy0opoNeb9+/e3Fi1aeGMzffp0++yzz0Kzqdq2bWsPPvigB3sbNmzoM6cGDRrkQWw9GKxatcqv1Ws040yzsxKi4O3YsWN9cFfpzsPpvdWRbd++vTfwmtWla9V5VVr2xKpTp46nmVG9lscee8xXtGuG3po1a0KN5/Ho37rjjjusdevWXt9bDeWQIUN8JprSr3z33XfxrtcDz4wZM7xGyWWXXZaoGXdqZDWLT51z1Q3TA44aZwW5j6wDqoZXq+KVCkYPNaoxcyy6R61E10pw1SbTqnEF/fU7pbYoAMQWddrUNqut0vdqlzW7XLUxNZv5RG2M0rmpndWgsdpNTZhSajZ1CDXrvXr16r6v9lTtsiaXqUOoMiM6dyy6Vs8NasfDJ22pPVMNL6WJ0/fq4GpwQO1WkLo0UjRJTs8Map+V3k7PPvpsE0uD7vq5n376afvzzz+tXLlyPmiiVWiaQa4Z5okVzOz/+OOPPUVeyZIlT+pnAgBEh/TcXisYoFSv+vn1bym1rH4+3aNqpp7IicYhNJk/nOqqamK6VoBrTEOr904kOX/eYBK66ouq/U5stjwAQOpLz+1ztPWn9XnoM1eGWqWc18/3xhtveDBcP6doqzFufal9/eSTT0Lp5pNyP3o20Rh78+bN7YEHHrAiRYp42nnFKfRvJ+bZAUhpBMCBZHTuuef6TDGlGVFjoACugqfqqDZt2tQWLVrkM9iUdkTXqDFSQ67V3Jq5LVqprTonQdr09957L8F/S4FxdVS1QurImWBa6axGSf+GGno1OGq89bCg+0ksNZJqtNRwatWVHkw0MK2HkoTSyxxJK9H1s+szUWOpGWZXXHGFdejQIVQXPZyC+T169PBZfZrd17t370Tdpx5QFDTXg5DeVyu3X375ZX+9PnN99gE98Citqj7j460MU9Ben60eylT/TI24XqvZgnpA0INRMLAOAEjbNDlK/6errVJGlVtuucU7xIltYx599FE/N23aNG8zNGhbt25dn4gmavvUlqr91ICy2hKlX1Mbo077seh1ei9NQCtRokS8c6qJrRVd6vgrpZnu+9JLL/V/R9dHyjPPPOOfjVZs634mT57sz0dJ0adPH29r1VHXzHR1tjV4ot9PUmaRa6KbJtTpOUQD6JrUBgBIu9Jze62+tAaZVVdTk9G1ak59e92b3ieh9OjhNNh9vHGII2mFnQID6her/dRrEiM5f14NqOs9lApXq8kYSAeA6JSe2+do608rXqD2Xp+jJr0p+K9J5frstPJd1Lbr/RU70GQCLYDT7yihQPvx7kefmeIX6m9rMeDff//ti9T0e9PCQCAaZDis3BEAAABAOqSOtWaWP//885G+lTRNZVY0qB5ksgEAIDnRXgMAEH1on2OzPx1t9wOcLFaAA+mQZn+daO6LZtNFslaH7k/3eSK6x6CGCwAAiM62XivVghpvxxPUhQMAID2ItvY6IfTNAQDpTbS1z/SngZPDCBOQDjVr1sy++eab416jlCWqARIpuj/VjklMmlTVHAEAAP+nfv36XkP7eLTyXaVKUsNTTz1lb7/99gmvY4Y5ACA9ibb2OiFqv1UD9ESUilblRwAASOuirX2mPw2cHFKgA+nQL7/8Yrt37z7uNaq9onrfkbJr1y5bu3btCa8rWrSonXHGGalyTwAApBUKJB84cOC416jmWVAHLKWpNun27dtPeF358uVT5X4AAIgG0dZeJ0Tt94lqjIvqq6p2NwAAaV20tc/0p4GTQwAcAAAAAAAAAAAAABATMkb6BgAAAAAAAAAAAAAASA4EwAEAAAAAAAAAAAAAMSGzxbjKlSt7vYYCBQpE+lYAAEiyzZs3W9asWW3RokXp5tOj7QYApFW02wAApC203QAAxGa7HfMB8P3799uhQ4cifRtAzDp8+LBPMtF/OhkyZIj07QAx559//vG/s/SEthtIObTbQMqi3QaQ3Gi7gZRF2w0gOdFuA9HTbsd8ALxgwYK+nTt3bqRvBYhJe/bssZUrV1rZsmUtZ86ckb4dIObUq1fP0hvabiDl0G4DKYt2G0Byo+0GUhZtN4DkRLsNRE+7TQ1wAAAAAAAAAAAAAEBMIAAOAAAAAAAAAAAAAIgJBMABAAAAAAAAAAAAADGBADgAAAAAAAAAAAAAICYQAAcAAAAAAAAAAAAAxAQC4AAAAAAAAAAAAACAmHDKAfC//vrLunXrZrVr17ZLL73U7rrrLlu0aNExr//jjz+sdevWfm3NmjVtyJAhdujQoXjXTJw40erVq2cVKlSwu+++21asWHGqtwkAAAAAAAAAAAAAiHGnHAB//PHH7bvvvrNBgwbZtGnTrGzZsnb//ffbL7/8ctS1Bw8e9HPyxhtv2DPPPGOTJ0+2YcOGha55++23rV+/fvboo4/a9OnTrWjRota8eXPbtm3bqd4qgGT27rvvWq5cuaxy5cq+1T4AAIhOmnT6xRdf2KxZs3x75CRUAAAQXWi7AQBIO2i3geiS+VRe/Ouvv9pXX31lkyZNskqVKvmxp59+2ubNm2czZ870IHa42bNn2/r16+2tt96yPHnyWOnSpW3r1q0e8H7ggQcsa9as9sorr1iTJk3spptu8tf07t3brrrqKpsyZYqvHAcQHTJkyHDUsZtvvtm3hw8fjsAdAQCAY9HE0vbt29u6detCx4oXL24DBw60Ro0a8cEBABBlaLsBAEg7aLeBGFsBfsYZZ9jIkSOtfPny8YJi+tq5c+dR1ys1+kUXXeTB70D16tVt165dtnLlSg+Ga1CuRo0aofOZM2f21aXffvvtqdwqgBQMfgcTYI51HgAARLYjfuutt/oz+6effuqrv7XVvo7rPAAAiB603QAApB2020AMBsBPP/10u+KKK3zldvgqb60Mr1Wr1lHXb9iwwQoXLhzvWMGCBX0bFxfn56VIkSJHXROcAxBZ4WnONTFl9+7dNmLECN+GT1QhHToAANGRgk0rvxs0aGAzZsywqlWrWs6cOX2rfR3v0KED6dABAIgStN0AAKQdtNtAjKZAP9KSJUusc+fOdvXVV1udOnWOOr9v3z4PmofLli2bb/fv32979+7178MD6sE1On8s9erVO+Y5BdYVdN+zZ0+Sfx4Adsw053LhhReG/m611X74dQqKAzg1KilAVgUAJ0uliZRhafLkyZYxY/y5r9rXs/tll13m1yX0/A4AAFIXbTcAAGkH7TaQDgLgc+bM8dUjl156qQ0YMCDBa7Jnz24HDhyIdywIbGslis5LQtfkyJHjpO9N76cU6wCSj9Keh/9dBTVFK1SoYN9//71/z98dcOrUhgWTxQAgqTQZVMqVK5fg+eB4cB0AAIgs2m4AANIO2m0gxgPgEyZMsF69etm1115rffv2PWoFd0ArsVevXh3v2KZNm3xbqFChUOpzHStZsmS8a3T+WObOnXvc1eFaPVe2bNkk/1wAjm3x4sX+d6WV3wp+Fy9e3CeqBMFv4e8OOHXHalMBIDGC5+tly5ZZ9erVjzqv4+HXAQCAyKLtBgAg7aDdBmI4AD5p0iR77rnnrGnTptalS5fjpmmtUqWK1xrctWuXnXbaaX5swYIFlitXLrvgggt8kL9EiRK2cOFCq1Gjhp//559/bNGiRXb33Xef9D3qnrTCHMCpe+edd0Jp0FesWBFKe67gt/bDr+PvDjh1pD8HcCpq1arlk9R69+7tz+Hh/v33X+vTp48/f+s6AAAQebTdAACkHbTbQPSKXwgwidauXeuDafXr17fWrVvbli1bbPPmzf71999/e9pWfR+kNL/qqqusQIEC9thjj9mPP/7oadMHDRpkLVq0CK1w0/evvvqqvf322/bzzz/bU0895bXDb7311uT5iQGckptuuinepBZNYNHfrbbaT+g6AAAQGZkyZbKBAwfae++9Zw0bNvSJprt37/at9nVc5Yt0HQAAiDzabgAA0g7abSBGV4DPnj3bDh48aB9//LF/hbvlllv8695777Vx48ZZtWrVvIbp6NGj7dlnn7Xbb7/d8uTJ4yu7H3roodDrdFzB8yFDhthff/3ldQkVEM+XL9+p3CqAZKSyAuGrUsPTngfnAQBAdGjUqJFNnTrV2rdvb3Xr1g0d18pvHdd5AAAQPWi7AQBIO2i3gRgMgD/wwAP+dTyrVq2Kt3/uuefa2LFjj/ua+++/378ARC8Fud99991QOvQg7TkrvwEAiM4OudpsTVpdvHixVapUybM4sfIbAIDoRNsNpB9aBKYsqZ999pmXDi1TpoxPXq1cubKfb968uX399dfxXlO1alUbP358hO4YwJFot4EYrAEOIP1SsFtpVFeuXGlly5al5jcAAFFMwe7atWt7SSK12wS/AQCIbrTdQPrw+OOPexlRBcHz58/vgW0tDlOJ0PPOO88XmD3zzDNeXjSQJUuWiN4zgKPRbgPRhQA4AAAAAAAAAACp7Ndff7WvvvrKJk2a5Fma5Omnn7Z58+bZzJkzrUmTJrZ161arWLGiT2QFAACJkzGR1wEAANjatWvtkksusenTp4c+DWWBUKf84osv9vrC48aN45MCAAAAAOAEzjjjDBs5cqSVL18+dCxDhgz+tXPnTl/9re9LlCjBZwkAQBIQAAcAAIly8OBB69Chg+3Zsyd0bPv27V6PrFixYjZt2jR7+OGHbcCAAf49AAAAAAA4ttNPP92uuOIKy5o1a+jY7NmzfWV4rVq1bPXq1ZY7d27r0aOHlzO69tprbciQIXbgwAE+VgAAjoMU6AAAIFFeeuklO+200+Ide+utt7z2mDrjmTNntpIlS3pHXTPYGzduzCcLAAAAAEAiLVmyxDp37mxXX3211alTx5566inbv3+/VahQwSefKwNbv379bP369b49lnr16h3zXFxcnBUuXDje5HYAyWPv3r3xtgCS1+HDhz0zSmIQAAcAACf07bff2ptvvmkzZszwTnhg0aJFVrVqVQ9+B6pXr24jRoywLVu22JlnnsmnCwAAAADACcyZM8ezrl166aWeWU002fyJJ56wPHny+H7p0qV9Enq7du2sU6dOJ93n1gpyBdMBpIx169bx0QIpQO1XtmzZEnUtAXAAAHBcqjumjnXXrl2tSJEi8c5t2LDBO+DhChYsGJpVfqzOOLPRgchgNjoQPbPRAQAAAhMmTLBevXp5ivO+ffuGUqJrsnkQ/A6cf/75of74sfrcc+fOPeaHq/64nlnKli3LLwBIgT63gt/Fixe3HDly8PkCySy8ZMiJEAAHAADH9cwzz9gll1xiN95441Hn9u3bd9SDRzALT2naThaz0YGUxWx0IPKz0QEAAGTSpEn23HPPWdOmTa1Lly7xJtPpWNGiRa1Pnz6hYz/88IOvAleA7WTp38iZMye/ACCFKPjN3xiQ/JIy4ZwAOAAAOCalPFea85kzZyZ4Pnv27D7YHy4IfB/vQZ/Z6EBkMBsdiJ7Z6AAAAGvXrrXevXtb/fr1rXXr1l5KLLy/fc011/h51QCvWbOmB79V+/v++++30047jQ8QAIBjIAAOAACOadq0abZ169Z4db+le/fu9sEHH1jhwoVt06ZN8c4F+4UKFTrpT5bZ6EDKYjY6kDJIfw4AAJJi9uzZdvDgQfv444/9K9wtt9xizz//vD9fjB8/3gPhBQoUsGbNmlmrVq34oAEAOA4C4AAA4JgGDBjgac7DXX311da2bVu76aab7J133rE33njDDh06ZJkyZfLzCxYssBIlSlj+/Pn5ZAEAAAAAOIYHHnjAv47nnnvu8S8AAJB4GZNwLQAASGe0ivvcc8+N9yUKbutc48aNbdeuXV6n7Oeff7bp06fba6+95qnbAAAAAAAAAABIbQTAAQDASVMgfPTo0V63TOnZhg4dap06dfLvAQAAAAAAAABIbaRABwAASbJq1ap4+xUqVLA333yTTxEAAAAAAAAAEHGsAAcAAAAAIEaNGDHCmjZtGu/YypUrrUmTJnbxxRdb3bp1bdy4cRG7PwAAAAAAkhsBcAAAAAAAYtDEiRNtyJAh8Y5t377dmjdvbsWKFbNp06bZww8/bAMGDPDvAQAAAACIBaRABwAAAAAghmzcuNG6d+9uCxcutOLFi8c799Zbb1mWLFmsR48eljlzZitZsqT9+uuvNnLkSGvcuHHE7hkAAAAAgOTCCnAAAAAAAGLI8uXLPcj97rvvWsWKFeOdW7RokVWtWtWD34Hq1avbunXrbMuWLRG4WwAAAAAAkhcrwAEAAAAAiCGq662vhGzYsMFKly4d71jBggV9GxcXZ2eeeeZRr6lXr94x/y29pnDhwrZnz55Tvm8AR9u7d2+8LYDkdfjwYcuQIQMfKwAAMYYAOAAAAAAA6cS+ffssa9as8Y5ly5bNt/v37z+p9zxw4ICtXLkyWe4PQMKUpQFA8lMbFrSDAAAgdhAABwAAAAAgnciePbsP9ocLAt85c+ZM8DVz58495vtpdbhWz5UtWzaZ7xRAsPJbwe/ixYtbjhw5+FCAZHbkpDAAABAbCIADAAAAAJBOKF35pk2b4h0L9gsVKnRS76nUsccKngNIHgp+83cGJD/SnwMAEJsyRvoGAAAAAABA6qhSpYotXrzYDh34WMY/AAEAAElEQVQ6FDq2YMECK1GihOXPn59fAwAAAAAgzUvWAPiIESOsadOmxzz/0ksvWZkyZRL86ty5c+i65s2bH3X+eO8LAAAAAABOrHHjxrZr1y7r0qWL/fzzzzZ9+nR77bXXrHXr1nx8AAAAAICYkGwp0CdOnGhDhgyxypUrH/OaFi1a2J133hnv2KuvvmqTJ0+2Zs2ahY6tWrXKnnnmGbvqqqtCx7JkyZJctwoAAAAAQLqkVd6jR4+2Xr162S233GIFChSwTp06+fcAAAAAAMSCUw6Ab9y40bp3724LFy604sWLH/faXLly+VdgxYoVNm7cOHvuued8lbds3brVvypWrOgdcQAAAAAAcHKef/75o45VqFDB3nzzTT5SAAAAAEBMOuUU6MuXL/fV2e+++64HrZOiR48evmI8fKa5Vn9nyJDB648BAAAAAAAAAAAAAJBqK8Dr1q3rX0n16aef2nfffWczZsyId3z16tWWO3duD45/9dVXljNnTrv22mvtoYcesqxZs57q7QIAAAAAAAAAAAAAYlSy1QBPKtX+vvLKK61s2bJHBcD379/vKdmaN29uK1eutH79+tn69et9m5B69eod89+Ji4uzwoUL2549e5L9ZwBgtnfv3nhbAMnr8OHDnhkFAAAAAAAAAABEaQBcwWzVDB85cuRR57Ty+4knnrA8efL4funSpT3Fert27axTp0525plnJvnfO3DggAfSAaScdevW8fECKUBtWLZs2fhsAQAAAAAAAACI1gD4nDlzLF++fHb55ZcffUOZM4eC34Hzzz/ftxs2bEgwAD537txj/ltaHa7Vc0euNAeQPLTyW8Hv4sWLW44cOfhYgWRG+Q8AAAAAAAAAAKI8AL5o0SKrWrWqB7uP1LRpUytatKj16dMndOyHH37wVeAKsJ0MpY5VLXEAKUfBb/7OgORH+nMAAAAAAAAAABIvo6WgQ4cO2ebNm23fvn3xjq9YscIuuOCCBF9zzTXX2DvvvGOTJ0+233//3T744AOv/X3//ffbaaedlpK3CwAAAAAAAAAAAABIw1J0BXhcXJynINdq7kaNGoWOKyieN2/eBF/TpEkTX+02fvx46927txUoUMCaNWtmrVq1SslbBQAAAAAAAAAAAACkcckaAH/++efj7SuV+apVq466bunSpcd9n3vuuce/AAAAAAAAAAAAAACIihToAAAAAAAAAAAAAACkFgLgAAAAAAAAAAAAAICYQAAcAAAAAAAAAAAAABATCIADAAAAAAAAAAAAAGICAXAAAAAAAAAAAAAAQEwgAA4AAAAAAAAAAAAAiAkEwAEAAAAAAAAAAAAAMYEAOAAAAAAAAAAAAAAgJmSO9A0AAAAAAAAAAAAAadWBAwds6NChtmjRIqtcubI99thjljVr1kjfFpBusQIcAAAAAAAAAAAAOAmdOnWyXLly2RNPPGFTpkzxrfZ1HEBkEAAHAAAAAAAAAAAAkkhB7v79+1v+/Plt2LBhNmvWLN9qX8cJggORQQAcAAAAAAAAAAAASGLa88GDB1uhQoXsjz/+sGbNmtmZZ57pW+3ruM7rOgCpiwA4AAAAAAAAAAAAkATDhw+3f/75x3r27GmZM2eOd077PXr08PO6DkDqIgAOAAAAAAAAAAAAJMGaNWt826BBgwTPB8eD6wCkHgLgAAAAAAAAAAAAQBKULFnSt++9916C54PjwXUAUg8BcAAAAAAAAAAAACAJHnroIU913rVrV091Hk773bp18/O6DkDqIgAOAAAAAAAAAAAAJEHWrFmtXbt2tnHjRitatKiNHTvWNm/e7Fvt67jO6zoAqStzKv97AAAAAAAAAAAAQJrXr18/3w4ePNjatGkTOq6V3x07dgydB5C6WAEOAAAAAAAAAEAE/PXXX54muXbt2nbppZfaXXfdZYsWLQqdnz9/vjVq1MgqVqxo1157rb3//vv8noAooyD37t27rW/fvnbbbbf5VvsEv4HIIQAOAAAAAAAAAEAEPP744/bdd9/ZoEGDbNq0aVa2bFm7//777ZdffrE1a9ZY69atrVatWjZ9+nQPrHXq1MmD4gAA4NhIgQ4AAAAAAAAAQCr79ddf7auvvrJJkyZZpUqV/NjTTz9t8+bNs5kzZ9rWrVutTJkyXkNYSpYsaStWrLDRo0dbjRo1+H0BUUITU5QC/Z9//vH9KVOmWJcuXfxvl1XgQGSwAhwAAAAAAAAAgFR2xhln2MiRI618+fKhYxkyZPCvnTt3eir0IwPd1atXt8WLF9vhw4f5fQFREvzu37+/5c+f34YNG2azZs3yrfZ1XOcBpD4C4AAAAAAAAAAApLLTTz/drrjiCsuaNWvo2OzZs31luNKeb9iwwQoXLhzvNQULFrS9e/fa9u3b+X0BEXbgwAFf+V2oUCH7448/rFmzZnbmmWf6Vvs6rvO6DkDqIgU6AAAAAAAAAAARtmTJEuvcubNdffXVVqdOHdu3b1+84LgE+8cLqNWrV++Y5+Li4jyovmfPnmS8cyB9Gjp0qKc979atm/9NanKKBNuuXbtamzZtbMiQIfbII49E+G6BtE/ZT5QlJdUD4CNGjLAvv/zSxo8ff8xr3n33XevYseNRx+fOnWtFixb17z/88EN76aWXfIbMeeedZ0888QQ1TQAAAAAAAAAAMWnOnDnWoUMHu/TSS23AgAF+LFu2bEcFuoP9HDlynPS/pfdYuXLlKd4xAJUpkJIlS8b7m1q3bp1vS5UqFbqOvzng1Kn9UtuYqgHwiRMn+iyWypUrH/e6VatWWdWqVW3QoEHxjufLl8+3CxYs8AC56iJcfvnlNnXqVGvVqpXNmDHD/xMBAAAAAAAAACBWTJgwwXr16mXXXnut9e3bN7TKu0iRIrZp06Z412o/Z86cljt37mO+nxabHW91uFbQlS1bNhl/AiB9UjxsypQptmbNGi9boJXfCn4XL17cJ6nMnz8/dB1/c8CpOzIrSooGwDdu3Gjdu3e3hQsX+h/1iaxevdrKlCljBQoUSPD8qFGj7KqrrrJ7773X97X6+7vvvrPXX3/devTocaq3CwAAAAAAAABAVJg0aZI999xz1rRpU+vSpUu81K4Kmn3zzTfxrtcCMq0Sz5gx40n/m/o3FEQHcGoee+wx/7tV7EoLOQMKfitQ17NnT8ucObNfl5TAHYCEJTb9uZx8K/n/LV++3LJkyeKpzStWrHjC67UC/Fgruf/991+vc1KjRo14x6tVq2bffvvtqd4qAAAAAAAAAABRYe3atda7d2+rX7++tW7d2rZs2WKbN2/2r7///tuD4t9//72nRNcK07Fjx9qsWbOsZcuWkb51AP9/NWq7du18oahK/OpvVH+/2mpfx3We4DeQ+k55BXjdunX9KzF27Njhf/Cqd6CZbdu3b7cKFSp4yvMSJUrYzp07bc+ePVa4cOF4rytYsKBt2LDhuGlbjiUuLs7fT+8LIPkprUv4FkDyUlqypMxsAwAAAAAAacPs2bPt4MGD9vHHH/tXuFtuucWef/55Gz58uPXv398zpCqgpu+PXEAGIHL69evn28GDB1ubNm1Cx7XyW7Gv4DyA1JVsNcAT46effgoN5vfp08f27dtnL7/8st199902c+ZM++eff/z8kbNhVNB8//79p1QUfeXKlad49wCOR7VNACQ/tWFqBwEAAAAAQGx54IEH/Ot4ateu7V8AopeC3Ep3PmTIEF8AqvIFpD0H0lEAXH/08+fPtzPOOCO0mm3o0KFWp04dmz59ut12222hwf5wCn6rZsKxzJ0797irwxVwL1u2bLL9HAD+j1Z+K/hdvHjx4/6dAjg5pEgCAADJTZPPhw0bZjNmzLC//vrLLrzwQl+dcvHFF/NhAwAAACc5hvfII4/4YkzFoxjTA9JRAFzy5csXb18Bs6AWQt68eS1nzpy2adOmeNdov1ChQif9byrYrvcFkHL0t8zfGZD8SH8OAACSmzKxTZkyxdOqnnPOOTZq1CivJfrBBx94CTIAAAAAANKyjKn5j7355ptWrVq1ePW4d+3a5atHS5Uq5YP8l156qX3zzTfxXrdw4UJfPQ4AAAAAAE7NnDlzrEGDBlazZk0799xz7cknn7S///7b/vvf//LRAgAAAADSvBQNgB86dMg2b97stb5FtUr+/fdf69Spk9cD/+GHH6xNmza+KrxRo0Z+TfPmze3999+3V1991dasWeO1E5Qy4r777kvJWwUAAAAAIF3Inz+/ffrpp/bHH394v12T1ZWi8YILLoj0rQEAAAAAEN0p0OPi4rwGd58+fTzAXaRIEXvttdds4MCBdtddd3lt7ssvv9zGjRtn2bJl89doBnrv3r1t+PDhNnjwYF8Z/sorr1jJkiVT8lYBAMAxbN261VOkzps3z/bv329VqlSxJ554ItQ2a6Jar169bNmyZT6prVmzZnbvvffyeQIAEKW6dOlijz76qPfXM2XKZBkzZrSXXnrJihUrluD1uu54/f7ChQvHy/QGIPns3bs33hZA8tL4NKXHAACIPckaANfgeDjV9l61alW8YxdddJGNHTv2uO/TsGFD/wIAAJH38MMPewaXkSNHWq5cueyFF17wIPdHH33kWV6UvaVu3br27LPPeupUbXVd48aNI33rAAAgAT///LPlzp3bhg0bZoUKFfJ64B06dLAJEyZY2bJlk/yZHThwwCfEAUg5Kh8IIPmpDQsWZgEAgNiRoivAAQBA2rZjxw47++yzrXXr1la6dGk/9tBDD9nNN9/s5Uzmz59vWbJksR49eljmzJl9Vfivv/7qwXIC4AAARB+t2G7fvr1nZ6tcubIfK1++vAfFtQpc2diONHfu3GO+n1aHa/XcyQTOAZyYVn4r+F28eHHLkSMHHxmQzFQCBAAAxB4C4AAA4Jjy5MnjpUsC27Zt8wFzpTpVmRINlFetWtWD34Hq1avbiBEjbMuWLXbmmWfy6QIAEEWWLl1qBw8e9KB3uIoVK9oXX3xxUu+p1LE5c+ZMpjsEkBAFv/k7A5If6c8BAIhNBMABAECiPP300/bWW2/5DPmXX37ZB+A2bNgQWhkeKFiwYGiF2bEC4NQSBSKDOqJAykoLdUQ1iU1UrqxChQqh46tXr/YVpgAAAAAApHUEwAEAQKLcd999dscdd9jEiRO9LvikSZO8BviRKeOC+mn79+8/6U+WWqJAyqKOKJB+64gq6F2pUiV74oknrHv37h4QnzFjhpc1mTx5cqRvDwAAAACAU0YAHAAAJIpSnkuvXr08feqECRMse/bsPtgfLgh8Hy9FI7VEgcigjiiQstJCHdGMGTN6JpchQ4ZY586dbceOHZ7NRSVOlAYdAAAAQNIdOnTISwotXrzYNm/ebPXr17dMmTLxUQIRQgAcAAAck2p+a0XYNddcE6rzrYFzBcM3bdrkq8a0DRfsFypU6KQ/WWqJAimLOqJAyoj29OeBPHny+OpvfQEAAAA4NdOnT7f27dvHy7am8kIDBw60Ro0a8fECEZAxEv8oAABIG7Zs2WKPP/64B8EDBw8etBUrVljJkiWtSpUqPrNVs1wDCxYssBIlSlj+/PkjdNcAAAAAAABA6gS/b731Vitfvrx9+umnvgpcW+3ruM4DSH0EwAEAwDEpJWrt2rWtZ8+e9u2339rq1avtySeftJ07d1qzZs2scePGtmvXLuvSpYv9/PPP/lCvFKqtW7fmUwUAAAAAAEDM0oIQrfxu0KCBzZgxw6pWreolAbXVvo536NAh3sIRAKmDADgAADiuQYMGWY0aNaxdu3Z222232V9//WUTJ060s846y1d5jx492tauXWu33HKLDR061Dp16uTfAwAAAAAAALFq3rx5nvb8qaee8pKB4bTfuXNnHzPTdQBSFzXAAQDAceXOndueeeYZ/0pIhQoV7M033+RTBAAAAAAAQLoRFxfn23LlyiV4PjgeXAcg9bACHAAAAAAAAAAAAEiCIkWK+HbZsmUJng+OB9cBSD0EwAEAAIB0QDXHvvjiC5s1a5ZvqUEGAAAAAMDJq1WrlhUvXtx69+5t//77b7xz2u/Tp4+VKFHCrwOQugiAAwAAADFu+vTpVqpUKbvuuuusa9euvtW+jgMAAAAAgKTLlCmTDRw40N577z1r2LChLVy40Hbv3u1b7ev4gAED/DoAqYsAOAAAABDDFOS+9dZbrXz58vbpp5/66m9tta/jBMEBAAAAADg5jRo1sqlTp9oPP/xgdevWtSuuuMK3Sn+u4zoPIPVljsC/CQAAACAVKM15+/btrUGDBjZjxgzbt2+frVy50sqWLev7mpHeoUMHu/nmm5mRDgAAAADASVCQW/3qjz/+2BYvXmyVKlWy+vXr088GIogV4AAAAECMmjdvnq1bt86eeuopy5gx/qO/9jt37mxr16716wAAAAAAAIBYwApwAAAAIEbFxcX5tly5cgmeD44H1wEAAAAAgKRRaTFlX9ME9EDx4sW9Pjgp0IHIYAU4AAAAEKOKFCniW9UeS0hwPLgOAAAAAAAkLfh96623Wvny5e3TTz+1L774wrfa13GdB5D6CIADAAAAMapWrVo+67x3795e/3vo0KHWt29f32q/T58+VqJECb8OAAAAAAAk3qFDh3zld4MGDWzGjBlWtWpVy5kzp2+1r+MdOnTw6wCkLlKgAwAAADEqU6ZMnnKtcePG3gk/fPiwH58yZYo9+eSTvj9t2jS/DgAAAAAAJN68efM87fnkyZMtY8b4602137lzZ7vsssv8ujp16vDRAqmIFeAAAABADFuwYIFvM2TIEO940DkPzgMAgOii1WJKozpr1izfsnoMAIDoEhcX59ty5coleD44HlwHIPUQAAcAAABi1IEDB2zw4MFWqFAh27Nnj3344YfWs2dP3+7evduP67yuAwAA0UP1QkuVKmXXXXedde3a1bfap44oAADRo0iRIr5dtmxZgueD48F1AFIPAXAAAAAgRg0fPtz++ecfD3pny5bNateubddee61vtd+jRw8/r+sAAEB0UJD71ltvtfLly9unn37qq7+11b6OEwQHACA61KpVy4oXL269e/e2f//9N9457ffp08dKlCjh1wFIwwHwESNGWNOmTY97zU8//WStWrWyatWqWY0aNaxt27a2fv360Hmlc6pQoYKVKVMm3tdLL72UnLcKAAAAxLw1a9b4tkGDBgmeD44H1wEAgMjSuFj79u29jZ4xY4ZVrVrVcubM6Vvt63iHDh1Ihw4AQBTIlCmTDRw40N577z1r2LChLVy40LOtaat9HR8wYIBfByCNBsAnTpxoQ4YMOe4127dvt+bNm1v27Nlt/PjxNmrUKNu2bZu1bNnS9u/f79esW7fOv3/nnXfsyy+/DH21aNEiuW4VAAAASBdKlizpW3W6ExIcD64DAACRNW/ePB8be+qppyxjxvjDdtrv3LmzrV271q8DAACR16hRI5s6dar98MMPVrduXbviiit8q/TnOq7zAFJf5lN9g40bN1r37t19RotSPRzPnDlzvPZgv379PAgu/fv3tzp16tiSJUt8RfiqVavstNNOswsuuOBUbw0AAABI1x566CHr2LGj1w5VpialUF28eLFt3rzZrrzySuvWrZtlzpzZrwMAAJEXFxfn23LlyiV4PjgeXAcAACJPQe6bb77ZPv74Y+9zV6pUyerXr8/KbyAtB8CXL19uWbJksXfffdeGDRtmf/755zGvVYBb9QWD4LcEs1l37tzpWwXAWYECAAAAnLqsWbNau3btfNKp0qeG1yTTc7j2FSDXdQAAIPKKFCniW60aq169+lHndTz8OgAAED1lTL7//ntbunSpx8y0CpzU50AaDoDrj1hfiVG0aFH/Cjdy5EgPiFepUsX3V69ebf/884/df//99uOPP1qhQoXsvvvu89kzx1KvXr1jntOM2MKFC/vKcwDJb+/evfG2AJLX4cOHLUOGDHysAE5aMHiu/0+O/P8l/DwAAIi8WrVqeYbF3r17e83vcJq41qdPHytRooRfBwAAokOnTp1s8ODBHtuSKVOmWJcuXXxCujIiA0iDAfBToTrgEyZM8JSM+fLl82M//fSTP9C3bdvWA9eff/651zc6ePCg3XrrrSf17xw4cMBWrlyZzHcPIJxqlAFIfmrDsmXLxkcL4KRnoLdv395uvPFGe+utt+zFF1+0RYsWWeXKlf15+/bbb7cOHTr4ZFNmpgMAEHlqjwcOHOhjYA0bNvSBcx1T6UENrL/33nteT5R2GwCA6Al+K+uaFnOqzJgyHK9Zs8Z69Ojhx4UgOJBOAuBabfLCCy/Yyy+/bA8++KDXIwzoQV4Ddbly5fJ91QJfv369jRkz5pgB8Llz5x53dbj+vbJly6bATwJAK78V/NYM9Rw5cvCBAMmMtMQATsW8efO8nZ48ebJnXXrkkUd8YqiejbWviaaXXXaZX1enTh0+bAAAoqSOqILcmsQWnnVRK791XOcBAEB0LFzRBDUFv//444/QYkxlamnVqpVnRNb5nj17MsYHxHoAXCu5NdCmQLe2zZo1i3c+vD54oHTp0l5j/GQpdaxqHgJIOQp+83cGJD/SnwM4FSoHJOXKlUvwfHA8uA4AAEQHBbmVoeXjjz+2xYsXW6VKlax+/fqs/AYAIIoMHz7c054rwJ05c2YPgAe0r1XgrVu39usee+yxiN4rkN5kjEQ6iFmzZnk6pyOD3zt37rSqVava9OnT4x3/4Ycf7Pzzz0/lOwUAAADStiJFivh22bJlCZ4PjgfXAQCA6KE057Vr17Zrr73Wt6Q9BwAguijVuTRo0CDB88Hx4DoAMRIAVyrzzZs32759+3xfge0PPvjA6xcp0K1zwZeuOf3006169eqeEkK1v5WuceTIkb76u02bNil5qwAAAEDMUdo1lSnp3bu3/fvvv/HOab9Pnz6eTlXXAQAAAACAxFO9b1HG44QEx4PrAMRIAFypFGvWrOlB7/A/9n79+vnx8K/gGg3OXX/99da9e3e78cYb/fiLL77IoBwAAACQRFoppsxLeg5v2LChLVy40Hbv3u1b7ev4gAEDWFEGAAAAAEASPfTQQ57qvGvXrp4KPZz2u3Xr5ud1HYA0XAP8+eefj7dftGhRW7VqVWh/7NixJ3yP0047zWuD6wsAAADAqdcQnTp1qrVv397q1q0bOq6V3zqu8wAAAAAAIGmyZs3qGY/79+/v8TAFwkuVKmXz58/3uuAbN260jh07+nUA0nAAHAAAAED0UZD75ptvto8//tgWL15slSpVsvr167PyGwAAAACAU6CMx6LSvuGlfLXyW8Hv4DyA1EUAHAAAAEgn6dBr165tBQoUsLJlyxL8BgAAAKLMiBEj7Msvv7Tx48eHjmlF6ZQpU+Jdd/bZZ9snn3wSgTsEkBAFubXie8iQIbZo0SKrXLmyPfbYY6z8BiKIADgAAAAAAAAAABE0ceJED54pcBZOJUYfeOABa9KkSbzJrQCiy969e+3tt9+2X375xX7//Xdr3bo1AXAgggiAAwAAAAAAAAAQAaoR3L17d1u4cKEVL1483rnDhw/bzz//bK1atfJMTgCik+p+r1mzJrS/adMmy5s3r5UsWdL/hgGkvowR+DcBAAAAAAAAAEj3li9fblmyZLF3333XKlasGO/z+O2332zPnj123nnnpfvPCUgLwe+rr77axo4d61vRcZ0HkPpYAQ4AAAAAAAAAQATUrVvXvxKyevVq36om+BdffGEZM2a02rVrW7t27Sx37typfKcAjrRjx45Q8Hv37t2+Xblypd1xxx3+fa5cufy8rsuTJw8fIJCKCIADAAAAAAAAABBlFABX0LtgwYL2yiuv+Irwfv362U8//WSvv/66n0tIvXr1jvmecXFxVrhwYV9ZDuDUXHvttb4NVnyrDniwzZEjh1111VU2Z84cv27u3Ll83MApUmmQDBkyJOpaAuAAAAAAAAAAAESZBx980O6++24744wzfL906dJeC/z222+3H3744aiU6Yl14MABX6UK4NT88ssvvr3zzjvj/U2tW7fOt1oJrgC4ruNvDjh1ar+yZcuWqGsJgAMAAAAAAAAAEGW0wjsIfgfOP/98327YsOGYAfDjrTTV6nCtoCtbtmwy3y2Q/px33nm2adMme+ONNzzYrZXfCn4XL17cV4A/+eSToev4mwNOXdasWRN9LQFwAAAAAAAAAACiTKdOnTy49tprr4WOaeW3lCpV6qTfV+ljc+bMmSz3CKRns2bNsrx589pHH33k+wp6h2+1+ju4jr854NQlNv25JFwkBAAAAAAAxKwZM2bY9ddfb+XLl7cbbrjBPvzww0jfEoAjaBVZu3bt7OGHH/ZtUFcUQPpxzTXX2Pz5823o0KFe//vzzz+3p556yho0aGAlS5aM9O0B6V6ePHlCf4u5cuWym2++2b777jvfal90XtcBSF2sAAcAAAAAIB155513rEuXLj6AXqtWLXv//fft8ccft8KFC9sll1wS6dsDYGYNGzb0v9XAwoULbeTIkT6grgksANIHpSsfMmSI//2PGjXKcufObTfeeKM99thjkb41AP/fzz//7BkZ1qxZ4yu+g1XfQfBb5wGkPgLgAAAAAACkE6r5+cILL9i9995r99xzjx978MEHbdGiRfbNN98QAAeiKPitGodt27a1yy+/3L766it78cUX/bjOEwQHYtPzzz9/1LHrrrvOvwBELwW59XXhhRfawYMHLUuWLLZixYpTKlUA4NQQAAcAAAAAIJ1Yu3at/fnnn756LNyYMWMidk8A/o/SnAfB77///tv++ecfW7lypT377LPWq1cvX/2p87ouqC8KAAAiS3XAd+zYEdpXEPz888/31Od//fVXRO8NSK8IgAMAAAAAkI4C4LJnzx67//77fWVK0aJFfRV43bp1j5l+9Vji4uI8dbreD8CpU61v0cpvBb+Dut9BwPuRRx6xQYMGefrjwYMH85EDyZAZJUOGDHyOAJIl+K0V4C1btrTRo0f7c7aO6zxBcCD1EQAHAAAAACCd2LVrl2+feOIJD6R16NDBZs+ebQ899JC9+uqrVqNGjSS/54EDB3yFKoBTt3TpUt8q7Xn439W6detCxxUA13X83QGnTm1YtmzZ+CgBnJTNmzeHgt/aZs6c2dvn1q1b+0Q2rQDXcV1XoEABPmUgFREABwAAANKBQ4cO2RdffGGLFy/2znf9+vUtU6ZMkb4tAKlM9QhFq79vueUW/75s2bK+QuVYAfC5c+ce8/20Olyr5/QeAE5dxYoVbeHChV7zW2nPtfJbwe/ixYv7CvBJkyaFruPvDjh1KjcAACeratWqvr3ooovs9NNPj5cVSftqqxUQ13VBJiYAqYMAOAAAABDjpk+fbu3btw+tHhMNpA8cONAaNWoU0XsDkLoKFSrk29KlS8c7XqpUKfvss89O6j2VOjZnzpzJcn9AejdkyBAbOXKkvfjii17zO6jzra1WlQ0dOjR0HTXAgVNH+nMAp0KTy6Vv374Jnldbrj53cB2A1JMxFf8tAAAAABEIft96661Wvnx5+/TTT30VuLba13GdB5B+aHVKrly5QmmWA6tXr7ZixYpF7L4A/I+C2jfffLOnZc6dO7c9/fTT9uuvv/pW+zqu8wS/AQCIvCCtucoLJaRLly7xrgOQelgBDgAAAMRw2nOt/G7QoIHNmDHD9u3b5+nXlIZN+w0bNvT6vxpIJx06kD5kz57dWrZsacOGDfPV4BUqVLD333/f0y2/9tprkb49AGahNvqdd97xet/6CqjN1nkAABB533zzjRUsWNCWL19uO3fu9GwtAe2r/x1cByB1EQAHAAAAYtS8efM87fnkyZMtY8b4yZ+037lzZ7vsssv8ujp16kTsPgGkroceeshXjw4ePNg2btxoJUuWtJdeesmqVavGrwKIEgpyq/73Y4895hkbVPObtOcAAEQXrezOkyeP7dixw7cXXHCB3X///dakSRP78ccf/RodZwU4kPoIgAMAAAAxKi4uzrflypVL8HxwPLgOQPrRvHlz/wIQvYKJKkH2FtKeAwAQff766y/LmzevB8EV9O7YsWPonILfOg8g9VEDHAAAAIhRRYoU8e2yZcsSPB8cD64DAAAAAABJoyD3pk2brFixYj5hTVvtE/wGYiQAPmLECGvatOlxr9m+fbvXIaxSpYpVrVrVnn32WU/pFO7DDz+066+/3muRqebR/Pnzk/M2ASSTDBkyWK5cuaxy5cq+1T4AAIgetWrVsuLFi1vv3r09zbFWj+mYttrv06ePlShRwo8BAAAAAICTozjX1q1bbd++fb49Mu4FII2mQJ84caLXIlIg7Hjatm3rf/ivvfaa7dy507p06WJ79uyxvn37+vkFCxZ4iohOnTrZ5ZdfblOnTrVWrVp57SPVJQMQHY4V7Nbxw4cPp/r9AACAo2XKlMkGDhxojRs3tsKFC4eO//bbb6H9adOm+XUAAAAAACDpsmTJYv/8809of/fu3Xbuueda5syZ7eDBg3ykQFpcAa6VIw888IANGDDAV5ccz3fffWfffPONB7svuugiq1GjhvXo0cPeeecdfx8ZNWqUXXXVVXbvvfd6wPuJJ57wa19//fVTvVUAyeREK71ZCQ4AQPRo0aLFKZ0HAAAAAAAnDn7ny5fPOnfu7FvRcZ0HkAYD4MuXL/c/4HfffdcqVqx43GsXLVpkBQoUiLeSW2nQFSxbvHix/fvvv7ZkyRIPjIerVq2affvtt6d6qwCSwZHBbc1m09+2tse7DgAApL7Nmzfbjh07/Ptt27Z5qaGePXv6Vvui87oOAAAAAAAknrKrBcFv9at///13z8CmbdDP1nldByCNpUCvW7eufyWGVnkXKVIk3rGsWbNa3rx5LS4uzlOiKx16eHpGKViwoG3YsOGY71uvXr1jntP76v30vgCSl4LeQS0TbbWvWuAB/u6AU6eSAkwoAXCyNNlUlFHpjDPOsNq1a/uEVNUAz5kzp29Xrlzp161du5YPGgAAAACARFJfW/Lnz29nnnlmvPFw7WsluCaf67q///6bzxVIizXAE0MBMgW8j5QtWzbbv3+/7du3z/ePvCY4f7IOHDjgA3sAklf439W6deuOex7AybdhagcB4GQEM85VgighvXr1skaNGrECHAAAAACAJAoC3n369EnwvEoAP/LIIywUA2I9AJ49e3YfyD+SgttagRIM8B95jc7nyJHjmO87d+7c464O1+o5rW4BkLz0d6WJLQp+Fy9e/Ki/U/7ugFOX0MSx1PbXX3/ZoEGD7LPPPrNdu3ZZmTJlrH379la5cmU/P3/+fOvfv7+tWbPGM720adPGbrjhhkjfNgAzX+2tDC1PPPFEgn+XXbp0CV0HAAAAAAAST3EtjZWp7vd//vOfo85369YtdB2AGA6AKxX5nDlz4h1TsFsD60pzrlTo+o9g06ZN8a7RfqFChU7631XqWP6DAZKf0p0Htb8V/A5Pfy783QGnLhrSnz/++OO+OlRBcKV0Gj9+vN1///329ttv+ySz1q1bW/PmzT0IriB5p06dPMVTjRo1In3rQLr3zTff+HP28uXLvRyROt9Lly61ihUr+kz0IFuLrgMAAAAAAImnvva5555rW7dutS1btsQbD9e+0p8H1wGI4QB4lSpVbMCAAfbrr7/6fwrhg22VKlXyQf5LL73Uj912222h1y1cuDC0ygxAdNUjPjLoHX4dgLRPbfZXX31lkyZN8rZann76aZs3b57NnDnTH/C1Irxdu3Z+rmTJkrZixQobPXo0AXAgCmhld548eWzHjh0+GTX8+XrkyJH+vc6zAhwAAAAAgKQpVqyYZc6c2f755x/vV2tBiBaNjBkzJhT81nldByB1ZUzJNz906JCvGAtqe2uliQLcGiT//vvvbcGCBb4KpWHDhqEV3lpB9v7779urr77qqVT79evnK1Puu+++lLxVAElwouA2wW8gdpxxxhkeJCtfvnzomCbB6Gvnzp22aNGiowLd1atXt8WLF/N/ARAl6tSpc0rnAQAAAABAwg4ePOhBblHQWxkSw4PfOg8gxgLgcXFxVrNmTfvggw98X4PlQ4cOtaJFi3pA+7HHHrPatWvbM888E3qNru/du7dNnjzZbrnlFg+Sv/LKK76iDED0OFaQm+A3EFtOP/10u+KKK+LVIp89e7avDK9Vq5Zt2LAh3qpSUbrlvXv32vbt2yNwxwDC6W/xnXfe8b/hP/74w2edq2yJttrXcZ3XdQAAAAAAIOkU5NZYmbKlKg6mrfYJfgMxkgL9+eefj7evQPeqVaviHVPt0BdffPG476MV4foCEN0U7N6zZ49naShbtiw1v4F0YMmSJda5c2e7+uqrfdWosryEB8cl2D9w4MAx36devXrHnUCnoLr+fwFwaoLyBG3btvWMDvobXrdunRUvXtwD4Y888ogNGjTIJ6YOHjyYjxtI5nJBAAAAANKHXbt2+eRy9Qm01T6AdFIDHAAApF1z5syxDh06eDmTAQMG+LFs2bIdFegO9hVcO1l6D02uAXBqli5d6tvLL7883t+UguDBcQXAdR1/c8CpU/ulthEAAABA+nHkJNh///3XLrroIv+ejKlAZBAABwAAJzRhwgTr1auXXXvttda3b9/QKu8iRYrYpk2b4l2r/Zw5c1ru3LmP+X5z58497upwdQ6UWQLAqalYsaItXLjQvvrqK3vyySetU6dOtnz5cu+I9+vXzyZNmhS6jr854NQdmRUFAE51Uo1KCS5atMgqV67sGVv4fwYAgOgNfmfJksWaNm1q48ePD6U/13mC4EDqIwAOAACOSwGy5557zh/gu3TpEu/BXgNx33zzTbzrFyxY4KvEM2bMeNKfrP4NBdEBnJohQ4bYyJEjfZV3kLlBFBQfO3Zs6O9U151K1gYA/0P6cwDJRZPWVJ7kn3/+8f0pU6b4s7jKm2gSGwAAiLwVK1aEvv/9998tX758nl3tpZdesm3bttk555wTuu7CCy+M4J0C6c/Jj0wDAICYt3btWuvdu7fVr1/fWrdubVu2bLHNmzf7199//+1B8e+//94Da2vWrPGA2qxZs6xly5aRvnUA/78UQaFChTz9mlSpUsU74tqKjus8wW8AAKIr+N2/f3/Lnz+/DRs2zJ+vtdW+jus8AACIvPLly4dWfhctWjTeOe3rePh1AFIPAXAAAHBMs2fP9pRNH3/8sdWsWTPel1Kin3/++TZ8+HD7/PPPrWHDhr4yRYNyNWrU4FMFosDevXtt48aNoVWp3377rbVp08a3ouM6r+sAAEB0pD3Xym9NUPvjjz+sWbNmduaZZ/pW+zqu87oOAABEVjDZXCXHEqLMLeHXAUg9BMABAMAxPfDAA7Zq1aoEv55//nm/pnbt2jZz5kz74Ycf7MMPP7Trr7+eTxSIEh07dvTtE088YXv27LFWrVpZtWrVfKv94HywBQAAkaXJpUp73rNnT8ucOX7lQu336NHDz+s6AAAQWUFZsWCM7EiatBZ+HYDUw18dAAAAEKN++ukn36osgdKcq/OtFKraav/++++Pdx0AAIgslRWSBg0aJHg+OB5cBwAAIkeLQUTZE5WpJZz2dTz8OgCphwA4AAAAEKNUpkBGjx6d4PkxY8bEuw4AAERWyZIlffvee+8leD44HlwHAAAi58ILLwx9f84551jevHnthRde8K32E7oOQOogAA4AAADEqP79+/t20KBBtnnzZqtXr56XKdBW+0OGDIl3HQAAiKyHHnrIU5137drVU52H0363bt38vK4DAACRd/jw4dD3WvE9fvz40MrvI88DSD0EwAEAAIAYpTTnN998sx04cMAKFixoCxYssE2bNvlW+zqu87oOAABEXtasWa1du3a2ceNGK1q0qI0dO9YnrWmrfR3XeV0HAACig4Lcy5cvD9X61lb7BL+ByMkcwX8bAAAAQApbtmzZKZ0HAACpq1+/fr4dPHiwtWnTJnRcK787duwYOg8AAKLHtm3b7N9///XvtdU+gMhhBTgAAAAQo3bs2GFr1qzx77ds2WKtWrWyatWq+Vb7ovO6DgAARA8FuXfv3m19+/a12267zbfaJ/gNAED0yZAhg9WqVSveMe3rOIDIYAU4AAAAEKNuuOEG31577bWWP39+X0m2cuVKK1u2rOXMmdOuvvpq++ijj/y6L7/8MtK3CwAAwijN+SOPPBJqu0l7DgBA9DkyyH3NNdfY7Nmz450nFTqQ+lgBDgAAAMSo3377zbfdu3dP8HzXrl3jXQcAAAAAABInfCK5JqwpW0uvXr18q/2ErgOQOgiAAwAAADGqWLFivn322WcTPN+zZ8941wEAAAAAgMQJT3t+wQUXxDsXvn9kenQAKY8AOAAAABCj3n//fd/OmjXLFi1aZLlz57bKlSv7VvtKfx5+HQAAAAAASJp77rknweONGzfmowQihAA4AAAAEKPy5MljJUuW9O+rVKli//77r3+vrfZF53UdAAAAAABIuokTJyZ4fNq0aXycQIQQAAcAAABi2Jo1a07pPAAAAAAAONq8efNC3//444/xzoXvh18HIHUQAAcAAABi1IoVK0LfL1u2zKpXr24FCxb0rfYTug4AAAAAAJxYzZo1Q9+XLVvWcuXKZZ06dfKt9hO6DkDqyJxK/w4AAACAVFa+fHnfZsmSxS666CKbO3eurVy50jviOXPm9OMHDx706w4dOsTvBwAAAACAJDh8+LBlyJAhtP/JJ58cdR5A6mMFOAAAABCjgprfTz75ZILn27VrF+86AAAAAJEzYsQIa9q0abxjmsDapEkTu/jii61u3bo2bty4iN0fgIQpyK2V3+G0T/AbiBwC4AAAAECMypjxf4/7zz//fILnBw8eHO86AAAAAJExceJEGzJkSLxj27dvt+bNm1uxYsVs2rRp9vDDD9uAAQP8ewDRQyvA+/XrF++Y9sNXhgNIXaRABwAAAGLUDz/84KnPleb8u+++s4YNG9rmzZutQIECNmPGDD8eXAcAAAAg9W3cuNG6d+9uCxcutOLFi8c799Zbb3nZoh49eljmzJmtZMmS9uuvv9rIkSOtcePG/LqAKHBkkFt/x+vWrYt3npXgQOo75aUeSpf44osvWq1atTwNy3/+8x/7/fffE7z2pZdesjJlyiT41blz59B1mtV25PkjU78AAAAAOL4LL7ww9P2ll15qv/32m+3du9e32k/oOgAAAACpZ/ny5R7kfvfdd61ixYrxzi1atMiqVq3qwe9A9erVPbi2ZcsWfk1AhL366quh7z/++GPbvXu3TZ061bfaT+g6AGlkBfjw4cNt0qRJnlaxcOHC1r9/f2vZsqXNnDnTsmbNGu/aFi1a2J133hnvmP7wJ0+ebM2aNQsdW7VqlT3zzDN21VVXhY7pIQAAAABA0uTJk8d27Nhx3PMAAAAAIkN1vfWVkA0bNljp0qXjHStYsKBv4+Li7Mwzz0zwdfXq1Tvmv6fXaRx/z549p3TfAP4X8wpcdtllPuFctNV++HV33HEHHxlwipRNIbGlBU4pAH7gwAEbO3asdejQwerUqROqI6jV4B999JE1aNAg3vW5cuXyr8CKFSts3Lhx9txzz/kqb9m69f+xdxdwUlX//8c/dCMd0tIpAiIoIIKAQYOiEooBYqA0CCohIVJKIwgWggKiYIBgAIooYSCphNKl0in/x/v8/ne+s8vusrAxszOv5+Oxj9m5987s3Tss557zOefzOey+NNtNqRkBAAAAXB2lO/eC3ytXrrRbbrnFZXBSze9vv/3Wqlev7vZ7adEBAAAABI/Tp09fssgsTZo07vHMmTNxGtffuHFjnM8PwP/Snvv/TXkp0PPly2e7d+923/M3B8Sd2i+vHUzQAPimTZtcKgcNnHkyZ87sUij++OOPlwTAI1PtkipVqlizZs0irP5W9L5IkSJxOTUAAAAg7CldoqgOuFIlHjt2zHW6S5cubenTp3ePeq7jtm/fHvbXCwhH+ttv3ry5Pf/88+4RQPDQwpHy5cv7Jq/9+uuvlC0BwkzatGndYL8/L/Ct+/noLF26NNp9Wh2uFXTqCwCIHwp4629KK7/1vQLi6dKl8wW/hb85IO4iTwpLsAC4UrBI3rx5L0nD4u2LzldffWXr1q2z+fPnR9i+ZcsWy5QpkwuOa1WKGvI77rjDnnjiiWh/MVK6AIHjn9YFQGDTugBAZFrZLS+//HKUF2fw4MEu4OUdByC8nDt3zmV0IwUqEHwi9wEUBNeENq+PACA8KFX5gQMHImzznufOnTtO/8fEFEAHEDvKkOylQf/uu+98ac8V/NZz/+P4mwPi7krGyeMUAPcCXlGlYYmpzqBX+/u22267ZNaLAuCaxVahQgVr3769W5EyfPhw27Nnj3u8GqR0ARKel9YFQODSugBAZEprroxNvXr1chmWIq8i69u3r+84AOFn7NixljFjxkCfBoAYBvZSpUplbdu2tbfffttNWvH2EwQHwsONN95os2bNsgsXLliKFCnctu+//97d22fPnj3QpweEPcWwvAB4vXr1Lkl77n8cgMSVMq4pWLzBee97UQBbM1yio2D2qlWrbMqUKZfs08pvDdBdc8017nmJEiXczX6XLl2sZ8+eliNHjkteQ0oXIHAip3UBELi0LgAQ2Q8//OCyM/3222++VWORV5F5xwEILypbNnv2bJeVrXbt2oE+HQB+ac89f/31l2XLls0tDtGElSNHjliBAgV8x6kEIYDQ1qJFC5s6daqbuProo4/aL7/8YjNmzLABAwYE+tQARJO9MXLwm0lrQBIMgHupz5V2pWDBgr7tel6yZMloX7dkyRJ3A3/LLbdcekIpU/qC357ixYu7R6VVjyoAfjmkdAESnoLfpHEB4h/pzwHERVQru5WFSeWILnccgNB19OhRN8G8X79+l5Q0iwplx4DEo2wtosUgGjvzLzum59quleA67tixY3w0QIiXHdMqbwXAVbqoWbNm7r5dbbi+BxBc/5co67G3GtxLe87KbyCJBsBLlSrl0qVpNbcXAFdHWrNQ27RpE+3rVq9ebVWrVnXB7siU1il//vw2dOhQ3zalZ9QNvlaYAgAAALjyVWSeyMFv7zhWkQHho3///nbDDTdYo0aN4uX9KDsGxB9lafHGx7TyO3LZsfvuu8+lQ9dx/vsBhEbZsWHDhl2yTaVClbUFQHA7fvx4jM8BJKEAuNKyKtA9YsQINwtVtQ1eeeUVy5Mnj9WvX9/VJlF6pkyZMkVIka4BNqVviUqDBg1syJAhrmGvUaOGC36r9vcjjzxCbTIAAADgKleRKQ1blSpV7ODBg27liCal6v7dW0Wme3cAoU8pz/X3v2DBgli/hrJjQOJJnjy5C24ryK2055HLjqkWsHdc6dKl+WiAOKLsGID4EFUmic6dO7svUqADSTAALvoDPn/+vEuddvr0abvxxhtt2rRpbpBt165dLlWaVnM3b97c9xoNumXJkiXK91NAXf9Z6EZfgXANzj300EPWoUOHuJ4qAAAAEJaryHr37u3uq7VSTF8aMFfpki5durjJpt5xAELf3Llz7fDhw5fU/X7xxRft008/dWlWrxRlx4D4o4UgZcuWdRPUtKhEC05EwW8913bvOMqQAXEXzOnPASTN/0dUxvfQoUMR9hMEB5JgADxFihTWo0cP9xWZUplv3rz5ku0///xzjO/ZunVr9wUAAAAg7qvIlEpx4MCBl+wfPXq07zgA4UEZ3DR53Z8yuGlye+PGjQN2XgD+j39JkgIFCrgFJkp7rpXfXvA78nEAACAwlK3F8+GHH7r7am/S+eLFi61Zs2a+455++mk+JiARMdIFAAAAhCitDhMNmGvgPEOGDC4Nuh79B9K94wCEvty5c1uhQoUifEn27NndPgCB579KTG21siT6B79ZRQYAQHDQJFJP06ZNI+zzf+5/HIDEQQAcAAAACFH+q8Puv//+CPv8n7OKDACA4KIg92+//ebL0qJHPSf4DQBA8FE25KgwwRRIwinQAQAAAABA0hVV6TIAgacJaseOHfOlUqXmNwAAwWnXrl1Rbt+/f3+inwuA/8MKcAAAACBErVixwvf93LlzI6wi0/OojgMAAAAAAJf32muv+b6fP39+hH3+z/2PA5A4WAEOAAAAhKiaNWv6vm/evHm0q8h0HClVAQAAAACIvaefftpX37tZs2buMWvWrPb3339fchyAxMUKcAAAACDEtW7dOsrtLVq0SPRzAQAAAAAgVESeTB45+M1kcyAwCIADAAAAIe7dd9+Ncrt/GnQAAAAAAHDlFOSOnOZczwl+A4FDABwAAAAIUcuXL/d9P2jQIMuQIYNVqVLFPep5VMcBAAAAAIAr880338T4HEDiogY4AAAAEKJq1Kjh+/6FF16IsM//uf9xAAAAAAAg9pIlSxZlxjVtZxU4EBisAAcAAAAAAAAAAADiIfh9JfsBJAwC4AAAAECIevPNN33fDxkyJMI+/+f+xwEAAAAAgMtr2bKl7/tevXrZiRMnbPXq1e5Rz6M6DkDiIAAOAAAAhKiHHnrI932fPn0idMb1PKrjAAAAAADA5SnNuWfYsGER9vk/9z8OQOIgAA4AAACEuLJly0a5vXjx4ol+LgAAAAAAAEBCIgAOAAAAhLjffvvNxo4daxkyZLAqVaq4Rz3funVroE8NAAAAAAAAiFcEwAEAAIAQNWPGDN/3nTt3jrDP/7n/cQAAAAAA4PJatGjh+753794R9vk/9z8OQOIgAA4AAACEqAcffDBejwMAAAAAAP9nzpw5vkvx8ssvR8i6pudRHQcgcRAABwAAAEKU0pzH53EAAAAAAOB/Ll68GKf9ABIGAXAAAAAgRMWU5jym9OgAACDwNEHNfyUZE9YAAAhOCnJHTnOu5wS/gcAhAA4AAACEuPz587s05ydOnLDVq1e7Rz3PnTt3oE8NAABEIVmyZJdMUNNzbQcAAMFn+/btMT4HkLhSJvLPAwAAAJDIdu3aFeX2/fv381kAABBkIge5c+TIYYcOHYqwnxVlAAAEj6gmqK1du5Y2GwggVoADAAAAIeq1117zfX/33XdHSKOq51EdBwAAAsc/zfmHH37osrZ8/vnn7lHPozoOAAAEzuWys5C9BQgMAuAAAABAiHr66ad933/66acR9vk/9z8OAAAEjn/a86ZNm0bY5/88cnp0AACQ+CpXruz7/t57741QdkzPozoOQOIgAA4AAAAAAAAEkfz580e5PXfu3Il+LgAAIGpKc+6ZPXt2hH3+z/2PA5BEAuD//fefS5lYs2ZNq1ixoj322GP2119/RXv8xx9/bCVLlrzky78u4WeffWZ33XWXVahQwc1uXblyZVxPEwAAAAg7ffv29X3fpEmTCPv8n/sfBwAAAs9/nMzf/v37E/1cAAAAgLALgE+YMMFmzpxpgwYNslmzZrmA+KOPPmpnz56N8vjNmzdb1apVbcWKFRG+8ubN6/Z///331qNHD7vvvvtcbaPq1atbhw4d7I8//ojrqQIAAABhZciQIb7v58+fHyEdm55HdRwAAAgcLTLx+LfVkZ/7HwcAAAAgHgPgCnK/8cYbru5Q7dq1rVSpUjZ69Gjbt2+fLV68OMrXbNmyxa34zpkzZ4SvFClSuP2vv/663X777dauXTsrWrSo9erVy8qWLWtvvvlmXE4VAAAACFsZM2aMcnu6dOkS/VwAAED0nn76ad/3zZo1swwZMli9evXco55HdRwAAAiMSpUq+b5v1apVhH3+z/2PA5AEAuCbNm1yq0e0StuTOXNmK1OmjP3444/RrgBXYDsqWj2uWgj+7yc33XRTtO8HAAASz+TJk61t27YRtm3cuNHatGnjSqHUqVPH3nrrLT4SIMgcP348yu2nTp1K9HMBAAAxu3jxYoTnf//9d4z7AQBAYKxZs8b3/fvvv+8mrFWpUsU96nlUxwFIHCnj8mKt9BYvfbknV65cvn3+/v33X1erSGkXlTZdN/Cq862U50WKFLGjR4/ayZMnLU+ePLF6P0/dunWj3bd37173fnpfAPHPGzhnAB1IGBrcSpYsWVBc3nfffdfGjBnjbuQ9asvbt2/vAt8DBgywn376yT3qRr9FixYBPV8AZs8995wvvbmyMCkbk6dEiRIRjgMAAMHVDxg7dqzLuuif9pyV3wAAJK2xOyauAUkwAO4FvFKnTh1he5o0aVywO7KtW7f6/uCHDh1qp0+ftokTJ9oDDzxgCxYssPPnz0f7fmfOnIlTqnatTgOQcHbs2MHlBRKA2jC1g4GkyWsvvviirVq1ygoXLhxhn2azpkqVygYOHGgpU6Z0WV527txpU6ZMIQAOBIHBgwf7AuD+we/Iz3UcAAAILgp2P/LII25Mq3Tp0pY+ffpAnxIAAIiCYl6VK1d2GY79056z8htIogHwtGnT+gbnve9Fweqo6glqxdjKlSsta9asvhkx48aNc/XD582bZ/fcc4/v/fxF936epUuXxrg6XP/5qKMAIP5pIoyC3wqKUUcUiH+RJ4UFwm+//eaC3B9//LGNHz/edu/e7dunrC5Vq1Z1wW9PtWrVXKr0Q4cOWY4cOQJ01gAAAAAAAEDi8A9+R/UcQBIKgHupzw8cOGAFCxb0bddzpViMSrZs2SI8V8Asf/78bnVZlixZ3GxWvd6fnufOnfuqz1PBdmbJAglLf8v8nQHxLxjSnyu9ub6iohIl/mmUvdIlXhkSAuBAYDVp0sT3vSaE+mdF8n+u4z766KOAnCMAAAAAAKE4fqftpEAHkmAAvFSpUpYxY0aXEtULgKuO94YNG6xNmzaXHD979mwbNWqUffXVV75A2fHjx93q0ZYtW7r/DJQW4ocffvCtBhe9v3+9UQAAEBxUziSq0iUSU/kSZWiJjgLnefLksZMnT8bjmQLhSZkb/DM2RM7ckiFDBt9x/M0BCV//DwAAAEBoudz9P0FwIAkGwDXgrUD3iBEj3MrufPny2SuvvOIGrevXr28XLlywI0eOWKZMmVyK9Fq1arlje/bsac8884wbNFdAXK9t3ry5e8/27dtbhw4drEyZMu74uXPnupUp1CUEACD4qH2PqnSJxCUrhN7Tf6UqgLjz/5tSEDym/QCuvv3yJoIBAAAACK/g94kTJ1zfWhnXvAnn3nGsBAeSUABcOnfubOfPn7d+/fq5gPaNN95o06ZNc7VCd+3a5VZ4DR061AW4lTJ9xowZNnLkSLv//vvdH/wtt9xib731lm+QoEaNGjZkyBCbMGGCjR492ooVK2aTJk2yokWLxsfvCwAA4pEmvUVVukRiKl+ydOnSaPfp3kH3COosAIg/Dz/8sP3yyy++5xUqVIiwn785IO4iZ0UBAAAAEB40luWfWY3sUEASD4CnSJHCevTo4b4iU23vzZs3R9hWtmxZe+ONN2J8z6ZNm7ovAAAQ3DTxbdasWS7ri+4J5Pvvv7ciRYpY9uzZr/p9NTM2LivIAfyfxo0b+9Kg+we/Iz/XcfzNAXFH+nMAAAAAAAIveaBPAAAAJF0tWrSw48ePW9++fe3333+3efPmuWwvHTt2DPSpATCzjz76KF6PAwAAAAAAAIIdAXAAAHDVtMp76tSptn37dmvWrJmNGzfOevbs6b4HEHiVKlWK1+MAAAAAAMDls0GRHQpI4inQAQBA+Bg2bNgl21RHePbs2QE5HwAxW7duXZTp0CM/9z8OAAAAAABcXuQ63xkyZIj2OACJiwA4AAAAEAaU5vzkyZO2ceNGK126tKv5zYx0AAAAAADiLwge1X4AiY8AOAAAAAAAAAAAQWr//v1Wq1atS7YPHTrUmjdvHpBzAnD5IDjBbyBwCIADAAAAIeqGG27wpTePaUa6jgMAAAAQnDZt2mRp0qSxJUuWRLivz5QpU0DPC4DF2N/WdoLgQGAQAAcAAABC1Nq1a2OV5lzHAQAAAAhOW7ZsscKFC1uuXLkCfSoAIrlcn5sgOBAYBMABAAAAAAgj//zzj40aNcq+/vprO378uJUsWdK6detmVapUCfSpAfBDKlUAns2bN1vRokW5IECQt9UnTpywjRs3WunSpS1DhgwRjmMlOJC4CIADAAAAISo2q7+94+iMA+Gja9eudvDgQRcEz549u7399tv2yCOP2IcffmjXXXddoE8PAKlUAUSxAjxr1qzWunVr2759uxUqVMg6deoUZV1wqVu3brTXcO/evZYnTx47efIk1xmIRwp+nzp1yn2vRz33D4LzNwfEncauYjvWRQAcAAAACJNOgjrc3mz09OnTx7rTACB07Ny507799lubOXOmVa5c2W17/vnnbfny5bZgwQJ75plnAn2KQNgjlSoAf+fPn7dt27ZZsWLFrHfv3pYxY0b75JNPrEOHDjZ9+nSrXr36FV+ws2fPun4BgPjj/ze1Y8eOGPcDuDpqv9KkSROrYwmAAwAAAAAQJrR6bMqUKVa+fPkIwTZ9HT16NKDnBoBUqgAulTJlSlu1apWlSJHC0qZN67aVK1fOtm7datOmTYsyAL506dJoL6VWh2tyrCbFAog/+pvSym8FvwsXLmzp0qW7ZD+AuEmdOnWsjyUADgAAAABAmMicObPdeuutEbYtWrTIrQx/7rnnonwNaVSBwCCVKhBcqVQDyT+Nsqd48eK2YsWKq3o//c7KCAUgfv9O1XaLgt+R/275mwPi7krabALgAAAAQBhICgN7ABLf2rVrrU+fPla/fn2rXbv2Vb0HaVSBhEEqVSC4UqkGilZ6t2rVyiZOnGg33XSTb/v69etdWnQAwTOJJqrJKt5xABIXAXAAAAAgzFe00BkHwtOSJUuse/fuVqlSJRsxYkS0x5FGFQgMUqkCwZVKNVCKFi1q1113nQ0cONAGDBjgypm8//779tNPP9ncuXMDfXpA2Ltcv5v+NhAYBMABAAAAAAgz77zzjg0ePNjuuOMOe/nll+MUACCNKpAwSKUKJLykkCUpefLkNmnSJBs5cqQ9++yzdvToUStTpoxNnz7dSpQoEejTAxDD5HOC30DgEAAHAAAAwnxAT8fRMQfCx8yZM23QoEHWtm1b69u3b5IY/AfCBalUAUQlR44cNnToUC4OAACxRAAcAAAACJMB9ZMnT7p6okqpmj59eoJeQBjavn27DRkyxOrVq2cdO3a0Q4cO+falTZvWMmXKFNDzA3D5EiZMWgMAILhE124z2RwIHALgAAAAAACEiUWLFtm5c+fsiy++cF/+mjVrZsOGDQvYuQH4H1KpAgCQNFwumxJBcCAwCIADAAAAYYAUxwDk8ccfd18Akmb2FgAAELz97BMnTvja7QwZMkQ4jgwuQOJKnsg/DwAAAAAAAAAAAAgZkQPcBLyBwCIADgAAAISo2Ha46ZgDAAAAAAAgVBAABwAAAMI87Tnp0QEAAAAAABAqCIADAAAAAAAAAAAAVynyxHImmgNJPAD+33//2WuvvWY1a9a0ihUr2mOPPWZ//fVXtMdv3brVOnToYDfddJNVr17dOnfubHv27PHtv3DhglWoUMFKliwZ4Wvs2LFxPVUAAAAgbCnN+YkTJ2z16tXukbTnAAAAAADErZ/tL0OGDFalShX3GNNxAJJAAHzChAk2c+ZMGzRokM2aNcsFxB999FE7e/bsJcf+/fff1r59e0ubNq29/fbb9vrrr9uRI0fc8WfOnHHH7Nixw33/0Ucf2YoVK3xfDz/8cFxPFQAAAAAAAAAAAIgXlwtuE/wGAiNlXF6sIPcbb7xh3bt3t9q1a7tto0ePdqvBFy9ebA0bNoxw/JIlS+zkyZM2fPhwFwSXV155xb127dq1bkX45s2bLWPGjFaqVKm4nBoAAAAAP6RfAwAAAAAg/inIHVWfm+A3kERXgG/atMmlT1Tg2pM5c2YrU6aM/fjjj5ccr+O0YtwLfrsTSP5/p3D06FH3qAB40aJF43JaAAAAAK6gs02nHAAAAAAAAKEiTivA9+3b5x7z5s0bYXuuXLl8+/zlz5/fffmbMmWKC4jfeOON7vmWLVvs/Pnz9sgjj7gAe+7cue3BBx+0Jk2aRHsedevWjXbf3r17LU+ePG7lOYD4d+rUqQiPABJnBikAAAAAAACAwItu7E7bmXAOJMEAuBfwSp06dYTtadKksX///feyr1cd8Hfeecf69etn2bJlc9u2bt3q6oh37tzZBa6/+eYb69Onj507d85atmx51anaN27ceFWvBRA7O3bs4FIBCUBtmNpVALgasZ1AQ6ccAAAAAID473fT3waSYADcS2WuwXn/tOZnzpyxdOnSRfs6zXh59dVXbeLEidapUydr27atb9/ChQvtwoULliFDBvdctcD37Nlj06ZNizYAvnTp0hhXh+vnlS5d+qp+RwCXnwij4HfhwoVj/LsHcHUiTzIDgKule2JlRdLEUN0bp0+fngwTAAAAAADEU/BbJYO9PrcX4/KOYyU4kIQC4F7q8wMHDljBggV92/W8ZMmSUb5GK7m1oluBbj0+9NBDEfb7B9I9JUqUsI8//viqz1P/uWiAD0DCUfCbvzMg/pH+HAAAAAAAAEgak879nzOuBwRO8ri8WKuzM2bMaKtWrfJtO3r0qG3YsMFX0zuynj172ueff24jR468JPit11atWtXmzZsXYfuvv/5qxYsXj8upAgAAAAAAAAAAAABCXMq4pmVt06aNjRgxwtXwzpcvn73yyiuudnf9+vVdKvMjR45YpkyZ3MpuBbY//fRTFwRXoPvgwYO+99IxmTNntmrVqtno0aMte/bsVqhQIVu8eLFb/T158uT4+H0BAACAsMTMcwAAAAAAAISDOAXApXPnznb+/Hnr16+fnT592q38Vr3uVKlS2a5du1wN7qFDh1rz5s1d2nMZPny4+/LnHTNkyBAbO3asvfjii3b48GErWrSovfbaa1azZs24nioAAAAQVmKbco1aZAAABJ+o2nDabAAAgrfdVg1w/+cAknAAPEWKFNajRw/3FVn+/Plt8+bNvudvvPHGZd9PKdVVG1xfAAAAAAAAQLiJbtBc2wmCAwAQnJPOM2TIEO1xAJJQDXAAAAAAwSu2M86ZmQ4AQPC4XLtMuw0AQPC4XHCb4DcQGATAAQAAgDCgTrfSsa1evdo90gkHACD4RA5u+7fdMR0HAAACJ7r+Nf1uIHAIgAMAAAAAAABBJvKgOYPoAAAAQCLVAAcAAAAQ/FgpBgAAAABA4vW3tZ0JbEBgsAIcAAAAAAAAAAAAiOfJ5kxGBwKDADgAAAAQomI705wZ6QAABJ/IA+YMoAMAEFwit80nTpyw1atXu8eYjgOQ8EiBDgAAAISo2HayScsGAEBw0KQ0//Y7Q4YM0R4HAACCh9rmkydPRnhO4BsIHFaAAwAAAAAAAEHicsFtgt8AAABAzAiAAwAAAGFAg+X+6dgYPAcAIHhF107TfgMAAACXRwAcAAAAAAAACDJMXgMAIOmInO6c9OdAYFEDHAAAAAgD6nxr5bf/cwAAAAAAcHUi1/nOkCFDtMcBSFwEwAEAAIAQRWccAAAAAIDE63dHtR9A4iMFOgAAABDCLtfZpjMOAAAAAED897vpbwOBQwAcAAAACHF0xgEAAAAAABAuSIEOAAAAJCE7d+60o0ePXvHrfvnlFzt9+rRt2LDBypQpY2nTprVff/31qs4hc+bMVqhQoat6LQAAAAAAoSS6FOjazipwIDAIgAMAAABJxJEjR6xGjRr233//BfQ8UqRIYT/99JNly5YtoOcBAAAAAEAgxVT/29tPEBxIfATAAQAAgCRCAecVK1Zc1Qpw+f33323cuHH21FNPWbFixa76PLQCnOA3AAAAACCcRQ5+nzhxwjZu3GilS5e2DBkyRDiOIDiQuAiAAwAAAElIXFKPq9OdPn16K168uJUrVy5ezwsAAAAAgHClAPfJkycjPL/c6nAACSd5Ar43AAAAAAAAAAAAAACJhgA4AAAAAAAAAAAAACAkEAAHAAAAAAAAAAAArlLkdOekPwcCixrgAAAAQCLas2dPhLpgiWn37t2+x7Rp01qgqA75tddeG7CfDwAAAABAXEWu850hQ4ZojwOQuAiAAwAAAIkY/O7YsWPAr/e4ceMCfQo2efJkguAAAAAAgJAKgke1H0ASDID/999/bgDtgw8+sGPHjtmNN95oL7zwghUoUCDK4//++2976aWXbNmyZe4/hbvvvtt69uxp6dKl8x3z2Wef2dixY23Xrl123XXXWa9evax69epxPVUAAJBArvR+AAhX3srvbt26Wf78+RP9558+fdo2btxopUuXDtgKcN3jjxw5MmCr4AHQbgMAkNTQ5waSZhCc4DeQhAPgEyZMsJkzZ9qwYcMsT5489sorr9ijjz5qCxYssNSpU19yfOfOne3UqVM2Y8YMO3r0qPXt29cNfr388stu//fff289evRwQfFbbrnF5syZYx06dLD58+db0aJF43q6AAAgAVzp/QAQ7hT8LlasWKL/XN13nzlzxk0yVRpyAOGJdhsAgKSFthsIfgp2q8/tTTqnzw0EVvK4vPjs2bP2xhtvuKB27dq1rVSpUjZ69Gjbt2+fLV68+JLj161bZz/88IMLdpctW9at6h44cKB99NFHtn//fnfM66+/brfffru1a9fOBby1+lvHvvnmm3E5VQAAkECu9H4AAAAEDu02AABJC203AACJHADftGmTnThxIkJ68syZM1uZMmXsxx9/vOT41atXW86cOSOs5K5atapLDbFmzRqXymXt2rWXpDu/6aabonw/AAAQeFd6PwAAAAKHdhsAgKSFthsAgEROga6VXZI3b94I23PlyuXb50+rvCMfq7SoWbJksb1797qU6EoRodSpsXk/T926daPdp/fV+1FjEKHsp59+skOHDl3163fu3GnHjx+/qteeP3/elTVIly6dpUx5df+lZMyY0QoVKmRxkSNHDqtYsWKc3gNISjWEgsmV3g8IbTfClWpwq83csGGD/fvvv1f1Hmrzr/beVu3233//bdu2bbvqdluUyk1t79U4cOCAuwa6FtyjI9TQbgOhJ6797VDoc9PfRiij7QZCT1IfKxfabiDu7XacAuD6Q5bItT3TpEkT5YCejo+qDqiOVy1CDYJF937aH5c0Maq7AISigwcP2sqVK61SpUpX/R4FCxa0YPiPKy4WLVrkJtEoywQQStSGqR0MZld6PxAbtN0IVbt27XK1wNTu6furlTz51SVy0t9p7ty5La503x6X89c12LNnT5zu8YFgRLsNhJb46G+HQp+b/jZCGW03EFpCZaxcaLuBuLXbcQqAp02b1vcDve9FA1ma4RLV8To2Mh2vVSTeSUc+Jrr38yxdujTafVphpv8oNMgGhCL921aq4XBfAd6gQQNWgCMkRTVxLNhc6f2A0HYjnNvtAgUKxKkjGx8rwLNmzRqwFeBSsmTJoBlUAOIT7TYQWuKjvx0KfW762whltN1AaAmFsXKh7Qbi3m7HKQDupTpVGkP/ASw916BWZEpFvmTJkgjbNFj+zz//uDSpSoWuwTS93p+ex2WlipbD632BUHXzzTcH7GdrAF4ZFnRzwd8ZEP+CPf351dwPxAZtN0JZXFeRxQXtNpCwaLeB0BPI/rbQdgMJi7YbCD2MlQOh60ra7avLnfj/lSpVys1EWbVqlW+bUhCrpuGNN954yfHaplqgmkHj+eGHH9xj5cqV3YlrQNDb5tH7V6lSJS6nCgAAEsiV3g8AAIDAod0GACBpoe0GAODKpYzrUvM2bdrYiBEjLFu2bJYvXz575ZVX3Erv+vXr24ULF+zIkSOWKVMmlxL1+uuvdwHuLl26WP/+/d0s1hdeeMGaNm3qW+Hdvn1769Chg5UpU8Zq1aplc+fOdatLBw8eHJdTBQAACeRy9wMAACB40G4DAJC00HYDAJDIAXDp3Lmzq2vQr18/O336tFvpNW3aNEuVKpXt2rXL1eAeOnSoNW/e3K3wHjdunA0YMMAefPBBV/P7jjvusD59+vjer0aNGjZkyBCbMGGCjR492ooVK2aTJk2yokWLxvVUAQBAAonpfgAAAAQX2m0AAJIW2m4AABI5AJ4iRQrr0aOH+4osf/78tnnz5gjbsmfPbq+99lqM76kV4foCAABJQ0z3AwAAILjQbgMAkLTQdgMAcGXiVAMcAAAAAAAAAAAAAIBgQQAcAAAAAAAAAAAAABASCIADAAAAAAAAAAAAAEICAXAAAAAAAAAAAAAAQEggAA4AAAAAAAAAAAAACAkEwAEAAAAAAAAAAAAAISGlhbgDBw7YhQsXrG7duoE+FSAkXbx40c6ePWupU6e2ZMmSBfp0gJCzd+9eS5EihYUT2m4g4dBuAwmLdhtAfKPtBhIWbTeA+ES7DQRPux3yK8DTpEljKVOGfJwfCJh9+/bZkSNHCH4DCURtmNqycELbDSQc2m0gYdFuA4hvtN1AwqLtBhCfaLeB4Gm3k13UlBQAuEpedoWlS5dyDQEACHK02wAAJC203QAAJB2020DwCPkV4AAAAAAAAAAAAACA8EAAHAAAAAAAAAAAAAAQEgiAAwAAAAAAAAAAAABCAgFwAAAAAAAAAAAAAEBIIAAOAAAAAAAAAAAAAAgJBMABAAAAAAAAAAAAACEh2cWLFy8G+iQAAAAAAAAAAAAAAIgrVoADAAAAAAAAAAAAAEICAXAAAAAAAAAAAAAAQEggAA4AAAAAAAAAAAAACAkEwAEAAAAAAAAAAAAAIYEAOAAAAAAAAAAAAAAgJBAABwAAAAAAAAAAAACEBALgAAAAAAAAAC5rx44dtn//fq4UAABJ3MWLF6P8HggVBMABAAAAJLpNmzbZ9u3bufIAACQR586dszlz5thHH33knq9bty7QpwQAAK7Cf//9Z8mSJfM99/8eCBUEwAGEhMiz1Ji1BgBAcPvxxx+tdevWdvjwYfvss89sy5YtgT4lAAAQg1SpUlnKlClt1KhRdv/999vgwYPt+PHjXDMAAJIQjZsnT/5/ocHhw4fbiBEjAn1KQIIgAA4gpGasHThwwE6dOsWsNQAAglydOnWsRIkSVq9ePevdu7flyJEj0KcEAAAu49lnn7XixYvbzz//bBUrVrTUqVNzzQAASEK8cfRff/3VvvzyS7vtttvswoULgT4tIN4RAAeQ5IPf3oy1KVOm2FNPPWUtWrSw+fPn27///hvo0wMAANHIly+fC4CfPHnS0qdP7x4BAEDw8TKsnT171g2QZ8uWzRo3bmzvvPOOTZ8+3f75559AnyIAALgCM2bMsK5du1r58uWtcuXKliJFCq4fQk7KQJ8AAMQl8O0Fv19++WX74IMPrE2bNvbnn3/aoEGD7MSJE9aoUSPLnDkzFxkAgCCbuCY33XST3Xrrrfb666+7VKrTpk1zQXENtFODDACA4Gq7NVktS5Ys9uabb7rnOXPmtNGjR7vvW7Vq5fYBAIDgpslsefLksdOnT9u6detcRtVcuXIF+rSAeJfsIoVyASRxixYtsqFDh9rkyZOtZMmS9ssvv9i9995r6dKlczPZmjRpQhAcAIAgGkDfuHGjS5mqVeBp06a13bt3W69evWznzp32xhtvuNSqAAAgsPwnpCnj2pIlS1yQ++abb7aHHnrIbVc9cE1k69Kli915552uja9fv36AzxwAAEQ3Ed2j9Oc9e/Z07frIkSMtVapUXDSEFALgAJKUtm3butViSnXuUcq11atX2/jx413w+5VXXrF27drZ2rVrbdasWda9e3f3mmLFigX03AEAgLmO9cKFC+3QoUOuDrjabKVc27t3r+t879ixw4YMGeJqi2p1uFKyAQCAwAW/J0yY4Cao3Xfffa7vffz4catbt64LentBcAXIs2fPboULF7a33347yoF2AAAQuOD3Dz/84Cafnz9/3sqUKWNly5Z1k9s0Gb127douw2rKlCSNRuggAA4gyTh16pQtW7bMbrvtNrdqzKPGefv27W5AfezYsa6T3qlTJzt48KDdfffdljVrVpeO7dlnnw3o+QMAEO4dbtUKnTRpkj333HMujarabaU879ixo1WpUsX27dvn9qljXrRoUZs3bx61yAAACKANGza4yeYqN1a9enU7fPiwe6622j8I/tlnn7k++AMPPOAGzylnAgBA8BgxYoTLonrNNde4LGya0Pbaa6+5rC1eEFxj7sOGDSMIjpDBdA4ASYZSmjdo0MB9r9nl69evdw21Gmh9r464OuHPPPOMS3n++++/u5VlarybN28e6NMHACAsecHvX3/91Q2M9+7d2+666y637brrrnPtuILijz/+uAuCa4WZOuM33HCDC35Hl64NAAAkrAULFtj777/vsrYUKlTIbdMqb01cU4BbqVPVRqsPrvTnHq0sYwUZAADB4YMPPrAPP/zQXn31Vdfnnjlzputzq7/977//2u23327Dhw+3J5980rX3Tz/9dKBPGYgXjCQBSHIU6NZMtcWLF9vzzz/vtpUrV85WrVplf/31l0uXqsFyBckVNL/nnntcg37hwoVAnzoAAGFHA+SalKb2ePLkyXbkyBHfvkqVKrlMLqr9rfqhy5cvd9vVKffaboLfAAAEhhf0/vPPP+3rr7/2bc+dO7ebuKZSYyo7poF1fwS/AQAIjr64/Pbbb9a4cWPXz9Zqb5UPHTx4sCtbMmDAAJcWXVldlLFNWVWBUEEAHECSoqD2mDFjXL3QgQMHutlrffv2dfuqVq1qadKkcSu+W7Zs6RpvpW3xGnwNpAMAgMTraHvpT4sVK2bjxo1z277//ns3kO4fBNdsc2Vx+e677yK8D203AACJQ5PI/WkSWoUKFVy/+8Ybb7Q5c+bYxx9/HCEI/sgjj1iHDh3IuAYAQBBSX1yOHTvmMrh89dVX1qNHD+vZs6e1aNHC9uzZ47YdOHDAHacAuSaxKZMLEApIgQ4gScmRI4dbPab6Y02bNnUD6y+99JIbIFfHXHXAVSc8Q4YMriPuNdrMQAcAIHH4pyxXnW89T506tUurptIlnTt3dp1vrRzLly+fO07pzmfPnu3qfgMAgMC13R999JFt377drRZTn7tWrVo2aNAgl31NKVM1mN6oUSN3bN68ea19+/a+gDkT1wAACJzoyoep360FZalSpbI+ffrYvffe67arX37ttde6DKr+GEdHqCAADiDoG21v9ZgeNUCueqFaIVayZEm744473LHqkKsRV6dcadg86oTTaAMAkLhtt8yYMcO117t27XKlS7p06WL169d3dcdUK1Rtu4Lg6nBLiRIlfG03A+gAACQer+1WRpbPP//crQDLlSuXdevWzZo1a2ZDhw51mdeGDBniUp6fPn3alTbxR9sNAEBw9MW/+OILO3jwoB09etSaNGliHTt2dGVDtWisTJkytn//ftdujxo1ygXBvb44EGqSXfTyEwJAkFKDnTNnTt/zESNGuPRrn332mWXNmtWOHz/uvlfw+9lnn3WD6QAAIHDUkVZbrXa5QIEC1r9/fzt79qyrKabZ559++ql1797dBcT79evnMrwAAIDAUU1QtdcqO6bB8fXr17vSYlOnTnVtd5EiRWzTpk3Wq1cvq1ixoqsZCgAAAs9bPCYqB6psLvnz57c//vjDjakr3Xn16tXdKvC1a9daxowZXeBbQXBNbNOisuhWjwNJGSvAAQQ1DZ5rpdhjjz1mt956qxUqVMieeuopW716tb333nsu2K1G+84777Rs2bK5YwAAQODs2LHDvvnmG1eWRJ3sr7/+2g4fPuwG1bUa/Ny5c3bXXXe51WPvv/++a78BAEBgHTlyxCpVquSC35988omboKZJ5qVLl7ZOnTq5lKnKyDZ27Fg3qA4AAIKDF/zet2+fffvtt24ymzKnKqCtiWsLFy50gfBp06bZ/PnzXZ88c+bMrkyZguCUD0WoYkoHgKCi2Wb+1Dg3btzYdbLVYCvVuVZ8Fy9e3M1I92amKQhet25dX81vAAAQGP/884/L3lKtWjUXCFfqc6VQbdiwoZvYNnr0aJfmvHnz5m62udryyO0/AABIXAcOHLDdu3fbV199ZS+88IL16NHDWrdubRkyZHAT2NT/loIFC7q2W205AAAIDgp6q9SYsqWqrdaqbo2TDx482JU1UTY2adq0qStj0qBBAxf8pnwoQhkBcABBwz/VilKrbd++3SpXruw63jNnzrR69erZ8uXL7emnn3bHfPnllzZ37txL3oea3wAABI7X4dYKcKVA14qx+++/33Wsjx075jrikeuEkmoNAIDAqlGjhp08edKefPJJ1+d+4IEH3PZ///3XrrnmGlfSxB81vwEACJzIk8gV5P7zzz/deLraaK0KVxmytGnTugnpmzdvto0bN17yOtpzhDIC4ACCLvitlOcdOnSwdu3aWceOHd0sdK34bt++vav1rY65apvIhg0bAnzmAADAn+p5azKaaoYq8H3vvff62voTJ05cMoAOAAACT6nPa9as6ep9a/B827Ztrk7oiy++aJkyZXL7AABAcPDG0bVATG22Vnar7Jgyp44aNcrtS506tXtUP7xIkSKu/BiTzxFOkl30okgAEAS0Wmz27Nku5dqpU6fs9ddfd42z0qXmzZvXd5z+61q5cqVVrVqVFd8AAAQJtc+aaX7o0CFr1aqVK1GitrpQoUK2aNEilx79ww8/pO0GACAIJ6SfPn3axo8f79Kg//77724iujK7qGaoMrgomwsrxQAACA6//vqrderUyZUf69y5s8vE9umnn7oyoio51rJlS9d+KyCuNn7GjBkEwBFWCIADCBrr1q2z559/3tUmuf76623VqlX21FNPWfbs2S19+vQ2ceJEy507d4TV4qKa36Q9BwAgOHiD46olqoltytaSOXNmt/J70KBBDKADABCEvH62+tdaKaZUqUqn6tX8pt8NAEBwTDj3p6C2JpmXKlXKnnjiCTf5XEFwLS7TavA777zTLTJ77bXX3IrwyOPqQCgjAA4gaCxZssQGDhzoGul9+/bZiBEj3Aw2dbhVB1yzz1VHVMFxAAAQ/EFwDZar7pg66enSpXP7GEAHACDpDKwLK78BAAgeCmwr25rnzTfftA8++MDKli3rFpNp8rkysCklujKyaQW4+ufnzp1zE9KBcMFUDwBBQwPjtWvXdulRFy9e7GqPaZZa9erV7ZprrrGtW7f6apgAAIDgpc61BtGVoUVZXLzgt2abk7UFAIDE4V/1UIPll+MFv9VeR7UdAAAE1vvvv28vvvii7d6927ftwQcfdOnOv//+exs3bpzt2rXLGjRo4DKtfvPNNzZgwAA3mY3gN8INAXAAQUOrvR977DE3UP7RRx+5WWtKeX748GGXvmXy5Mk2ffr0QJ8mAABhO4DuP5AeeXA8Mg2W+x+vleCkWgMAIPGNGTPGrQyLDbXdXnut7Gw7d+6k/QYAIEgo8L1+/XqbMmVKhCD4Qw895BaWff755668qPYpCP7yyy+7oPmQIUMCet5AIBAABxAU1MnWajGlaDl48KBLyaJ6ofp+6NChrsNdqVIl93i5AXcAABB/1O56K7+UpeXo0aNu9vjlgtn+aVTnz5/vao4p/TkAAEg4Sn06e/ZsX1usCWha/ZUjRw7ftti03XqPnj17ulVkAAAg8UU1Bt6lSxdr0aKFrVmzxi0W82+nVT60XLly7itv3rxurP322293q8IfeOCBRD57IPBSBvoEACBySrUiRYq4Oia9e/d2QfAsWbK4zrcX/Gb1GAAAicdrd8ePH29Lly51QXC1zT169LCKFSv60ptHN4A+a9YsN5nt1VdfJf05AAAJ6O+//3btslKj6rFx48Zu0tq///7rAuGi9jmqfnXktvuVV15xJchuueUWPjMAABKZf1s9b94827Bhg2vLBw4caB06dHD7Fy5caK+//rq1a9fOrrvuOvvhhx/cqu+2bdv62nsvCA6EIwLgAIKKGubUqVO71Cxffvml+/62225zjbVWjVE3FACAxBF5IFxlSHr16uWytCxbtswef/xx69evn91zzz0Rjo38uhEjRtjw4cNdOjYAAJBwsmbNat26dbNrrrnGrd5W/7pp06aWJ08eO3HihKsDrsnmkYPfCpKrz+0f/Faq1Pr16/NxAQAQAF5brRTmCoDXrFnTteGa7Kb2Xv1x1fRWiZPFixe7bWr3NXnNK0fGIjKEu2QXY8p9BADx4EpXbft3vj0EvwEACAylTdXK77Jly1qrVq18259//nk34/zjjz92JUyiWz2mAXTNQgcAAInT7967d6+rDfree++5gfNPPvnEfvzxRytWrJhly5bNSpcubbfeeqvre1epUsX3HrTdAAAED/W3FdBWqnOlN9dEtm3bttny5ctdNjZlaVmxYoVt2bLFjZ0//PDDbvFYVGPrQDgiAA4g0TrhW7dutaJFi8YqGO7/upMnT1r69On5pAAASGS//vqrvfDCC7Z582Z76aWXrHnz5i7tmjK0SJMmTezGG290K8H9O9kqXaJV3wS/AQBI/EnnapNPnTrlBs0V1NYEtfvvv99NWNPEtkOHDtnvv/9uN910k82YMcNNXtNxOn7QoEFMXAMAIAi88847LsA9adIkN5HtrbfesnXr1rmsLlrxPXjwYKtevXqE1xD8Bv4n9ksyAeAKaOaZ+0/m/3fCZ86c6VKxaTba5finaFGKF6VOPXPmDNcfAIBEGED3V7hwYWvZsqXlzJnTrR4TBb/Vnusre/bsvvIkXvD7zTffdCu/Vfebld8AACR82+31nxXM7tq1q0t7vmnTJlcTVKvBFOBWm96+fXubNm2a62er7Ngbb7zh9q1atcr69+9P8BsAgCDgJW1WX1sLylTT+8EHH3TtfZ8+fVwwXIFub/zdHyu/gf+hBjiAeDdu3Dj76KOPXOe5WrVqbtuePXtc3TFvxVh0IqdO1cqxMWPGWJo0afikAABIpAH0n376ydKmTesyt9x3332uttjbb7/t0p6rfVdHXMdrdZlmnntUj0z1wTWITt1QAAASjrfCy2u7R48ebXPmzLF7773XcufObfv27XPpzdu0aeMmlKtvnTlzZhcc1+sqVKjgey+tBFdQvEyZMnxkAAAEmDc2ftddd9k///xju3fvttatW9vNN9/s2nLdA+TLl8+uueaaQJ8qENQIgAOIdyVLlnSp1RS4fuqpp6xGjRpu4DxyGnNvNpvXqEcOfmvlt1aQ1alTh08JAIAE5g2gq/398MMP7ejRo3bHHXdYhw4drEWLFq6TrZVlSoOutv7YsWN2+PBhe+SRR3zvkSVLFtf+Z8qUic8LAIAE5L/Ca+PGjbZo0SJ79dVXI9T0FrXVasc1ca13794ue0vNmjUvCaQT/AYAIHio3Vaw+/HHH/dNNld7r6C3SpaoZGijRo0CfZpAUCMADiDe1atXz63Ynj59ur322mtuMPzaa6+19957z1auXOmely5d2hfsjir4rcA3dUMBAEh4/m2wVm9/8cUXrt733r17beLEiW6Vd+fOna1Vq1ZugFz1x5YvX269evVyWV/8B8/1PgS/AQBIOJqYlitXLtdWe86ePWvHjx+3dOnS+badO3fO9u/f71aAT5482Z588knLnz//JbVCSZUKAEDwTlD32nRlZJs/f75bZKYsqx988IFrw6n5DUSPADiABEmdWqtWLfe9Otovv/yya5CVsuWZZ55xx6mhzps3rxUpUsQaN25s5cqVc6+bPXs2wW8AAALQdp8+fdqt6r711lvttttuc9uUVu3FF190E9qefvppVw9cr3n33Xdt8eLFzDgHACCRKfNKxYoVI2xT8FuZW/Ql58+fdwPkCnirLVc98KpVq7oa4N5+lTMBAADBT236ww8/bLfccoub7FaqVCnXj6c9B2L2v2kkABBPA+jbtm2zHTt2uE75s88+61aD//zzz3b//ffbggUL3GoyNdii1C1aDS5vvfWWDR8+3IYOHWoNGjTg8wAAIIF5bbdSpio9qrKv/PXXX779CoYPGDDAfvvtNxs/frxt2LDBHac2/Y8//vANpLN6DACAhPXmm2+6QLbqdauP/cYbb1izZs3cPvWvVXqsa9euri/uBbcVGNegedasWSO8F8FvAACS1rh7xowZrXLlyq5kCcFvIHaY7gkgXlKnegPoqvupFWGaeV6pUiUX0H7wwQddXZJvvvnG7rrrLrvxxhvdlz/VMVmzZo0bZK9fvz6fCgAACdhuqwPtBa3feecdl4HlgQcesLVr19q3335r06ZN89X29oLgTzzxhBUuXNhlbWnatKmdOXPGTWzbt2+fy+wCAAAShtpnTRRv0qSJPfTQQ24SudreXbt2ueczZsyw559/3gXAmzdv7kqXKMit0iYqT6J+OAAACJ4SZP6lyPwXlkVF+/yPV+mT1KlTJ9o5A0lVsov6ywGAq+TfQGuwXLPQR4wY4Rrk9OnTW4UKFdw+1f6eMmWKS6+qmmVealV/J06csAwZMvBZAACQQLZu3WrFixf3Pf/uu+9cNpYCBQq4CWha/a2MLJ999plb3e0FweWnn36y8uXL+wLnqg2uWmSZM2fm8wIAIIF9+umnrryYUpk//vjjVrRoUfvyyy+tT58+VrZsWdcXV9usY3788UfLlCmTKzumSelaBU6NUAAAgmccXYvB1LfWWPjlMqr5B79VB/z33393WVfJ6ALEjAA4gKsyc+ZMt1LMowFwrQxTKhZ1xv3NnTvX1fpWo6xZ6ddff70NHDiQKw8AQCIaNmyYbd++3SZPnuwGwffu3Wu3336729erVy9fOvOdO3e6VeEKgisA7m33qM6YOuheBxwAACQc/8D1woULXXuuNOjqfysIvmTJEuvbt69bFa6V4HLgwAG75ppr3OowtdfUCAUAIHiovNjSpUvtn3/+sSxZsliPHj1cKVHV944p+D1r1iyXEUYlzGrXrh2AMweSFmqAA7iq2mNKj6qOuOfYsWOuHplWfYv/vlWrVrlV4VoN/sILL1j//v256gAAJLK7777bxo0b574/dOiQ5c+f395++23LkSOHa9f37Nnj9hUqVMjatm1rDRs2dKvINNjuTxPaCH4DAJDw/EuWiNrmQYMGuT72hAkT7I8//nCT2QYPHmybN2925cckV65crk64l2KVFWIAAASOfxJmBbGnT59u999/vz366KOuzdZiMq/f7X9s5OC3xteV2YXgNxA7rAAHcMUU7FagWx1xpTavXr262646Yzt27HCp1zSY7s0yHzVqlOuYa3ab53K1TQAAQMJQx1o1vbUSvFKlSvb999+7VWQ1atRwK8hy587tjtu2bZutWLHCWrdufdmUbAAAIH7595mVlUXpTtW/VmYWTVx78cUXrVq1atapUye3ElwryZ588klr06aN9evXj48DAIAg880337j2WqVLWrVq5duujKnqp3/88ceuPFlUwe9XXnnFhgwZYg0aNAjY+QNJDdEnALGmAPfYsWPdTHINhKvTrRQtWh0mmrnmNdqqY6LOuVaCa2W4ZrNF+M+H4DcAAAGhFGvlypWz5557ztatW+cGzzVJTcFudaj379/vjrvuuuusXbt2rs33z+wCAAASntdn1kovpT1fs2aNbdiwwa3+rlu3ritfokls3kpwbVMJE9UEBwAAweXXX3+1MWPG2Jw5cyxVqlRu29mzZ92jsrsULFjQZV0V9b+94Pfs2bMJfgNXiQA4gFhTqtRJkya5+t+ahaYaY3fccYcbMFdgXCvBlbpFNUXvuusu69ixo91zzz3uuVaURU7jAgAAEp9Wemu1mNr1nj17uiC42nAFwb/77ju37ciRIxFewwpwAAAS39dff20LFixw/W3V91aq81tvvdXtU5979OjR9uOPP7pJ6bt377YqVaowcQ0AgCDJ5OKvcOHC1rJlS8uZM6d98sknblvq1KldBlV9Zc+e3VeyxOt/KyCuld+q+83Kb+DKEQAHEGsaEH/66add53ratGmWLVs2e+qpp+zmm292DbfqijZu3Nh1zlU7tEiRIq5T/uGHH/pWg1MzFACAwPEmolWtWtU6dOjgOuHK5uIFwUeOHOk621olDgAAAuuvv/5yK8IqVKjgnmfOnNk9ajV4kyZNrHz58ta1a1fXdufNm9f3OiauAQAQHGVMfvrpJ5cdNW3atHbfffe5ciUHDhxwGVRFY+Y69tSpU5Y1a1bfeyi76rJly6x///5Wv379gP0uQFL2f1NKACCWjfbjjz/uAtkjRoxwg+iPPfaY2yaqVXLu3Dnr0qWLqyXqT6+hEw4AQGBpIppXS0xBcJk6dar17t3bBg4caLVq1XJfkdt/AACQ+NSPVnpzDZSrrJjXNqvfrW3bt2+3pk2bui+h7QYAIPC8frTGz7Uw7OjRoy6Lqiaht2jRwrXvyuzSvHlzK1mypB07dswOHz5sjzzyiO89NCldKdMzZcoUwN8ESNoIgAOIkX8H+vTp066B1kw11QFXI64BdKU9VxBc33/55ZduhpoG0f0R/AYAIHiD4EqrphInN910k28fwW8AAAKrXLlybgD8rbfeclnWcufO7bZrVXi+fPlcylSh7QYAIPC89li0evuLL76wl156yZUHnThxolvl3blzZ2vVqpUbK1ep0eXLl1uvXr1cZlX/RWR6H4LfQNwQAAcQY6PtDX5PmTLF1q5d62afa4V3u3bt7OzZsy5Vqv9KcM1oO3nyZIQGHwAABHcQfMCAAVaqVKlAnxYAAPCjmt716tWzRYsWub62So5lzJjR9cPTp09vZcuWdcfR9wYAILgWkWlV96233mq33Xab26aJay+++KK99tprrsSo6oHrNe+++64tXrzYGjVqFODfAAg9yS56hQABIBqvvvqqzZo1y5599lk3Y61ixYpWu3Ztt0+1wLUSvHv37i5Ny/Hjx11HXA0+QXAAAAIjtm0wbTUAAME/kO6tEFPt79KlS1u6dOnszTfftFSpUpH2HACAIBtHV0D7n3/+sQoVKriV355vvvnG1fQuX768S4eu9OcffPCBvfPOOy7Ly/Tp0wN67kCoYQU4gBjt2LHDNc4vv/yyryao59tvv7UGDRq4wXOlTlVNMm+2GrXHAABIPJHb3atZCab2Pnv27C7dKgAACCy1614aVGVba926te3cudMFv4sUKeL2KwV6ypQM7QEAEAgaE1df3Cv9qUD27Nmz7YEHHnCZVDV2rsVjXm1vrQhX9rUnnnjCChcu7PreTZs2tTNnztiCBQts3759lidPHj5MIJ5wlwwgRmqA1cnWzHKPOtmHDh1yQXGlPlcN8KxZs9qdd97pO4a6oQAAJH7wWzPNVa5EGVu8dGvRtcn+q79V/3vs2LE2fvx4PjYAAIKEBtS99lp1QP0nqSk4TvAbAIDA2Lp1qxUvXtwX/P7uu+/cOLpWeNevX9/++usve+utt3yrur0guBaYKVCuVeCiTKr33XeftWjRwjJnzszHCcSjqEfDAOD/U0c7S5YsLgh+7tw5t02dbM1GU1Bcjb2okdZ2BccBAEDi8QLcw4cPd5PTfvnlF9fxfvLJJ23ChAl26tSpGIPfKnMyatQoe+GFF6xSpUp8dAAAJJLYVCX02mtNePPnDbgDAIDENWzYMFcS1JuQtmvXLnv44YddhtTdu3e77QUKFLA2bdq4BWMKgvunN1d5UbXjGkfXvYCyuxD8BuIfAXAAMSpRooRVrlzZxowZYytXrnSNupw8edLSpk1r+fLli3A8M9ABAEh8n332mX388ccukK0aY15WFs0qV+0x/0H2yMFvddIHDx4cIZMLAACIf5GD2LEtWaK225vwppIl69ev5+MBACBA7r77bhs3bpz7XllS8+fPb2+//bblyJHDpT3fs2eP21eoUCFr27atNWzY0E1WX7hw4SXj6FdTvgxA7CS7GJvppgDCOqWq/pvo1KmTrVmzxtX4VmO+evVq18DPmzePoDcAAAFqoz1Tpkxxqc/VqV60aJH17t3bfdWuXdu6d+9uPXr0sAoVKkQZ/B4yZIg1aNCAzxAAgCRUsoSsLQAABJYC2qrpPXnyZNcuf//9966+d40aNaxv376WO3dud9y2bdtsxYoV1rp1azK4AImIFeAAov8P4v8Hv9XZnjRpkj3wwAMujYtWgl977bU2d+5cF/z2VoUDAIDE4Q2S79+/3z0eO3bMTpw4YZ9++qkLfPfs2dNatWrlMrZs2bLFduzY4Y7zBtDfffddt1qc4DcAAInbdlOyBACA0KCyoeXKlbPnnnvO1q1bZ9WqVXOT1BTsVl/b669fd9111q5dOxf8ZhwdSDwpE/FnAUiCNFDuzVTv0qWLqwOuoHjq1KndftUqIe05AACJT8Hufv362fLly+366693E9P0fdeuXe3+++93x6hcSfbs2V32Fs/atWtdyvORI0ey8hsAgACULNHguNrur7/+2j766CNfyRLVAPUmoZO1BQCA4KaV3hojV0Y2TULXJLfq1au7dr5z585u2+jRoy1btmy+1ygIDiBxsAIcQKxXgouC3V7wW9sIfgMAEBhFixZ1GVmWLl1qt99+u+t8a6KabN682X7//Xd74YUXLHPmzHbTTTf5Xle4cGFXwoSa3wAAJG7N77/++stuueUWF/xWyRJNMlfq1FKlSrlB8l9++YXgNwAASYA3Vl61alXr0KGD62er9JhWgisIrgnnCnZrlTiAwCAADoRxA30lIs9AP3XqlO97AACQsLzAtj91sPPly2cffvihe67Z5gpqv/POO9akSRPX+T5+/Li9/fbbEVKtafa5BtoBAEDComQJAAChyRsr94Lgjz32mEt1rpJkq1atslq1atkbb7zh7gUiT4gDkDgIgANhRg2uF7g+ffq0qxeqwfHLBcb9g99aNTZz5kw7c+ZMIp01AADhafbs2e4xVapU7vG3337z7UuTJo1169bNrRZT+nPRLPOxY8e6FGyDBg1ytb71WpUsIdUaAACBKVmiCWrqe2vlt0qR9OnTx5599tlYlSzRCvEGDRrw0QEAEORB8EcffdRlYNO4uXj7vAlxABIXf3lAGPFqecu0adNcirVmzZq5WqFLliyJdkW3f/BbA/F9+/a1IkWKuIF3AACQMNTmqlaot3Jb3z/88MNusHzNmjW2f/9+K1GihNWtW9cFwb2JaVrdrdnm5cqV8802p2QJAACBQckSAADCJwiuiWuq+w0g8JJdvJpcyACStFGjRtkHH3zgAt/p0qWz119/3bZs2WLLly+PMOM8cvB71qxZ9sorr9jQoUOtfv36ATp7AADCw+HDh129MK3cVoBbAe2vvvrKreretm2bS4H+yCOP2JEjR1wn+/3337dixYpFaLsBAEDilizxsrZ4NEGtc+fOdvbsWZs+fbrb5mVwUU3w0qVLuxXgb731lnutJr6RtQUAgOAQ2/41/XAg+LACHAgzmzdvdoPnSo96zz33uIH1PXv22IgRI2zHjh1uf0zB7yFDhhD8BgAgESgVqgbAVT+sVatWNmHCBLfaW3XElMVFwe5OnTq51eAqazJ16lT3SPAbAIDERckSAABCQ+R63VfTv/7mm29s/fr18XhWAK4GAXAgzBrtkydPutpjFSpUcGnPn376aVd7TDXF1GnXynDNONeXf9pzL/hN7TEAABJW5ARNBQoUcLXE1EZrwprcdddd1q9fP1dbLFOmTJY1a1a3ElwryAAAQOKhZAkAAKFXPnTx4sU2ceJEe+GFF2zp0qWXjLH7819Epj567969XeYXAIGVMsA/H0AC8xptpUVV8Fp1u5VW7e2333YrybSCTLVERQPnarD9062p0R4+fLj7Iu05AACJ1+Het2+f60Tnzp3b2rdv77bPmzfPPaqMiWhCm1KjP/HEE77gN6nXAABIPLfffru1bNnSV7JE/e7UqVO7kiVKde6VLLnllltcyZK2bdtGWbLEa/8BAEBgeG2xxsEXLVpkJUqUsMyZM9uTTz5pTz31lGvPVU7UX+QMqio9OmjQIKtUqVJAfgcA/8PdNRAG/vzzTxs/frx9/PHHVqZMGcuTJ49b0a3VZF7w+9SpUy5t6nXXXed73d69e+3bb7+l5jcAAIlAHWevwz1u3DgX1G7YsKFLn5YtWzbXZjdv3twFwceMGRMhaJ4hQwY38O6fwQUAACQ8SpYAABA6PvvsMzeGrkC2VoDfeeedbnv58uXtn3/+iZC1LaryoYMHD/a9BkBgsQIcCDFRrfq69tprXSOtlOeaba5ZaJqJrlSqGizX7PRly5bZ0aNHrUOHDr7X5c2b181Qz5EjRwB+EwAAwovXfqujrXSqL730kmvXK1asaOfPn3dBcNX8FgXBjx8/7tKgp0z5v1t6/ywuAAAg8fre/iVLNLm8e/furmSJvho3buxWklGyBACA4M3CJn/99ZfL2nL99de7tlvpzDU+XqpUKde29+jRw2Viiyr4TflQILgQAAdCTFSrvjQw3qVLF7vvvvts7ty51qJFC5s0aZIbWJ8/f75lzJjRihQpYpMnT3bHavWYGn69F8FvAAASz7Zt2+y7776zKVOmuA63Ot/qdCvgrRTnCoDr68SJE7Z7927SnQMAEACULAEAIDR4we/9+/e78mPHjh1z/e1PP/3U+vbt68qHtmrVyrZv325btmyxHTt2uAC4NwavkievvvoqwW8gCBEAB0JE//79rV69em6GmniB7dtuu82tBsuXL5+rTaZB9SZNmrg0baNHj3Z1v1W7xKtfohVm/ivJAABA4lGbrY73rl277ODBgzZ27FjXsc6fP7/rhCswPmPGDHv88cddW6591PwGACBwJUu+/PJLN2Ht5Zdftjp16vjKjGnyuY579tlnI5QsEU06J2sLAADBQcFuZVdbvny5m4iuNlzfd+3a1deua0K6+uD+i8XWrl3rUp6PHDnSGjRoEMDfAEBUiHIBIeCPP/6ws2fPWtWqVd1zzVR77bXXLFWqVG6gXDPVSpcu7RrsBx54wB588EE3U02UTtW/I0/wGwCAwKRaUzusCWtqz1WuRPXFWrdu7Sa4VatWzWVqWb16tTvW63QT/AYAIHFRsgQAgNBStGhRV0J06dKlrmzJ4sWLbeHChW7f5s2b3aQ1TXTLnDmz3XTTTb7XFS5c2GVrU3p0AMEn2UWNmgFIshT4Vg3vc+fOuYD3nDlzLGfOnFa9enX7+eefXQB869atbkC9ffv29tlnn7nXaXaaZq4BAIDABr8/+eQTN5lNzzt27GgHDhxwX9dcc41dd911vuMfe+wxl5JNdcUAAEBgS5Zoovnzzz/vK1myYsWKCCVLKlWqZCNGjHAlSyZMmBBluTIAAJC4vDF0f2fOnLHOnTu7cfbp06e7bd26dbNffvnFtfFaWKb2/a233nKvJZMLkDQQAAeSsD179rgO9sMPP2zp06e3kydPulXeaojV4a5bt647TrPX1GArZarSouu4jz/+2AoUKBDoXwEAgLCmWeQKgGu2uWaSP/XUU77O+M6dO+399993A+a//fabHTp0yLX72s/KbwAAAkdtdJs2bax3796WJk2aS0qWqJ1W/1ttNyVLAAAIvNmzZ7ta3h71scuWLet7rvreGld/7rnnrEWLFm7bpk2b3OR0ZVAtU6aMm7RO+VAg6SAFOpCEHT161D7//HNXK1SNb8OGDd2qsFdeecWmTZvmAt2NGjVygXB96XsdrwZdA+0AACBwVFdswYIFNnXqVJcyTR3r33//3VauXGm33XabC3QfOXLE1QMvXry4vf76665UCR1uAAASDyVLAABI+sFvZUVt2bKlS2eu7/v37+8yrnXv3t1NYCtRooQbP9ciMo2xa4Kb+un+6c11T0D5UCDpYAU4kISp0VXqFQ2IHz582N588023ekwNtYLg2q/aoXfddZfvNf6D5qRrAQAgcMaNG+cmqymF6tq1a23WrFn27bffurZaXwqOa8Ka/2pvgt8AACQeSpYAAJD0adw8S5YsLvitcfNy5crZV199Ze+++64ra6Ja3o888oibgD5gwACXia1YsWJkXgOSuP8rPAggSdFAuNcRV0pzDYYXLFjQ5s+fb3///bdVqFDBevTo4fbPnDnTV/db/GepqdEHAACJ03ZHVXvsjTfecPVD27VrZ8ePH3d1xxQIz5Qpk61atcod5wW/9R7MNgcAIPGoT+2VLNHXd99959pvyZcvn91www2uX60J6Kr3rcFzZXTR4LnXdgMAgMBSORK11+pjKw36hAkT3Gpv9cc1IV3BbpUTXbNmjZ0+fdpladOj1xcHkDSRAh1IYrzAt9cAV6xY0aVQ/eabb9yA+eDBg61fv36+IPjIkSPt1VdfdbPcqlevHujTBwAgrFePaVBcbXjOnDmtS5cuLuj9xx9/uIHyBg0auIltx44dc+121qxZI7wPnW8AABIfJUsAAEia/LOpSYECBezRRx+1Dz74wAW4lf5cmVP11bhxY1u0aJHrh2sleNq0aQN67gDijhToQBIdQFfq89WrV9uZM2esbdu2Lritut+ffPKJlSxZ0l544QU3iK60LloZ3rdvX1Z8AwAQwLZbs8zVTuu5SpZowprXKVcHWyvK1K4PHTrUDh486NKuka0FAIDAomQJAABJuy++b98+FwjPkSOH/fvvv66M6Lx586xZs2bWtWvXCK85deqUC36rLx45gA4gaWEFOJCEeI326NGjbc6cOXbfffe5lOcaMFej3L59e0uVKpXb98wzz9jRo0etQ4cOLhgu1PwGACAwbffw4cNd+6zZ5gp2a3KaOtdqo1XKZMaMGS79mlKvpU+f3mV1UdtO2w0AQOKJaqDbK1miDC0ffvih1apVy5UsqVq1quuDK52qBtApWQIAQPC0515fXBPZvvzyS/vrr79cOZM6derY/fff78vyouOeffZZ91x99AwZMrjv6YsDSR8BcCCJ2bx5s0vHoga7Ro0aETroGzdudB3w1KlTu5ToasBr167tey2ryAAASHxqk5csWeLqiKlEib6fOXOma8+14lvlS9ThLlOmjOXOnduuv/5612YrME7NbwAAEgclSwAACA3eWPmoUaNs9uzZ9tJLL7kxdJUSVT87W7Zsrua3aCW4SpMpQ5t//5txdCDpIwAOJLEZ6IcOHXKrvosXLx7huL1797q6JX369LHWrVtb06ZN3QoyvZYBdAAAAmf79u2ujpiC35qs9u6777pMLZqoNnLkSDfDvFu3bnbnnXf6XqPZ5gS/AQAIjpIlzz//vK9kiQbJDx8+7EqWaHC8Zs2afEwAAASZbdu22XfffWdTpkxxk8y1AlyT0BXwVopzBcD1deLECdu9ezfpzoEQRAAcSCKdcK0QS5MmjeXMmdOlOVcD7p9mTau+FehWzVDx0rWok84AOgAAgUudmi5dOitUqJCbrLZw4UIrUaKEPfDAA66TrQD4W2+95dKqaiDdw2xzAAASDyVLAAAILepT79+/33bt2uXGy8eOHev66vnz53dBbwXGVYrs8ccft+zZs7t91PwGQgsBcCAJBL/ff/99+/HHHy1PnjyuTolWf2tGutK13Hrrre6YTJkyubSpWvXtL/IgPAAASPi2+/Tp025iWsaMGa1Ro0ZWpUoVN5lt2bJl1rVrVxcU1zHVq1d3s841Ix0AAAQOJUsAAEj6fXFRIDtfvnxWtWpVGzRokP3zzz8uY2q9evWsWrVqNnnyZFu9erU7NkeOHL7XMI4OhBYC4ECQ8hpt1fpWrZIbb7zRBb337Nljt912m82ZM8def/11W7VqlZUrV84FyU+ePBkhfSoAAEgc6ix7bbc602vXrrUtW7ZYrVq1XCe7Ro0atnz5cpc2VR1xpTifOHGiS712ww03uI62trHyGwCAwKBkCQAASTv4rbHzP/74wz3v2LGjm3zepk0bu+aaa+y6667zHf/DDz+4hWT+CH4DoYcAOBDEVCNUqVL1WLp0aRcIf/HFF11K87Zt27o6okuXLnUz1tRoKyCugXMG0AEACEyHe9KkSTZ9+nR77LHHrHDhwvbLL7/Yt99+6zreqiOqmqFPP/20O1alTebOnes62noPgt8AACQOSpYAABB6i8gUAL/22mtd31s0+VxfO3futFdeecX1vX/77Tc7dOiQ67sLK7+B0EUAHAhi69evt+bNm7vgt1aSKQDevXt3F+g+deqUtW/f3nr27OkaetUFVyOudKvU/AYAIPE73Nu2bXOzzTVZ7a677vK15arxrdXeSnf+9ttvu9nmarc1E11tNm03AACJh5IlAACEFk0sX7BggU2dOtVKlSplBw4csN9//91WrlzpMqmq/33kyBFXD1ylRTW2Tl8cCH0EwIEgpbqgGjRXSnOlS50/f75Ln/roo4+6et8aXN+xY4d16NDBGjZs6JuxRvAbAIDE9+eff7qgtzrWderU8W1XmZL777/fnn32WVuxYoWrB+5f71tZW2i7AQBIHJQsAQAg9Ozdu9caN27sgt9aRDZr1iyXiU2TzcePH++C40OHDo2w2puJ6EDo+7/lKgCCjmqCDho0yKpVq2Y///yzC3bfcsstvuC4aoJrgN2/5je1SgAACIyCBQvajBkz7Ny5c7Zp0yaXqcWjGt9Zs2Z1M9AjI+05AACJt/Lb6zMr7ekbb7zh+tX169e3LVu2WP/+/e3TTz+1MmXK+EqWaHLbX3/9ZaNGjaJkCQAAQUBB7MjUD1e7/vzzz1u7du3cYrLOnTu7QLgWkq1atcod590HsIgMCA+sAAeCmFaIqWFW463VYapfok77d999ZzVr1nSrv4Wa3wAABJ4mrU2bNs06duzo0qrVq1fP1flW51tp0hUkBwAAgUHJEgAAQqeMidKca9w8Z86c1qVLF9fvVkmyAQMGWIMGDSxjxox27Ngxy5Ili5uQ7o9FZEB4SHYxqikzAILKO++8Yy+//LK1atXKNm7c6BrvefPmuaC4f+oWAAAQeMuWLbNOnTq5VWMFChSw3377zfbs2ePabqVIBwAAgStZohXfao+HDx8eIaPaunXrXMmS7t27u5Il/ph0DgBA8AS/J0yYYJ988ol7rgVj/fr1c9s1Tq5a31oRfubMGZf2/ODBg/b++++TfQ0IQ6RAB5IADaC3adPGpWXTQPrcuXNd8FudcILfAAAEl1q1atnrr7/u6ox98803Vr58efe9BttVZwwAAAQGJUsAAEiavOC3JrCp/FiTJk1cudCFCxfawIED3T71t7Wvbt26LgX6v//+69Kgq/SYxtEBhBdSoANJQLZs2axXr15u9pq3ckwNuoLgAAAg+Nx88802ffp0e+yxx9wqMq8Np+0GACCwKFkCAEDSpAnmS5YssalTp1qFChXc9zNnzrRFixa5Fd+DBw922VzKlCljuXPnduVFFfxmHB0IT0TPgCTEC34rnQsD6AAABLfq1avbxIkT7cknn7TTp09b69atLVOmTIE+LQAAwp5WjCl9qkqWaDDdK1miCWuNGzcO++sDAEAw2r59u6vnreC3yoS+++679swzz7jV4SNHjrQMGTJYt27dIpQ40cpvxtGB8EQKdCAJIu05AABJQ82aNW3MmDEuDRsp1wAACB6ULAEAIHhpAVhk6dKls0KFCtnevXtd6vMSJUrYAw884Prd8tZbb1n//v0jvEYrwAGEJwLgAAAAQAKqU6eOffnll5YlSxauMwAAQViyZPPmzZYxY0a3AlxYKQYAQOD8999/vgVgyqZ2/Phx973Ki3Xs2NGlO1+2bJkra6KguI5RBjalQ3/ppZf46AA4pEAHAAAAElj69Om5xgAABCFKlgAAEFwrv5XSXCZPnmxr1661LVu2uMwt9erVsxo1atjy5ctdUDxfvnwu05pKj6VNm9ZuuOEGFzjXNlZ+A0h2MapcEgAAAAAAAECYULaW5557zj7//HOytgAAEKCV317we9KkSS5Ly2OPPWYHDx60X375xT127drVbrrpJrvtttssb9687tg0adLY3LlzLVWqVBHeA0B4IwAOAAAAAACAsHfy5EmytgAAEGDbtm1zq7oV5L7rrrvctvXr17sa3xs3bnSPf/75p/3www8u6N2mTRtXvuT8+fOUMQHgQwp0AAAAAAAAhD1KlgAAEFgKbCvorcB2nTp1fNvLlStn999/vz377LO2YsUKVw/8+uuv9+1X2nMFwQHAQy4IAAAAAAAAAAAABFTBggVtxowZdu7cOdu0aZOdOnXKt081vrNmzWq///77Ja+j5jeAyAiAAwAAAAAAAAAAIOCqVatm06ZNc19Lly61M2fOuO3Hjx939b0VJAeAy6EGOAAAAAAAAAAAAILGsmXLrFOnTi4leoECBey3336zPXv22Lx581yKdACICQFwAAAAAAAAAAAABJXvvvvOHn74YStbtqzddttt9tRTT7nt58+fp+Y3gBiRAh0AAAAAAAAAAABB5eabb7bp06fb5s2bLWPGjK42uKRMmTLQpwYgyLECHAAAAAAAAAAAAEFp+fLl9uSTT9oTTzxhrVu3tkyZMgX6lAAEOVaAAwAAAAAAAAAAICjVrFnTxowZYzNmzLALFy4E+nQAJAGsAAcAAAAAAAAAAEBQO3nypKVPnz7QpwEgCSAADgAAAAAAAAAAAAAICaRABwAAAAAAAAAAAACEBALgAAAAAAAAAAAAAICQQAAcAAAAAAAAAAAAABASCIADAAAAAAAAAAAAAEICAXAAAAAAAAAAAAAAQEggAA4AAAAAAAAAAAAACAkEwAEAAAAAAAAAAAAAIYEAOAAAAAAAAAAAAAAgJBAABwAAAAAAAAAAAACEBALgAAAAAAAAAAAAAICQQAAcAAAAAAAAAAAAABASCIADAAAAAAAAAAAAAEICAXAAAAAAAAAAAAAAQEggAA4AAAAAAAAAAAAACAkEwAEAAAAAAAAAAAAAIYEAOAAAAAAAAAAAAAAgJBAABwAAAAAAAAAAAACEBALgAAAAAAAAAAAAAICQQAAcAAAAAAAAAAAAABASCIADAAAAAAAAAAAAAEICAXAAAAAAAAAAAAAAQEggAA4AAAAAAAAAAAAACAkEwAEAAAAAAAAAAAAAIYEAOAAAAAAAAAAAAAAgJBAABwAAAAAAAAAAAACEBALgAAAAAAAAAAAAAICQQAAcAAAAAAAAAAAAABASCIADAAAAAAAAAAAAAEICAXAAAAAAAAAAAAAAQEggAA4AAAAAAAAAAAAACAkEwAEAAABctYsXL4bd1QvH3xkAEHrCsT0Lx98ZAAAgHBEAB5KIOnXqWO/evS3Y7Nq1y0qWLGnz5s1zz/Wo59oeG1d6PAAA4domr1q1yrWZegwWH3zwgb388ssWTpYuXWq9evUK9GkAAC6DPnTM1qxZYx06dAirf0dbt261+++/P9CnAQCIAf3t2Gvbtq37CibBeE4IXykDfQIAYmfcuHGWMWPGoL9ctWvXttmzZ1uuXLkCfSoAAIRUm1y2bFnXxhYrVsyCxcSJE61q1aoWTmbMmBHoUwAAxAJ96MtPYvvjjz/C6t/S559/buvWrQv0aQAAYkB/O2l78cUXA30KgA8BcCCJKFOmjCUF2bJlc18AAISqQLXJCrpXrFgxID8bAICkhj40AABJD/3tpC2YJuwDpEAHYpF2ZfTo0TZkyBC78cYb7aabbrKePXvaP//8E2HmdPPmzd2gdIUKFaxJkyb22Wef+fb/999/7j30XuXKlXOPI0eOtHPnzvmOWbhwoTVu3Ni9vlq1ata9e3fbv39/lOlWGzRoYJ07d77kXPVzO3Xq5Hu+ZMkSd17ly5e3W265xV566SU7efLkFX/mBw4ccKk+q1evbjfccIO1adMm2lnTUaU0/+abb+y+++5z16dGjRr2wgsv2NGjR6N8vbbr99Dvu2fPnlif459//mmPP/64+3yuv/56a9Wqlfu5Hl07vWdM6du91LIrVqyw1q1bu8+ifv36NnPmzAiv0+c5ZcoUq1evnvs89Xm8/fbbEY5Rqhd9hvqc9Hu3b98+1r8LACBq4d4mR06BPnbsWLvjjjvsiy++sIYNG7r31s9VG/3TTz/ZPffc434H7Vu5cqXvffQ6/Q5fffWVe73azXvvvfeKU6vrPXbv3m0ffvihr+1Xm6oBC30O+j21Ovz333+3CxcuuLZT56Jz0ueje4Pvv/8+wnmpbf3666+tUaNGvjZ2/vz5EX7um2++6c5bv2/NmjWtf//+dvz4cd9+ncs777zj7l1033LzzTfb4MGD7cyZMxHe59NPP3WfiY7Ruer+5N9//73kfLQCQb+H7mH07+KHH35wX8GWjh4AgkW4t9dJoQ+t66L2W+241yf2+sfTp0/33R/MnTvXd10eeOAB97vo89D+d99995J7FN1vPPzww+61un6vvPKKuwfwfPvtt+6eQ++jfxu69v6r0NWP1rlNmjTJtd+VK1e2J554wp2nv19//dUeeeQR92+rUqVKbixA6c0jn8+sWbPstttuc8foeqpNF+1TOw8A+J9wb7+Drb8dm3ZTLl68aK+//rrLyqrz0Zj4L7/8clXt5uXGxGPT146cAl2v0T1D3759Xb9ar3vmmWfs0KFDEd572rRpVrduXfez1WZ/+eWX9LkRZwTAgVjQf/Zr1661oUOHWrdu3VxntGPHjq6B0X/g6ozefvvtNnnyZBsxYoSlTp3aNd779u1zr1cj9N5779mTTz5pb7zxhqs5pf/UlTbUq72lGwo1LDq2T58+bkBYPysquknQOfgP9qrx27Rpk2uIZcGCBe7nXXfddTZ+/Hh76qmn7OOPP3adR513bJ04ccKdrxrCHj16uA5jmjRpXKd2x44dl329Gntdq+zZs9uYMWPcddFNSZcuXaL8WY899pjrwL/11lt27bXXxuocdXOln3Hq1CkbPny4TZgwwbJkyeJuCnbu3GlXSuemwXtdNzXkAwYMiNDga6D9tddec5+DOua6mdHNoY73pxvADBkyuM/50UcfveLzAABcKpzb5Kjo9xo2bJjrwL766quuDdUAQdeuXV2HXD9PP0Nt2+nTp32vO3LkiOu0ajBbr0ubNq3rEG/cuDHWP1v3BDlz5rRbb701QvkTDXTr2qojrOtXtGhR91mofVZnfOrUqTZo0CA3kKKOr9pvz8GDB23gwIHWrl07FzDPnz+/O0+vk6/BEg2mq1Ouz03X9aOPPnLv50+/0+HDh929h9pgnZ9/3W6di66RBm7Uput9Fi1a5Drq/tdJgQR9vhrE0e8yatQod4+gL72n0tIDAC4Vzu11UuhD63dS+612XO2ZBs39B+71nupbK4igiWm6Lmrz1H5qf4ECBVx7/fPPP0d4X52rgtbqJysgoDZfwRL566+/3M9VQESfo+4Ttm/f7uqQq0/vWbp0qQvI9+vXz/XFdW+i9tm7X9Dn7NXxVj9cQY69e/e6wfLIQQFde7X/+vemAEzLli3ddv3Ouk8CAEQUzu13sPW3Y9tu6poqSP/888+7vrIm4WlM/Pz581fcbl5uTDw2fe2oqD+tc1Z/Wp+/7nV0Lv7ttf493Xnnne5eQ5MGnn322VhfKyA6pEAHYiF58uRuFnSmTJncc6X4VsO6fPly1xipAVOD5MmXL5+bdaYG6O6773arhNRYtWjRwu3XbKd06dL53k/HqSFUA6YbB1EAV7Oz1IgmS5bsksZfnU51gps2beobEM6cObObYabXqNHQqig9egoXLmwPPfSQu3Hw7+DGxJsVrsfSpUu7bZoppp/7448/uhntMdF56nVqyLzfQ7+jGkv/mV6aKabGWTP+tJpaA96xpUZ327Ztvk68aLaYfubZs2ftSmm1l2alia6hbhzU+OpmQQMW77//vrvR0eclmpGv3003f7qxyZo1q9ueKlUqd6PgfaYAgLgL5zY5KhoMVo2tWrVquedaba0BXnWOvUFezXxXJ12dZa8t1+s0ocs7Z82810CGgs7qnMaGOsa6RvoMIqdm1wCB/++ltlSdaf+Z4AoGPP3007Z582bf63VeOnfv/kLXSSu3dJ0USNfnp3sEBcD1b0GfX/r06SOs3BadkwbfU6ZM6e4NdKwGcfTzcuTI4QYQNJNeAzieEiVKuPfVajc9igYN1JmvUqWK7ziv/jvp6AEgeuHcXieFPnTBggXdZ6L39dozb6WcBp+96+5dp2bNmvn6yKLVW1pFpiC/Bqk9Cgbocxb9nrreCqBrkF2r0RQcUCAld+7c7pg8efK4gLd+tte+6l5AAXAF2UUBDf18ZYRRn1z3OYUKFXL3LClSpPD1ydWP16Q2XSeP+ueasO7RzxPacACIWji338HW345tu6nrqPfVdRQF6TWJTOdaqlSpK2o3YxoT9z6bmPra6rNHRX1tHeP/u33++ee+66fJEOqDazKFd366hgquA3FBAByIBTWoXkPtPdd/8uq8eilZ1LgoCKsVx15KEy/4qo6hGht1vvRaNbxKgeZRChM1fpohrdQuajz0H70XzI1MHUF1oJW602tIP/nkE9exU6On2VuaoaYG0pvt5f0cNY5KnxLbxl83JupIew246MZFq6TEP01bZGqkN2zY4BpA/xuYu+66y3350+yv9evXu9lfXkc3tjSQrfoimummVC26drox0SzCq6HOtT/NStTNhW5k9Nnq5kqfo/+11XMNput66YbG66gT/AaA+BXObXJ09PP920TxH4z27wh7dM30O3o0CKG2c9myZRYf/O8bRNfcmwnvfTaa9S2RJ6v5D0p7A9XeoLwGDtQJ1iCL2lt9LkqXHnmgRNv0O3r0WarDrX8nefPmdT/T//cXBbk1gKNBGy8AHtXvAgC4vHBur5NCHzomkds9L5uZVpurT6zyYwpURNWGKzDuT+2414br3kST3xQw0HXXfYc+Z01e96fPyf/30YQ7Pde/Ha3208/W6j5vEF8UCPEmzMX0uwAAYhbO7Xew9bdj225qTNw7B/EmxB07dsy1wVfSbsY0Jq5x7sv1taMLgEeeeKb7Ay+zi9LJ6/7Hf8Ka6PoRAEdckQIdiAVvlpXvDyd5crfKV6uN1PnTjDI1rGrQldbFa3C9NCvqMGqFkf4z12w0zYjTf+Je3Ut1EjULS426Ztlp0FWNWuS60v7U8fvuu+/s77//dg2Zbjq81C9ebRatPlaaMv8vpYzR7K3Y0nsp9drV0PXRNYjN6zVrXeenFCvqWF8JDQworY5uhBQA12wxpWpTqpTIK8Ku5vP2zl/v5V1bfYb+19VLn+Zfs0bpzwEA8Suc2+ToeDO//WmgPSbquPt3Wr32zr++W1xoVbY/XRd13LUaTJ+B0uLps5PIaen8zz3yMRr814CK3l8z0fWeqhOmAZHYtuXevYE3eOFP2zRQ4I/2HACuXDi310mhD30lbbgmrykgr4liyp6ilXheKtrIbbgG+CN/7t4xGpBX3VAN6M+ZM8d9xuq3KxDi/z6R/+2IroeujdpoHRvbNjzy7wIAiFk4t9/B1t+ObbsZua3z+tBKOX6l7WZM/egrOeZy18v//kD3Gd7K8qjeF4gLVoADsaAG1p9qW2qb/mNWyhalulZDpNnFatyUYkT1KP3/U1eDri+l69bsKqUKUSdSM9E0Y01pRfSl2U+6KVD9LtXkUCMXeWaXl5ZM+5UCRrPutGJJtba8WVzejHClmonsmmuuifXnrll/Uc1QVz0YvY9mosV0g6DgtNeQ+adq0+/oP1tO6d3UGGpFlxpypWq5Emp8lVpGaWlUB0ZpVJQ+RTdp2qbz0Ofmz5uJHpk+W6WE8+gz8xpe79q++eabUQ6Ix7bmGgDg6oRzmxyfoup4K61qQnQyNfCgznrJkiXdbH3NHNfnoGvvrYa7EhpA0Zc665r4pvZeNVZ1zb3OeOR/J17KWP078a65tnmz2P1rkMfnKjoACFfh3F4nlT50bGmCua7XjBkzXOBC117XXKXBrpR/qTKtlNfKLn2uStGqzyeqfztem60+uq6tro9/Knj/Ntx/BRwA4MqFc/sdjP3t2LSbMbnSdjOmMXH/YyL/XlEFsGPLy/qmn+XfP498LwRcDVaAA7Gg9CT+qb2U+kMz3FS/QilAtPqofPnyvpldXjoTzbQS1btSQ+01GOqg6kZAqVE0KPzyyy+72iia+aQOrFKQqN6k7NmzJ8pz8lKV6Fw0eKyaKF6KNDUW+jnqdOu8vC8NCmvVlFKqxZZmeavGy9atWyN0vnXjohuemChArBsiL8Wp//XUTZP/LDzNOtPAuGYSvvvuu/bzzz/H+hzXrVtnN998s6sfomugn6k6o/p8vOunc1EDrXP36MYhKrqh8qdgum6udAPg1QDVe/lfWzXKqpkSXyvnAABRC+c2OT5pRr7quPk/17W6XF3SyLzZ5THRIIXax3bt2rn0bN5rIn82saHsLl5tUXXm1elXDTr9G/C/r/jyyy8jvE6fiz4TpVDXwIoGXlQ7zt/q1avdZ+yf4u5qf2cACHfh3F4nhT70lbRn6jcrBarSrnolvq6mDVcAXddf/y70PrrnGDRo0CWfmX6e/+C60rzrc9HxWuWm2rKfffZZhAnumhSnWuNeQCSuvzMAhKtwbr+Drb8d23YzJlfabsY0Jh6bvvbVUDBfffsvvvgiwvbFixdf1fsB/lgBDsTC3r17rVOnTm7gVt+PGjXKzVRTGk6lc1FnU7OV1CCrcdPMNfFqWSg1jFJ0q4OqGdNKVaY0L5qZptlRaiD0XLVU1IifO3fOpk6d6mZhxdR46NjOnTu7BsxL/SKq6aEAsFLO6Hs1lrrRUKpQL01abOlGRWlo9PvrZ2lFtX4/naPquVyOXqPXdu3a1aUo16wwXT/V7dTNkzqz/lSTRI2yZq/PmzfPzSy8HNUEU6o1zfbToIKus1LjbNy40X1momug36Nv377uZm3Lli3umvvXP/Fou2blqz6JGlsNPni1SzXAoOuueuO7d+92NxG6AdSMe6WmKVy4cKyvLQDgyoVzmxzf+vTp4wLKGjBQ+jplRtG1vRK6zhpUUN3sqGbrS5EiRdyKNs1U10CJvtRJ9oIA3mcTG/oMlNlFAydKladrqRnxan/VcfaojphWrOmzUGYYpWtV2lZvdbeCCEoZq/sMfSYaMNFENgXoI9c9i+p31uS7lStXunuQQK0qAIBgFs7tdVLoQ4uuvd5bq/NiqpWt9n3BggXuGugz00p2pa/VYPeVtuH67DWRTalzdZ1nzZrlBvV1vT16T2WO0TVQanf1tfV7e7VUu3XrZo888ohry3U9dV11PgoQeJPkYvqdRZPgNCGOrC8AEFE4t9/B1t+Obbt5OVfSbsY0Jh7bvvaV0liB2v3XXnvNTYrQvxWNL6hsmjB5DXFBAByIBdUrUcOuRkszpzQwqsZV1KAOHjzYNdxqgDRwOnHiRBsyZIhbSdS2bVt75pln3L65c+e6wVbNaqpTp45rgOTWW291DZpuENR5VUdSM7B0ExFTCi+9Tu+lBkaDy/5Uk1qzx3UTofQoOm+taNLPuZIGSY2Q6o0MHz7czTLTjD41gjo3vU9Uqd38qUHWgLcGp9Wo6manUaNGLlAdFTV0umnp2LGja4wv14EVNcy6dmqQ9VnoRkcD4QMHDnSDD6IaKZpRqIEIDbrrBkjnpJmJkT333HP24Ycf2uTJk91MQjXADRo08O0fOnSo26ebjn379rkbGd0I6t9HVAF1AED8Cec2Ob6pdIiujbKY6HzUwSxUqNAVvcfDDz/s3kMdanWWo6Lros9G9xK6/t7qNt1fPPbYY+6z0WcQG2q31WFXGzxz5kw3AU4z4ZUC3X/A/8EHH3QDHvoMFXh4/PHH3b2Fx5swp3PQZ6LP9o477vD9u4qJVjAo+KBz1z2B7msAABGFc3udFPrQor6ygt86XkEF9WmjMmzYMPd7eKvO1NdWrdWPP/7YfV6xpYlq+r30eSq4ryCGJpTrM/RPeaoV9Br01+R10eeuye7e6nO1+7rnUD9d76Pteo0mxxUvXjzGc9BKdqXq1b89TYzXvRAA4H/Cuf0Otv52bNvNy7mSdvNyY+Kx6WtfDb1eWQH0+WmygCapKciu/vbl+udATJJd9KrNA4iSGmnNPFKnD6Ft1apVboajbrqU3g0AEFxok+OHZmhrUH3z5s0WipStRZ3x6AIFAICERXuNq6XgiWjiOgAgcdF+h29/O7Zj4gnR11aKfWVm0c/Nmzevb7uyDSidvs7Ny+ACXClWgANhSrPGLjf/RbPwArmiWefnX58kOjpHr/YLAABJTbC1yVqpFpuanl7dNwAAwkGwtddRoQ8NAEBwt9/0ty8dV3j99dftzTffdCnitapcpUvHjBnjSsEQ/EZcMGoFhKl69eq5GtYx0cr3QM68VsoV1Uu5HFZsAwCSsmBrk720Z5eTlGa0AwAQau11VOhDAwAQ3O03/e1LKdW76s0rbbxKm1577bUu1XpcU6sDpEAHwpQGrc+ePRvjMaqfciU1ReLb33//fdn6aKLaL6qzBgBAUhRsbbLaXrXBl1O+fPlEOR8AAIJBsLXXUaEPDQBAcLff9LeBxEMAHAAAAAAAAAAAAAAQEpIH+gQAAAAAAAAAAAAAAIgPBMABAAAAAAAAAAAAACEhpYW4KlWquBoPOXPmDPSpAABwxQ4ePGipU6e21atXh83Vo+0GACRVtNsAACQttN0AAIRmux3yAfAzZ87YhQsXAn0aQMi6ePGim2Si/3SSJUsW6NMBQs758+fd31k4oe0GEg7tNpCwaLcBxDfabiBh0XYDiE+020DwtNshHwDPlSuXe1y6dGmgTwUISSdPnrSNGzda6dKlLX369IE+HSDk1K1b18INbTeQcGi3gYRFuw0gvtF2AwmLthtAfKLdBoKn3aYGOAAAAAAAAAAAAAAgJBAABwAAAAAAAAAAAACEBALgAAAAAAAAAAAAAICQQAAcAAAAAAAAAAAAABASCIADAAAAAAAAAAAAAEICAXAAAAAAAAAAAAAAQEhIaUFo//79VqtWrUu2Dx061Jo3bx6QcwIAAAAAIKlbtWqVtWvXLsp9+fPnt6VLlyb6OQEAAAAAEPIB8E2bNlmaNGlsyZIllixZMt/2TJkyBfS8AER05MgRq1Gjhu3evdvy5ctnK1assGzZsnGZAAAIQhcuXLBly5bZmjVr7ODBg1avXj1LkSJFoE8LQCK74YYb3H27v59++smefvppe+KJJ/g8gCBC2w0AQNJBuw0El6AMgG/ZssUKFy5suXLlCvSpAIhGnjx5XLYGz9GjRy179uyWO3du27dvH9cNAIAgMm/ePOvWrZvt2LHDt0332yNHjiTDEhBmUqdObTlz5vQ9P3nypMu21qxZM2vRokVAzw3A/9B2AwCQdNBuA8EnKGuAb9682YoWLRro0wAQi+B31apVbcKECe5RtF37AQBA8HTEW7ZsaeXLl7evvvrKrQLXo55ru/YDCF+TJk2yU6dOWa9evQJ9KgD+P9puAACSDtptIDglD9YV4Eqt3Lp1a7v55pvt/vvvdwN1AAJPf5te8PvYsWNuAF3Bbz3quWi/jgMAAIFPwaaV3w0bNrT58+e7Njt9+vTuUc+1vXv37u44AOFH9+wzZsywxx9/3LJkyRLo0wFA2w0AQJJCnxsIXkGXAv38+fO2bds2K1asmPXu3dsyZsxon3zyiXXo0MGmT59u1atXv+Q1devWjfb99u7d61ajKq0bgLhTzW/RwHny5MndahHRY7p06axKlSq2evVqd5weAcTNxYsXLVmyZFxGAFdl+fLlLu35e++959ptf3rep08fN+FUx9WuXZurDISZmTNnWqZMmaxVq1YxHkefG0g8WgCitltjYKdPn47Q55YuXbpYnTp17IsvvrBatWrx0QBxRJ8bQFzQ5waCV9AFwFOmTGmrVq2yFClSWNq0ad22cuXK2datW23atGlRBsAv5+zZs7Zx48YEOFsg/Ozevds9PvTQQxH+rryaog8++KALfOs4/u6AuFMbliZNGi4lgKuiyaDe/XRUvO3ecQDCizJBNG3a1Nf3vlr0uYH4s2bNGveocbGo+tza7h2XM2dOLj0QR/S5AcQFfW4geAVdAFwyZMhwybbixYvbihUrojx+6dKlMc5U10y+0qVLx+s5AuEqX758dvToUZcqUcFuzUJXR7xw4cJuBbjSJ3rH8XcHxF3q1Km5jACuWt68ed3j+vXrrVq1apfs13b/4wCEj02bNtlff/1ljRo1uuyx9LmBxHPw4EFfSlX1qSP3ubVoRCpXrkyfG4gH9LkBxAV9biB4BV0AXCu9lX5t4sSJdtNNN0UYnFNa9Kuh1LGqdQgg7jQRJXv27PbDDz/Yf//95zrgokc999Ke6zj+7oC4I/05gLioWbOmGzAfMmSIW+npT+320KFDrUiRIu44AOFF9+26ry9VqlSc34s+NxB/6tWr59ruUaNGRWi71edWtobRo0e7tlvHeavBAVw9+twA4oI+NxC8IhYCDAJFixa16667zgYOHOg65H/88YcbmPvpp5+sU6dOgT49IOxly5bNcufO7a6D6gXeeuuttnLlSveo56L9Og4AAASWBsZHjhxpCxcudGmOtWrsxIkT7lHPtX3EiBEMoANhaMOGDVayZMlAnwaASGi7AQBIOmi3geAVdCvAkydPbpMmTXIDdc8++6xLtVymTBmbPn26lShRItCnB8DM9u3bZ3ny5LH9+/e7iSreqm8v+K39AAAgODRv3tzmzJlj3bp1szp16vi2a/WYtms/gPBMs5wlS5ZAnwaAKNB2AwCQdNBuA8Ep6ALgkiNHDrfqG0DwUpD7yJEjVqNGDdu9e7er+a2056z8BgAgODvkTZo0sS+++MLWrFnj6oaSOhUIb6+//nqgTwFADGi7gfBx/vx5Gz9+vCt78M8//7jFYD169LCKFSu6/Rs3brTBgwe7EqEad3vooYesXbt2gT5tAH5ot4HgE5QBcABJg266tfpbN+KlS5em5jcAAEGemq1WrVqWM2dO125TNxQAgOBG2w2Eh4kTJ9oHH3xgw4YNswIFCrhJao8++qh9+umnlipVKmvfvr3L5DRgwABXJlSPGTJksBYtWgT61AH4od0GggsBcAAAAAAAAAAAAmDJkiXWsGFDl2VRevfu7QLiCnZv377dBcEHDhxoKVOmtKJFi9rOnTttypQpBMABAIhB8ph2AgAAAAAAAACAhJE9e3b76quvbNeuXXbhwgWbPXu2pU6d2kqVKuUyL1atWtUFvz3VqlWzHTt22KFDh/hIAACIBivAAQAAAAAAAAAIgL59+9ozzzxjdevWdSmUkydPbmPHjrWCBQvavn37rESJEhGOz5Url3vcu3ev5ciRI8r31HtFR6/LkyePnTx5Mp5/EwCnTp2K8Aggfl28eNGSJUsWq2MJgAMAAAAAAAAAEAC///67ZcqUycaPH2+5c+d26c+7d+9u77zzjp0+fdqtBveXJk0a93jmzJmr/plnz561jRs3xvncAURNWRoAxD+1X147eDkEwAEAAAAAAAAASGRajd2tWzebMWOGValSxW0rX768C4prFXjatGndYL8/L/CdPn36aN936dKl0e7T6nCtoCtdunS8/R4AzLfyW8HvwoULW7p06bgsQDyLPCksJgTAAQAAAAAAAABIZD///LOdO3fOBb39XX/99bZs2TK79tpr7cCBAxH2ec+1WvxqKX1sTAF0AHGj4Dd/Y0D8i236c0meAD8fAAAAAAAAAADEQLW4ZfPmzRG2b9myxa0gvfHGG23NmjV24cIF377vv//eihQpYtmzZ+faAgAQDQLgAAAg1rZv32433HCDzZs3z7dNdcPatGljFStWtDp16thbb73FFQUAAAAA4DIqVKhglStXtl69ernAtlInjxkzxlauXGkdOnSwFi1a2PHjx61v374uLbr64kqX3rFjR64tAAAxIAU6AACIFaVl6969u508edK37e+//7b27du7wPeAAQPsp59+co8ZMmRwHXUAAAAAABC15MmT28SJE13Qu0+fPvbvv/9aiRIlXJBbadBl6tSpNnjwYGvWrJnlzJnTevbs6b4HAADRIwAOAABiZezYsZYxY8YI295//31LlSqVDRw40FKmTGlFixa1nTt32pQpUwiAAwAAAABwGddcc429+OKL7iu6VeKzZ8/mOgIAcAVIgQ4AAC7rxx9/dB3uYcOGRdi+evVqq1q1qgt+e6pVq+bSth06dIgrCwAAAAAAAABIVKwABwAAMTp69KhLsdavXz/LmzdvhH379u1z6dn85cqVyz3u3bvXcuTIEeV71q1bN9qfp9flyZMnQqp1APHj1KlTER4BxK+LFy9asmTJuKwAAAAAAAQQAXAAABCj/v372w033GCNGjW6ZN/p06ctderUEbalSZPGPZ45c+aqr+zZs2dt48aNfDJAAlGWBgDxT+2X1w4CAAAAAIDAIAAOAACiNX/+fJfmfMGCBVHuT5s2rRvs9+cFvtOnTx/t+y5dujTafVodrhV0pUuX5pMB4plWfiv4XbhwYUuXLh3XF4hnkSeFAQAAAACAxEcAHAAARGvu3Ll2+PBhq127doTtL774on366acuVfmBAwci7POe586d+6qvrNLHxhRAB3DlLly4YMuWLbM1a9ZY5cqVrV69epYiRQouJRCPSH8OAAAAAEDgEQAHAADRGjFihEtz7q9+/frWuXNna9y4sX300Uc2a9YsF1jzAmnff/+9FSlSxLJnz86VBYLEvHnzrFu3bhFSn2sV+MiRI6158+YBPTcAAAAAAAAgPiWP13cDAAAhRau4CxUqFOFLFNzWvhYtWtjx48etb9++9vvvv7sg24wZM6xjx46BPnUA/5/+Llu2bGnly5e3r776yq0C16Oea7v2AwAAAAAAAKGCADgAALhqCoRPnTrVtm/fbs2aNbNx48ZZz5493fcAAk/ZGbTyu2HDhjZ//nyrWrWqKy+gRz3X9u7du7vjAAAAAAAAgFBACnQAAHBFNm/eHOF5hQoVbPbs2VxFIAgtX77cpT1/7733LHnyiHNf9bxPnz528803u+Nq164dsPMEAAAAAAAA4gsrwAEAAIAQtXfvXvdYrly5KPd7273jAAAAAAAAgKSOADgAAAAQovLmzese169fH+V+b7t3HAAAAAAAAJDUEQAHAAAAQlTNmjWtcOHCNmTIEPvvv/8i7NPzoUOHWpEiRdxxAAAAAAAAQCggAA4AAACEqBQpUtjIkSNt4cKF1rRpU1u1apWdOHHCPeq5to8YMcIdBwAAAAAAAISClIE+AQAAAAAJp3nz5jZnzhzr1q2b1alTx7ddK7+1XfsBAAAAAACAUEEAHAAAAAhxCnI3adLEvvjiC1uzZo1VrlzZ6tWrx8pvAAAAAAAAhBwC4AAAAEAYUJrzWrVqWc6cOa106dIEvwEAAAAAABCSqAEOAAAAAAAAAAAAAAgJBMABAAAAAAgz8+fPt7vuusvKly9vd999t3322WeBPiUAAAAAAOIFAXAAAAAAAMLIRx99ZH379rXWrVvbJ598Yg0bNrSuXbvaunXrAn1qAAAAAADEGQFwAAAAAADCxMWLF+3VV1+1du3auQB4wYIFrVOnTnbzzTfbDz/8EOjTAwAAAAAgzlLG/S0AAAAAAEBSsH37dtu9e7c1atQowvZp06YF7JwAAAAAAIhPrAAHAAAAACCMAuBy8uRJe+SRR6x69ep2zz332JdffhnoUwMAAAAAIF6wAhwAAAAAgDBx/Phx99irVy976qmnrHv37rZo0SJ74oknbPr06S4gHlndunWjfb+9e/danjx5XEAdQPw7depUhEcA8V8aJFmyZFxWAABCDAFwAAAAAADCRKpUqdyjVn83a9bMfV+6dGnbsGFDtAHwyzl79qxt3Lgx3s8VwP/s2LGDywEkALVhadKk4doCABBiCIADAAAAABAmcufO7R5LlCgRYXuxYsXs66+/jvI1S5cujfb9tDpcq+cURAcQ/7TyW8HvwoULW7p06bjEQDxLnTo11xQAgBBEABwAAAAAgDBRtmxZy5Ahg/38889WpUoV3/YtW7ZYwYIFr+o9lTo2ffr08XiWACJT8Ju/MyD+kf4cAIDQRAAcAAAAAIAwkTZtWnv00Udt/PjxbjV4hQoV7JNPPrFvv/3WZsyYEejTAwAAAAAgzgiAAwAAAAAQRp544gm3mnT06NG2f/9+K1q0qI0dO9ZuuummQJ8aAAAAAABxRgAcAAAAAIAw0759e/cFAAAAAECoSR7oEwAAAAAAAAAAAAAAID4QAAcAAAAAAAAAAAAAhAQC4AAAAAAAAAAAAACAkEAAHAAAAAAAAAAAAAAQEoI+AL59+3a74YYbbN68eYE+FQAAAAAAAAAAAABAEAvqAPi5c+ese/fudvLkyUCfCoAo/Prrr5YxY0arUqWKe9RzAAAAAAAAAAAAIFBSWhAbO3asC6oBCD7JkiWL8PzixYtWoUIF3/cAAAAAAAAAAABAYgvaFeA//vijzZ4924YNGxboUwEQQ/A7RYoU1rZtW/cY1X4AAAAAAAAAAAAgrAPgR48etZ49e1q/fv0sb968gT4dAH7805zv3LnT/b0+88wz7lHPozoOAAAE3oULF2zZsmX2+eefu0c9BwAAAAAAAEJNUKZA79+/v91www3WqFGjWB1ft27daPft3bvX8uTJQx1xIJ5cf/317lErvnPkyGGnTp1yz/Wo59quAXUdd/z4ca47EEcqKUBWBQBxNW/ePOvWrZvt2LHDt61w4cI2cuRIa968ORcYAAAAAAAAISPoAuDz58+31atX24IFC+LtPc+ePWsbN26Mt/cDwplX3/uBBx6I8HflDajfc889NmvWLHccf3dA/LRhadKk4VICiFPwu2XLltawYUObPn26b7LaqFGj3PY5c+YQBAcAAAAAAEDICLoA+Ny5c+3w4cNWu3btCNtffPFF+/TTT23q1KmXvGbp0qUxrg5XIK506dIJcr5AuNFKVP1NzZw50yZNmuRWfiv4rVVk6dKlsw8++MB3HH93QNylTp2aywjgqinQrZXfCn5rounp06fdBDW10XretGlT6969uzVp0sQFxgEAAAAAAICkLugC4CNGjHADc/7q169vnTt3tsaNG1/VeyoQlz59+ng6QyC8/fzzz1ahQgU3oH7o0CGX9lwU/NZzr56ojuPvDog70p8DiIvly5e7iWrvvfeeJU+ePMI+Pe/Tp4/dfPPN7rjIE1ABAAAAAACApCjoAuC5c+eOcnv27Nmj3Qcg8ZQvX973faFChdxqMaU918pvL/gd+TgAABAYe/fudY/lypWLcr+33TsOAAAAAAAASOoiLgMBgCuoAy4Keqvmt3/w238/AAAInLx587rH9evXR7nf2+4dBwAAAAAAACR1SSIAvnnzZmvevHmgTwOAHwW5f/nlF196Zj3qOcFvAACCR82aNa1w4cI2ZMgQ+++//yLs0/OhQ4dakSJF3HEAAAAAAABAKEgSAXAAwUlpzo8fP26rV692j6Q9BwAguKhUyciRI23hwoXWtGlTW7VqlZ04ccI96rm2jxgxwh0HAAAAAAAAhIKgqwEOAAAAIP4ok9KcOXOsW7duVqdOHd92rfzWdjItAQAAAAAAIJQQAAcAAABCnILcTZo0sS+++MLWrFljlStXtnr16rHyGwAAAAAAACGHADgAAAAQBpTmvFatWpYzZ04rXbo0wW8AAAAAAACEJGqAAwAAAAAAAAAAAABCAgFwAAAAAAAAAAAAAEBIIAAOAAAAAAAAAAAAAAgJBMABAAAAAAAAAAAAACGBADgAAAAAAAAAAAAAICQQAAcAAAAAAAAAAAAAhAQC4AAAAAAAAAAABMj8+fPtrrvusvLly9vdd99tn332mW/frl27rGPHjlapUiWrUaOGjRkzxi5cuMBnBQBADAiAAwAAAGFAg2TLli2zzz//3D0yaAYAAAAE3kcffWR9+/a11q1b2yeffGINGza0rl272rp16+zcuXP2yCOPuONmzZpl/fv3t/fee8/Gjx8f6NMGEAl9biC4pAz0CQAAAABIWPPmzbNu3brZjh07fNsKFy5sI0eOtObNm3P5AQAAgAC4ePGivfrqq9auXTsXAJdOnTrZ6tWr7YcffrDdu3fbnj177P3337drrrnGSpQoYYcPH7bhw4fb448/bqlTp+ZzA4IAfW4g+LACHAAAAAjxjnjLli1dOsWvvvrKrf7Wo55ru/YDCC/79++3kiVLXvLF/wcAACSu7du3uyB3o0aNImyfNm2aS3uuQHjZsmVd8NtTrVo1O378uG3cuJGPCwgC9LmB4MQKcAAAACCEU7Bp5bfSKKqu4OnTp91AWenSpd3zpk2bWvfu3a1JkyaWIkWKQJ8ugESyadMmS5MmjS1ZssSSJUvm254pUyY+AwAAEjkALidPnnSpzjds2GD58+d3q8Dr1Klj+/btszx58kR4Ta5cudzj3r177frrr+fzAgKIPjcQvAiAAwAAACFq+fLlLu256gQmTx4x+ZOe9+nTx26++WZ3XO3atQN2ngAS15YtW1wZBG8AHQAABIZWckuvXr3sqaeecpNTFy1aZE888YRNnz7dTWDNnDlzhNdoEpucOXMm2vetW7dutPsUOFdQXUF3AHGjDGvqc3t/r6dOnXLbvccuXbq4ySxffPGF1apVi8sNxEPpEP9J3DEhAA4AAACEKA1uSbly5aLc7233jgMQHjZv3mxFixYN9GkAABD2UqVK5a6BVn83a9bMfa9sTVoJroBa2rRp7ezZsxGukxf4Tp8+/VVfP70nKdSBuFuzZo17VEY1/78pBcW97d5xOXPm5JIDcaT2y5sIdjkEwAEAQIwOHz5sw4YNcytE1dG+8cYb3ex0b+BcN/iDBw+29evXW7Zs2eyhhx6ydu3acVWBIJA3b173qL9P1QqMTNv9jwMQPivAs2bNaq1bt3apVwsVKuRSrUa3KoVVZEDgRF5JBiBwK8kSQu7cud1jiRIlImwvVqyYff3111a1alXXbvs7cOBAhNdGZenSpdHuU7uu31uBdgBxc/DgQV8qdP1Nqb1W8FvZltKlS2erVq1y+ytXrszfHBAPUqdOHetjCYADAIAYPfnkk/bff//ZlClTLEOGDPbqq6+6IPfixYtdeqf27du7dE4DBgywn376yT3quBYtWnBlgQCrWbOm63gPGTLE1fz2p7/roUOHWpEiRdxxAMLD+fPnbdu2bW5gvXfv3pYxY0b75JNPrEOHDm6lWfXq1a/4PVlFBiQ8byUZgMCtJEsIZcuWdf3nn3/+2apUqeLbrqB3wYIF3QR03ccrVbrabPn+++/da0qVKnXVP1dB/7isIAfwf+rVq+f63KNGjYrQ51bwWxkcRo8e7frcOs5bDQ7g6l3JpDUC4AAAIFr//vuv5cuXzzp27Oibka5aZE2aNLGtW7faypUrXcq2gQMHWsqUKd2q8J07d7pgOQFwIPDUwR45cqS1bNnSmjZt6uqPaZtmoasjvnDhQpszZw4dcSCMqL3W/wH6v0CDcl45BLXr06ZNizIAzioyIHAiryQDELiVZAlBbfGjjz5q48ePdyu6K1So4CamffvttzZjxgyrWLGijRkzxp599llXH3zXrl0u0Pbwww8H/NwB0OcGghkBcAAAEK1rrrnGBc88R44ccZ3wPHnyuJVjY8eOdSnZNJjuUZrlyZMn26FDhyxHjhxcXSDAmjdv7oLc3bp1c9kaPJqFru3aDyC8aNVYZMWLF7cVK1Zc1fuxigxIeAp+s1oTiH+BTH/u0SRz/Y1rgur+/fvdxHL1tW+66Sa3f+rUqS7T2r333uv66A888IB7DYDgQJ8bCE4EwAEAQKw8//zz9v7777tZ5hMnTnQDcPv27bukVlmuXLnc4969ewmAA0HUIVfmhi+++MLWrFnj6o+Rgg0IT1rp3apVK9eWewPrsn79eje5DQAAJD6VFtNXVAoVKmRvvPFGop8TgNijzw0EHwLgAAAgVh588EE3YP7uu++6uuAzZ850NcAjp13z6qedOXMm2veqW7dutPsUONcK85MnT/LJAPFMNQRz5szp0qjG9DcK4OpcvHgxKFaSxUSryq677jpXvkSrybJmzeomuP300082d+7cQJ8eAAAAkCSpxFCtWrVcn7t06dKUGgMCjAA4AACIFW9V2ODBg+3nn3+2d955x9UrO3v2bITjvKBaXFI06j03btzIJwMkENUSBRD/1H55E8GCVfLkyW3SpEmuxInqiR49etTKlClj06dPvySrCwAAAAAASREBcAAAEC3V/F65cqU1aNDAV+dbA+cKhh84cMCt1NajP+957ty5o33fpUuXxrg6XCvoNFsWQPy5cOGCffnlly7Ncbly5Vw9cM1QBxB/ImdFCVY5cuSwoUOHBvo0AAAAAABIEATAAQBAtA4dOmRdu3a1qVOnWs2aNd22c+fO2YYNG1zwTAPos2bNcoE1L5D2/fffW5EiRSx79uxXfWWVPjYuK8gBRDRv3jzr1q1bhJXfSoOuFaCqVQYgfgR7+nMAAAAAAMJB8kCfAAAACF5Khar6RS+99JL9+OOPtmXLFuvdu7dLl/rQQw9ZixYt7Pjx49a3b1/7/fffXZBtxowZ1rFjx0CfOoD/T3+XLVu2tPLly9tXX31ly5Ytc496ru3aDwAAAAAAAIQKAuAAACBGo0aNsurVq1uXLl3snnvusX/++cfeffddu/baa90qb60O3759uzVr1szGjRtnPXv2dN8DCDxlZ9DK74YNG9r8+fOtatWqLruCHvVc27t37+6OAwAAAAAAAEIBKdABAECMMmXKZP3793dfUalQoYLNnj2bqwgEoeXLl7u05++9954lTx5x7que9+nTx26++WZ3XO3atQN2ngAAAAAAJGWaWK6Ma2vWrLGDBw9avXr1fOUCASQ+AuAAAABAiNq7d697LFeuXJT7ve3ecQAAAAAA4MqotJiyr2kCuqdw4cI2cuRIa968OZcTCABSoAMAAAAhKm/evO5x/fr1Ue73tnvHAQAAAACAKwt+t2zZ0sqXL29fffWVWwWuRz3Xdu0HkPgIgAMAAAAhqmbNmm7W+ZAhQ+y///6LsE/Phw4dakWKFHHHAQAAAACAK0t7rpXfDRs2tPnz51vVqlUtffr07lHPtb179+7uOACJiwA4AAAAEKJUb0wp1xYuXGhNmza1VatW2YkTJ9yjnmv7iBEjqEsGAAAAAMAVWr58uUt7/txz/4+9O4GzuXz/P37JvmbNLiI1sqRURIi0famE+qqUotCiQglRiOxtIiWUpQgVbYoWkkQblZS1lKzJviT/x/v6/z7ne2YajDHOOXPm9Xw85vE5n2XOfOYc4z73fd33dXW3k05KHG7Tfrdu3Wz16tV+HYDIogY4AAAAEMdUb2zq1Kk+K71Bgwah41r5rePUIwMAAAAA4NitX7/et5UrV072fHA8uA5A5BAABwAAAOKcgtxXX321ffDBB/bll1/aueeea40aNWLlNwAAAAAAqVS8eHHffvfdd3beeed5/W/1uTdt2uR9bh0Pvw5A5BAABwAAADJIOvS6detakSJFLCEhgeA3AAAAAADH4aKLLrKyZcvaPffcY5s3b/Z06AEdL1y4sGdf03UAIosa4AAAAAAAAAAAAMAxTjRv0aKFLV682Pbs2WPDhw+3d99917fa1/HmzZszAR2IAlaAAwAAAAAAAAAAAMfg4MGD9tprr1mNGjU87fndd9+daAW4jk+dOtUef/xxguBAhBEABwAAAAAAAAAAAI7BvHnzPO35K6+84jXAP/jgA68Bfu6553oN8C+++MIuvPBCv65+/fq8tkAEEQAHAAAAAAAAAAAAjsH69et9W7lyZV/hXbduXStSpIglJCT4vo6HXwcgcqgBDgAAAAAAAAAAAByD4sWL+/a7775L9nxwPLgOQOQQAAcAAAAAAAAAAACOwUUXXeS1vvv3728HDhywuXPn2nvvvedb7av2d7ly5fw6AJFFCnQAAAAAAAAAAADgGCjN+dChQ6158+Z28skn2549e0LncubMaXv37rWpU6f6dQAiixXgAAAAAAAAAAAAQCocOnToX8cyZcqU7HEAkUEAHAAAAMgA9u/fb8OHD7eBAwf6VvsAAAAAACB1Dh48aJ07d7YmTZrY1q1bvb/dokUL327ZssWPd+nSxa8DEFkxGQDXfwwPPPCA1axZ06pXr2533HGHrVy5Mtq3BSCJGTNmWO7cua1GjRq+1T4AAIg9Dz74oLfVXbt2tddee8232tdxAAAAAABw7ObNm2dr1qyxCy+80BISEhL1ubVfq1YtW716tV8HILJiMgB+11132dq1a+3555/3+gg5cuSw1q1bJ6qfACC6lMLl6quvTnRM+zoOAABih4LcgwcPtkKFCtmzzz5r7733nm+1r+MEwQEAAAAAOHbr16/3bbdu3axKlSr20Ucf2dy5c32r/e7duye6DkAGDoD/9ddfVrJkSXvsscesatWqVr58ebvzzjtt48aN9vPPP0f79gD8X/A73LnnnptonyA4AACxQWnOn3jiCStatKitW7fOJ5UWLlzYt9rXcZ0nHToAAAAAAMfmlFNO8W2dOnXsjTfesPPPP99y5crlW+3Xrl070XUAMnAA/OSTT7ahQ4daxYoVfV91E8aNG2fFihWzChUqRPv2gAwvPM35okWLbNeuXTZq1Cjfaj9AOnQAAKJvxIgR9vfff/vk0ixZsiQ6p/0+ffr4eV0HAAAAAADSDgvFgOhJPAoWY3r27GlTpkyxbNmy2ciRI33mTHIaNmx42OdQagkFz3fv3n0C7xTIOMLTnleqVClUmkBb7Ydfp6A4gONz6NAhPiwDSLWVK1f6tnHjxsmeD44H1wEAAAAAgJRR5mKZP3++XXPNNXb//fdb5syZbeHChZ5tTcfDrwMQOTEdAL/lllvs+uuvt4kTJ3pd8EmTJtlZZ511zM+jlI7Lli07IfcIZFRKex7+d7VmzRrfqnTBkiVL/DF/d8DxUxuWPXt2XkoAqaJyQvLWW2/ZzTffbMOHD7fFixdbjRo17L777vPj4dcBAAAAAICUKV68uG/79+/vWVIbNGgQOleuXDnr16+f1wEPrgMQOZkOaWlZjPvnn398dUq1atXs8ccfP6bv1epw/YrB4B6A45M7d+7QY63w1spvBb/Lli1rOXPm/Nd5AMdH7Z/SJc2ZMyfDvJRBZpeM9DsDJ3ISjdpmZVTat2+fHTx4MHROs9I1wUbXqM3WNQCOT0ZswzLi7wxEkjIaanJ5QkLCYTMjAki9jNiOZcTfGThR1MdW6d4qVarYtGnT/O/qyy+/9MVj+ltr1qyZfffdd/bzzz97HxxA5NqwmFsBrprfCxYssMsuuyxUp/Ckk07y/0RSmyZCgQM6CUDaePPNN0Np0H/44YdQ2nMFv7Uffh1/d8Dxo1YQgOOhoHb16tVt0aJF/v/Jf//7X2vSpInNnDnTJk+e7IPq5513HsFvAAAAAACOkYLaQ4cOtebNm3uwWynQL7roIg+Ma18LM6dOnUrwG4iCkyzGbN682Tp16uRB8MCBAwc8sEZqRiD6rrrqqtBjDZhrVdltt93mW+0ndx0AAIgOre7++uuvfVKaJpW++uqrduONN/pW+zqu87oOQMa0evVqnygzffr0aN8KgCTUPqt8ycCBA31Lew0AQOy59tprPci9dOlST4Fer14932rlt47rPIDIi7kAeMWKFa1u3br22GOP+UqVn376yR566CHbvn27tW7dOtq3B8DMywqEC2p+B9JBZQUAADKEESNG2N9//21PPfWUr/bWAHqLFi18q/0nnnjCz+s6ABmPJpt36dLF/z8AEFsefPBBn2jetWtXe+2113yrfR0HAACxRUHuFStW2LvvvuuxLW2V9pzgNxA9MZcCXYYNG+ZpI5QuYseOHVajRg2bOHGilShRItq3BiAsyD1jxoxQOvQg7TkrvwEAiB0rV670bePGjT3N+d133x2qI6p9HQ+/DkDG8swzz1iePHmifRsAklCQe/DgwVa0aFHr1auXZ0RUW92nTx8/LoMGDeJ1AwAgxtKha3FnkSJFvM9NzW8gumJuBbjkzZvXHn30Ufv000/t22+/tRdffNFOP/30aN8WgCQU7N61a5ctXrzYtwS/AQCILUEJIdUdS05wnFJDQMajjGuTJ0+2AQMGRPtWAIRRmnNlaFHwe926dZ4NsXDhwr7Vvo7rPOnQAQAAgHS2AhwAAADA8bvzzjvtgQcesIcfftiaN29urVq1Cq0AHz9+vK8qy5Ili18HIONQiTGtMNX/DcWLFz/q9Q0bNjzsufXr11uxYsVIow6kEdX6VnkStdEKcu/Zs8ePB1v93d5zzz325JNPemYXAMef4TBTpky8jAAAxBkC4AAAAECcUppzlRVSutQCBQqEjiuNarCvALmuA5BxKONa9erVrUmTJmnyfArSaXINgOOnDGtBdpbwv6s1a9b4tkKFCqHr+LsD0qYNy549Oy8lgDT5/0QT2dRGq6zvfffdR18biCIC4AAAAEAc+/jjj4/rPID48sYbb/ig3MyZM1P8PXPmzDni6nCtnlNmCQDHTwPmr732mk9Wu+iii3zlt4LfZcuWtZw5c9qCBQtC1/F3Bxw/JoICSAvKrqQSJcriImrLe/To4RPSBw0axIsMRAEBcAAAACBO7dy50+v8Kq3jtm3b7LnnngvNRm/fvr3lz5/fz+u6PHnyRPt2AUTAtGnTbMuWLVa/fv1Exx955BF75513bPTo0cf8nPo/JleuXGl4l0DGpdViGjDv06eP3XHHHaHjCn4rUPfYY495+RJWlQFpg/TnANIi+K2sa0WLFvUSJsrioolsast1XAiCA5F3UhR+JgAAAIAIUM1vuemmmyxfvnxeK7Rr166+1f4NN9yQ6DoA8W/IkCEe6NZK8OBLOnbsaP369Yv27QEZXlC+ZMOGDVaqVCkbM2aMbdq0ybfa13GdZ9UqAACxkfZcK78V/F63bp21bt3aChcu7Fvt67jO6zoAkcUKcAAAACBOada5dOnSJdnznTp1sokTJ4auAxD/NAiXnEKFCh32HIDIClaJacD8nnvuCR3Xyu8HHniAVWQAAMSIESNGeNrzIENLeKBb+1oF3q5dO79O2VsARA4rwAEAAIA4pdRrwYrPgwcP2ty5c+29997zrfaHDRuW6DoAABA7QfBdu3bZwIEDrUWLFr7VPilUAQCIHcFk8saNGyd7PjjOpHMg8lgBDgAAAMSp8ePHW968eW3ChAn2ySef2C+//BI6V6ZMGfv1119D1wHIuJYvXx7tWwCQDKU5V9mSZcuWWUJCAmnPAQCIMcFk8rfeesvatm37r/M6Hn4dgMhhBTgAAAAQp/LkyeMd7UOHDnnw+5JLLrHRo0f7Vvs6rvO6DgAAAAAApNydd97pqc4ffvhhT4UeTvu9evXy87oOQGQRAAcAAADilNKc6+vkk0/2/dmzZ/usdG1Fx//55x+/BgAAAAAAHFu2lvvvv982bNhgpUqVsjFjxtimTZt8q30d13ldByCySIEOAAAAxKl58+bZmjVrbMGCBVa5cmVr2bJlKI3qK6+8YkuXLrULL7zQr6tfv360bxcAAAAAgHRl0KBBvn3iiSfsnnvuCR3Xyu8HHnggdB5AZBEABwAAAOLU+vXrfavgt9KcT548ORQAz5Urlx8Pvw4AAAAAABwbBbl79+5t9913n3377bdWrVo1e/LJJy1nzpy8lECUkAIdAAAAiFPFixf37XfffZfs+eB4cB0AAAAAADg206dPt0qVKtnzzz9vCxcu9K32dRxAdBAABwAAAOLURRddZGXLlrX+/fvb9u3b7frrrw99af/xxx+3cuXK+XUAAAAAAODYKMjdvHlzq1Klin300Uc2d+5c32pfxwmCA9FBCnQAAAAgTmXOnNmGDh1qzZo1s5NPPjl0fOXKlaH9adOm+XUAAAAAACDlDh48aJ07d7bGjRvblClT7Omnn7bFixdbjRo1fP+6666zLl262NVXX02/G4gwVoADAAAAcWzAgAHHdR4AAAAAAPzbvHnzbM2aNZYvXz7Lmzevde3a1V577TXfal9fq1ev9usARBYrwAEAAIA4tXPnTlu0aJFlypTJduzY4Z3uL7/80s4991xPe67OuM7rujx58kT7dgEAAAAASDfWr1/v24kTJ1rRokWtV69eVr58ec+61qdPH5s0aVKi6wBEDivAAQAAgDjVqlUr3950002WO3duq1u3rl1++eW+1f4NN9yQ6DoAAAAAAJAyhQoV8m3BggVt3bp11rp1aytcuLBvta/j4dcBiBwC4AAAAECc0qxzUc2x5HTq1CnRdQAAAAAAIGWWLl3q21KlStnff/9tw4cPt4EDB/pW+yVLlkx0HYDIIQU6AAAAEKeUek0d7SFDhtioUaPs/vvvt2+//daqVatmTz75pA0bNix0HQAAAAAASDnV/5YlS5ZYrly57NChQ76vOuAPPfRQaD+4DkDkEAAHAAAA4tT48eO9zre2+gosXLjQnn/++UTXAQAAAACAlAufTJ4pU6ZQwFtOOukkO3jw4L+uAxAZpEAHAAAA4lSePHns5JNPDu2feeaZvhpc24DO6zoAAAAA0bV69WqrXr26TZ8+PXRs2bJldtNNN9nZZ59tDRo0sJdffjmq9wjgf9q2bRsKfv/555+e/rxFixa+3bp1qx8Pvw5A5LACHAAAAIhTe/bssb/++is0E/3HH39MVA9cx3Ve1+XMmTOq9woAAABkZAcOHPDP6rt37w4dU0Dt1ltv9cB379697ZtvvvFt7ty5rVmzZlG9XwBmo0eP9pdB/e0CBQrYP//8E0qB3q1bt9CKcF1333338ZIBEcQKcAAAACBOPfDAA77t2rWr7dixwxo3buyp17TVfnA+2AIAAACIjmeeeeZfmZmmTJliWbNmtT59+vjneAW9W7dunaicEYDoWblyZehxePrzpPvh1wGIDALgAAAAQJz6+eefQ+nWNJg2efLk0Jf227Rpk+g6AAAAAJG3aNEi/4w+YMCARMcXL15s559/vmXJ8r9ErjVr1rQ1a9bY5s2bo3CnAMKVLVvWt1WrVvXsDeEp0LWv4+HXAYgcUqADAIAj2rZtmw0bNsw+/vhj27lzp51xxhnWuXNnq1Gjhp9fsGCBDR482GezFi9e3O655x77z3/+w6sKxIDTTz/d3n//fU+39vjjj//r/Isvvhi6DgAAAEDkbd++3R588EF7+OGHvU8d7o8//rCKFSsmOnbKKaf4dv369Va4cOFkn7Nhw4aH/Xn6vmLFiiVKtQ4gdYK/z19//dX279/vk8z196eAt/Z1PLiOvzng+Cmzgsr5pQQBcAAAcESdOnWyTZs2eRC8UKFCNn78eP9A//rrr/uHjnbt2nlNMgXBFSRXx71gwYJWq1YtXlkgyvR3+eyzz/rfr9Kc33LLLbZs2TJLSEiwl156yZ588snQdQAAAAAi79FHH7Xq1atbkyZN/nVu7969li1btkTHsmfP7tt9+/al+mcqMKd+AYDjs2TJEt/++eefVq5cOWvfvr1ddNFFNn36dHvuuef8eHBdiRIleLmB46T2K2gHj4YAOAAAOKy1a9fa/PnzbdKkSXbuuef6sZ49e9q8efNs5syZtmXLFl8Rfv/99/s51ST74YcffLUpAXAg+nLmzGlXX321vfnmmz6BJaCMDcG+zus6AAAAAJH1xhtveJpz9a+TkyNHDh/sDxcEvnPlynXY550zZ85hz2l1qiaza1IsgOOjBSNy/fXX29SpU61///6hcypdcN1119mUKVN8TI2/OeD4JZ0UdiQEwAEAwGEVKFDAnn/+eatSpUromNLM6Etp2tRRv+SSSxJ9j+qR9evX75hS0gA4cX7//ffjOg8AAADgxJg2bZpPLK9fv36i44888oi98847nqp848aNic4F+0WLFk31z1Vf/UgBdAAp06hRI093rvTmCoZfeeWVtmrVKjvttNP8b1hZ2LQyXNdlzpyZlxU4Tscy1kwAHAAAHFa+fPmsXr16iY7NmjXLV4Z3797d06CrQ560HtmePXs8zZNSoQOInp07d9qiRYu8g6CBtYceesi+/fZbq1atmg0YMMBXgeu8rsuTJw9vFQAAABBBQ4YM8TTn4S699FLr2LGjXXXVVZ7J6dVXX7WDBw+Ggmeff/65B9TCMzwBiA79XQ4dOtSaNWuWaAxME1WCfU10IfgNRB4BcAAAkGJfffWVdevWzTvkmqGeXD2yYD9pmrakKdcOZ/369R5U1+xZAMenZcuWoa1qJCkd25o1a3yGuvaVpk0Dajo/efJkXm7gOJH9BAAAHIvDreJWcFvnFFRTibEePXpY27ZtvY7wuHHjrHfv3rzQQIx4+eWXj3r+2muvjdj9APj/CIADAIAUmT17tnXp0sXOOeccn6UuCqAlDXQH+8dTU1jPsWzZMt4Z4DgFf0eNGzdO9DelIHhwXAFwneNvDjh+ar/UNgIAAKQFBcIVAFeZsaZNm1qRIkXswQcf9McAok8ZEJWpQYtBtKBDKc/Vt1a975deesmKFy/u53Xd8YyTATh2BMABAMBRTZgwwTvcl19+uQ0cODC0ylsf5JOrR6ZaYnnz5j3s882ZM+eIq8O1gk6dBQDHR39HK1eutLfeesuefvppHyz7/vvv7ayzzrJBgwaFJrPoOv7mgOOXNCsKAADAsVq+fHmi/apVq5KtCYhRDzzwgG/LlCmTqCyB+uHar1Chgq1YscKvGz58eBTvFMh4CIADAIAjmjRpkvXt29datWrladdUSzhQo0YN++KLLxJdr3pkWiV+0kknpfqV1c9QEB3A8XnllVd8Mor+jvUVWLhwoY0ZMybRdfzNAccvvI0EAAAAEN9+/vln3yrIrcmwHTt2tNq1a9v8+fN9ErqOh18HIHJSPzINAADi3urVq71mcKNGjaxdu3a2efNm27Rpk3/t2LHDg+KqQaZVpJrdqoDae++957XJAERfnjx57OSTTw7ta5X30KFDE6321nldBwAAAAAAUq5s2bK+1SIQjZP17t3bSpcu7VvtB4tDgusARA4rwAEAwGHNmjXLDhw4YB988IF/hVPNsQEDBtiIESNs8ODBXtuoVKlS/rhWrVq8qkAMUJ2xv/76y1elqrSAapF17tw5dF7HdZ56ZAAAAAAAHBv1s4O+dXKC48F1ACKHFeAAAOCw2rdv7/XHkvtS8Fvq1q1rM2fOtKVLl9q7775rV155Ja8oEGP1yLp27eqzzxs3bmzly5f3rfaD88EWQMawZcsW/7uvWbOmVa9e3e644w7P5AIg9rIxqX6oyg5pq30AABA71q5d69uDBw96+bGePXv6MW21r+Ph1wGIHALgAAAAQJwK6oypLIHSnE+ePDn0pf02bdokug5AxnDXXXf5INzzzz9vU6dOtRw5cljr1q09GwSA2JA5c2Y77bTTbO/evb6vrfZ1HAAAxIbTTz/dtxUqVLD9+/fbsGHDrFmzZr7Vviagh18HIHIIgAMAAABxKuhkjx49OtnzL774YqLrAMQ/lT0oWbKkPfbYY1a1alUflLvzzjtt48aNTIYBYoSC3P/8848/zpcvn5cv0VZ0nCA4AACxQWUA5ZdffvEsS+FZ17T/66+/JroOQOQQAAcAAADiVNDJ1uzzFStW2CmnnGLnnXeeb7X/5JNPJroOQPw7+eSTbejQoVaxYkXf37p1q40bN86KFSvmK1cARJfSnAfB7w0bNtj69eutZcuWvtW+6Dzp0AEAiL6cOXPa1Vdf7au9Va7krbfe8tJC2mpfx3Ve1wGIrCwR/nkAAAAAItwZf/PNNxOt8t61a1don844kHGpNuGUKVMsW7ZsNnLkSMuVK1ey1zVs2PCwz6GgnILnu3fvPoF3CmQclSpV8q1WfKtcSVCaQFvtq57ojh07/DqtLANwfA4dOmSZMmXiZQSQajfffLP3uY90HkDkEQAHAAAA4tjbb799XOcBxK9bbrnFrr/+eps4caLXBZ80aZKdddZZx/w8WtmybNmyE3KPQEYT1Py+/fbbE/1drVmzxre33XabPfXUU34df3fA8VMblj17dl5KAKly8OBBL1XSpEkTe+mll+zKK6+0VatW2WmnnWbvvPOOf97u0qWLTzynhAkQWQTAAQAAgDilOmR///136LFq/n777bdWrVo1e/jhh61MmTJ+Xuf0GEDGEqQ879evn//fMGHCBHv88cf/dd2cOXMO+xxaHa7VcwkJCSf0XoGMIkeOHB7cfuGFF6xPnz6+8lvB77Jly3pmlzFjxoSu4+8OOH7KggIAqTVv3jxvp2vXru2lxoL+98aNG33/uuuu87Iluq5+/fq80EAEEQAHAAAA4lSwklO1x0qXLm1PPPGErxbTgLlSHRcsWNDr/+o6pVMFEP/0N79gwQK77LLLLEuW/z8kcNJJJ3kwXAN1qaHUsYdLnw7g2Pzwww++amz79u22c+dOT3suCn5rP2ivdR1/d8DxI/05gOOhckCijEpFixa1Xr16Wfny5b0OuCayKcNS+HUAIucki0Hbtm3z/yjq1q1r55xzjrVs2dIWL14c7dsCkETjxo0td+7cVqNGDd9qHwAAxI6gJm9yKzpFHfLw6wDEv82bN1unTp08CB44cOCAB9M0WAcgusqVK+eTUkQD6cWKFbPx48f7Vvui87oOAABEV+HChX1boEABW7dunbVu3dqPaat9HQ+/DkAGD4CrM/7111/bsGHDbNq0ab5CpU2bNl47AUDszJBNWjNU+8ycBQAgdgQrw7p16+bBrbx58/rENW21r0mn4dcBiH8VK1b0yeYqibBo0SL76aef7KGHHvLVphqoAxAb9USDILhWfKvmd7DyW8d1HgAARN/SpUt9G5QXGz58uA0cONC32lcmtvDrAGTgAPjatWtt/vz59uijj/rgnGa09uzZ0+slzJw5M9q3ByAF6aEIggMAEBu+//57327ZssXTnP/zzz++r632lQo5/DoAGYMmm9eqVcvuv/9+a9GihWdhU9rGEiVKRPvWAPwfBbm1EES1vkVb7RP8BgAgdqi+t3z77bc+sbxr16722muv+Vb7S5YsSXQdgAwcAFdKiOeff96qVKmSKJimL81IBxBd4WnO7733Xtu1a5eXKNBW+8ldBwAAokOz0JM677zzUnQdgPilLBCadP7pp5/6YN2LL75op59+erRvC0ASWhSiSWzqc2tL2nMAAGJLeAmhpIvCgmwuSa8DEBlZLMbky5fP6tWrl+jYrFmzfGV49+7dk/2ehg0bHvb51q9f73WSqGsIpI3wtOf9+/e3PXv2+GNtta/UbMF1/N0Bx+/QoUNkVQCQakpznpRSHid3XaVKlXilAQAAAABIobZt23pWJQW/16xZY3Xq1LFNmzZZkSJFfLLpqaee6mN7ug5ABg+AJ/XVV195zcJLL73U6tevn6rn2L9/vy1btizN7w3I6ML/rtTAH+k8AEt1G5Y9e3ZePgCpEmRVypo1q61YscKD3JqgplRsCnpXqFDBDhw44NeRUhUAAAAAgJQbPXq0bxXkDs+s9ssvvyTa13X33XcfLy0QQTEdAJ89e7Z16dLFzjnnHBsyZMhhr5szZ85hz2l1uP7zSUhIOEF3CWRc+rvSym8Fv8uWLWs5c+b813kAxydbtmy8hABSLaj5/dBDD3nne+PGjT5BTW20guCaqT5o0KDQdQAAAAAAIGVWrlyZptcByAAB8AkTJli/fv3s8ssvt4EDBx5XAEDpJzTAB+D4/ec//wmlQVdZAqU9FwW/w8sU6Dr+7oDjl7R+EAAcC9UcU3B7wIAB1qdPn3+df+KJJ0LXAQAAAACAlCtatGjo8ZYtW3yl9+LFi61GjRqe9rxQoUL/ug5AZMTkSNekSZOsb9++duONN9qwYcNY/QbEkLfeeiv0WPW+c+fO7Q26tkH976TXAQCA6Fi6dKlvleZ84cKFVrJkSbvgggt8q30dD78OAAAAAACkzCuvvOLbzJkz+8TyefPmeVlfbbWv4+HXAcjAK8BXr17tK0obNWpk7dq1s82bN4fO5ciRw/LmzRvV+wPw/2uaHGlVqs4DAIDoU83vQM2aNUOPt23blmg//DoAAAAAAHB0f/zxh28PHjxoBQoUSJTyPHw/uA5ABl4BPmvWLF+J8sEHH1idOnUSfSklOoDYoCC30pyH0z7BbwAAYsvRSgkdT6khAAAAAAAyqhIlSqTpdQDiOADevn17W758ebJfql0IIHYozfmuXbu8rom2pD0HACC2/Pbbb7Z//35/HKRgkyA1m+i8rgMAAAAAACn39ttvhx4rhpWQkGD58uXzrfaTuw5ABg2AAwAAAEgbVapU8W3x4sU9o9KOHTt84pq22i9WrFii6wAAAAAAQMrce++9ocdnnHGGLVu2zLZv3+5b7Sd3HYDIIAAOAAAAxCkFumXgwIHJnn/ssccSXQcAAAAAAFJGtb7T8joAaYcAOAAAABCn8ubN69uuXbva0qVLLU+ePFajRg3fav/hhx9OdB0AAAAAAEiZ0qVLhx4r5Xnu3LktU6ZMvg1PgR5+HYDIyBKhnwMAAAAgwhTkLlWqlK1fv96qVq0aOn7o0KFE+7oOAAAAAACkTnjK8127diXaBxB5rAAHAAAA4lTJkiX/deyCCy5I0XUAAAAAAODwfv3110T7p556qvXr18+3R7oOwIlHABwAAACIU8mt7F64cGGKrgMAAAAAAIdXpkyZRPtr1661Hj16+PZI1wE48QiAAwAAAHGqWrVqvs2cObOtW7fO8ufP74+11b4eh18HAAAAAACO3ZFqgAOIPALgAAAAQJxSrW/p0qWLpzn/7bfffAW4ttq/++67E10HAAAAAABS5pdffgk9Vs1v1f5W/zppDfDw6wBEBgFwAAAAIE5p5rkMGTIk2fPDhw9PdB0AAAAAAEiZ8uXLp+l1ANIOAXAAAAAgTn377be+PXjwoE2dOtXTsNWoUcO32tfx8OsAAAAAAEDKPPXUU6HHX375ZaIU6NpP7joAkUEAHAAAAIhTVapUCT1u0aJFonPh++HXAQAAAACAo/vPf/4TenzuuecmSoGu/eSuAxAZBMABAAAAAAAAAACAY/D777+n6XUA0g4BcAAAACBOffHFF6HH06dPD9X61lb7yV0HAAAAAACOrkiRIqHHS5YssRw5cvhjbbWf3HUAIiNLhH4OAAAAgAi74IILQo+bNm1qO3futGXLlllCQoLlypUr0XVK0wYAAAAAAFImmGQuVatWDT3eu3dvov3w6wBEBivAAQAAgDh3++23J3u8VatWEb8XAAAAAADiwcaNGxPtZ8+e3fvf2h7pOgAnHgFwAAAAIM698MILyR4fP358xO8FAAAAAIB4ULhw4UT7+/bt8/63tke6DsCJRwAcAAAAiFMLFy4MPe7atavlzp3batSo4VvtJ3cdAAAAAAA4ut27dyfqV5900v8PuWkb3s8Ovw5AZFADHAAAAIhT559/fujxoEGDEp0L3w+/DgAAAAAAHN2ff/4ZenzBBReEHv/zzz+J9sOvAxAZrAAHAAAAAAAAAAAAjkGRIkXS9DoAaYcAOAAAABCnnnnmmdDjPn36JDoXvh9+HQAAAAAAOLoZM2aEHr/55puJzoXvh18HIDIIgAMAAABxqmPHjqHHPXv2tF27dtnixYt9q/3krgMQ/7Zt22a9evWyunXr2jnnnGMtW7b0/xsAxJZMmTJZ7ty5rUaNGr7VPgAAiB2NGjUKPb766qsTnQvfD78OQGQQAAcAAADiXKlSpZI9XrRo0YjfC4Do69Spk3399dc2bNgwmzZtmiUkJFibNm1s1apV0b41AP/ncMFuguAAAMTWxNK0vA5A2iEADgAAAMS5devW2QMPPJBoFZn2N2zYEO1bAxBha9eutfnz59ujjz7q/x+UK1fOM0KccsopNnPmTN4PIAYcLchNEBwAgNigvnXghx9+sDJlyljOnDl9q/3krgMQGQTAAQAAgDj19NNPhx4PGTIk0bnw/fDrAMS3AgUK2PPPP29VqlRJFEzT1/bt26N6bwASB7eLFCmSqHyJ9gMEwQEAiL49e/aEHmfJkiXRufD98OsAREbiv0gAAAAAceOee+5JUX1vXQcgY8iXL5/Vq1cv0bFZs2b5yvDu3bsn+z0NGzY87POtX7/eihUrZrt3707zewUyujVr1oQGzLXVfvgKMv7ugON36NAhJpQASLV9+/aFHlesWDH0+Jdffkm0H34dgMggAA4AAADEKaU5T+l1gwcPPuH3AyD2fPXVV9atWze79NJLrX79+ql6jv3799uyZcvS/N6AjC7870rB7yOdB2CpbsOyZ8/OywcgVXLlymU7d+5M0XUAIosAOAAAABCnkqY5D18NHr6v6wiAAxnP7NmzrUuXLnbOOef8q0xCuDlz5hz2nFaHa/VcQkLCCbpLIOPS31Ww8rts2bJeUzTpeQDHJ1u2bLyEAFLt448/tho1avjjcePGWevWrUPnwvd1HYDIIgAOAAAAxDkNmCvNeZs2bXy1mAbMNQNdgS+tegGQ8UyYMMH69etnl19+uQ0cOPC4AgCqRcyqFiDtKegdrPxWW679cPzdAcdPbRgApFbz5s1Dj8OD30n3dd3q1at5oYEIIgAOAAAAxLmgfmhSBL+BjGnSpEnWt29fa9WqlfXo0YPBfyBG6xFv2rQpUc3vpNcBAIDoUludltcBSDsnpeFzAQAAAIghWuEdOO2003wQXenZtNV+ctcBiG9aedK/f39r1KiRtWvXzjZv3uwDcvrasWNHtG8PQAqC2wS/AQCIDfny5Qs9Hj9+fKJz4fvh1wGIDALgAAAAQJwKr+udNN1a+D71v4GMY9asWXbgwAH74IMPrE6dOom+lBIdQGw4XJCb4DcAALHjjz/+CD1WdqVw4fvh1wGIDFKgAwAAAACQQbRv396/AMQ+Bbt3795ty5Yts4SEBGp+AwAQY5KbmKZMS5pserTrAJxYrAAHAAAA4tRVV10VelyxYsVE58L3w68DAAAAEDnbtm2zXr16Wd26de2cc86xli1b2uLFi0PnFyxYYNdee61Vq1bNLr/8cnv77bd5e4AYljT4DSA6CIADAAAAcWrmzJmhx8uXL7ddu3b5YJq22k/uOgAAAACR06lTJ/v6669t2LBhNm3aNM/40KZNG1u1apWtXLnS2rVrZxdddJFNnz7dWrRoYQ8++KAHxQFEX6ZMmUKPR48enehc+H74dQAigxToAAAAAAAAAABE2Nq1a23+/Pk2adIkO/fcc/1Yz549bd68eT5JdcuWLXbGGWfY/fff7+fKly9vP/zwgwfWatWqxfsFRFl4avO2bdsmOhe+Twp0IPJYAQ4AAFJs1KhR1qpVq0THVJPwpptusrPPPtsaNGhgL7/8Mq8oEIOKFStmuXPntho1avhW+wAAAACip0CBAvb8889blSpVEq0U1df27ds9e1PSQHfNmjXtyy+/JKAGxIDMmTOn6XUA0g4BcAAAkCITJ060J598MtGxP//802699VYrU6aMp2q76667bMiQIf4YQPQ1adIk9HjDhg2JzoXvh18HAAAAIDLy5ctn9erVs2zZsoWOzZo1y1eGK+35H3/88a+Jq6eccort2bPH++MAomvs2LGhxxoTCxe+H34dgMggBToAADgiBckeeeQRW7hwoZUtWzbRuSlTpljWrFmtT58+liVLFk/Hpo66ZrA3a9aMVxaIshkzZqSo1piuAwAAABBdX331lXXr1s0uvfRSq1+/vu3duzdRcFyC/f379x/2eRo2bHjYc+vXr/eg+u7du9PwzoGM6eabbw49fvbZZxOdC9/XdYyTAcdP5QRSMs4lBMABAMARff/99x7kVoBMH95/++230DmlYzv//PM9+B2ejk2p0jdv3myFCxfm1QWiKKVpznWdVpcAAAAAiI7Zs2dbly5d7JxzzvHMapI9e/Z/BbqD/Zw5c6b6Z+k5VM4MQOTwNwccP7VfahtTggA4AAA4ItX11ldyFDCrWLHiv9KxBbPKDxcAZzY6EBnhac6vvPJKe+edd5Ld13WsAAEiOxsdAAAgMGHCBOvXr59dfvnlNnDgwNAq7+LFi9vGjRsTvVDaz5Url+XNm/ewL+CcOXMOe079cX1mSUhI4A0A0tB9992XqHRg0n3+5oDjlzQrypEQAAcAAKmWXDq2YBbevn37Uv28zEYH0p5KFegrXHhAnNnoQGRnowMAAMikSZOsb9++1qpVK+vRo0eiyXQ1atSwL774ItEL9fnnn/sq8ZNOOinVL6B+hoLoANJOeLA7uX3+5oDjdywTzgmAAwCAVMuRI8e/0rEFge8jfbBnNjoQeZptvmfPHluzZo2VLVv2XykTmY0ORHY2OgAAwOrVq61///7WqFEja9eunZcSC+9vKyjetGlTT4mu7SeffGLvvfeejR49mhcPiFEFChSwP//8M9q3AWR4BMABAECqqW5wcunYpGjRoql+XmajA2lDf4dBGvTcuXMf8TpmowPHj/TnAADgWMyaNcsOHDhgH3zwgX+FU8B7wIABNmLECBs8eLC99NJLVqpUKX9cq1YtXmggRhH8BmIDAXAAAJBq5513nr366qt28OBBy5w5cygdW7ly5axQoUK8skCU/fHHHykKyOk6AAAAAJHVvn17/zqSunXr+heA2Hbrrbfa2LFjD7sPILJSXygkQkaNGuWpXgDEHg2oazWZ6hFpy4oXIONp1qyZ7dy50+uUrVixwqZPn27jxo3z1G0AAAAAAABARpA02E3wG4iumA6AT5w40Z588slo3waAZBwu2E0QHMhYtMpbtcdUt0zp2YYPH24PPvigPwYQfSltl2m/AQAAAAAAEC9iMgW66hQ+8sgjtnDhQitbtmy0bwfAMQ6S6/yhQ4d43YA4pPpjSVWtWtUmT54clfsBkHJqm3fv3m3Lli2zhIQEr/lN4BsAAAAAgNTp3r279e/f3x+fe+659uWXX4bOhe/rOgCRFZMrwL///nvLmjWrzZgxw6pVqxbt2wEQJulA+a5du2zx4sW+PdJ1AAAAAAAAAADEiyD4LeHB76T74dcByMArwBs0aOBfKdWwYcPDnlu/fr0VK1bMV7sASFsKeu/Zs8cfa6t91QIP8HcHpM2KTSaUAEgL/F8CAAAAAACAjCAmA+Bpbf/+/Z7qEUDaCv+7WrNmzRHPA0h9G5Y9e3ZePgAAAAAAACBGde3a1QYOHHjYfQCRFRcB8Dlz5hxxdbhWz6nOIYC0pb8rrfxW8Lts2bKWM2fOf50HcHyyZcvGSwjghGeR0HUAAAAAACB1du7cecR9AJEVFwHwo9GgX65cuaJ9G0DcUbrzoPa3gt/h6c+Fvzvg+JGyGEAk/g/RdQTBAQAAAABInWefffaI+wAiK0MEwAGcuJVkSYPe4dcBAAAAAAAAAAAAkXRSRH8agLhwtOA2wW8AAGKP2mdlblm8eLFvaa8BAAAAAEi9Jk2ahB4XLFgw0bnw/fDrAEQGAXAAqXK4QXMG0wEAAAAAAAAA8W7mzJmhx1u3bk10Lnw//DoAkRHzKdAHDBgQ7VsAcBgKdu/evduWLVtmCQkJ1PwGACAO6oEDAAAAAAAA6RkrwAEAAIA4ldLMLGRwAQAAAAAg9fLmzXvEfQCRRQAcAAAAAAAAAAAASKUdO3YccR9AZBEABwAAADJ42nPSowMAAAAAACBeEAAHAAAAMgClOd+1a5ctXrzYt6Q9BwAAAAAAQDzKEu0bAAAAAAAA0TFq1Cj79NNPbfz48bwFQIxJLkMLE9gAAACAoyMADgAAAGQApDkHkNTEiRPtySeftBo1avDiAOmk3dZxguAAAADAkREABwAAAAAgA9mwYYM98sgjtnDhQitbtmy0bwfAMU5aIwgOAAAAHBk1wAEAAIA4ldIVYqwkAzKW77//3rJmzWozZsywatWqRft2ABwh+L1r1y5bvHixb490HQAAAID/YQU4AAAAEKdSOjjOSjIgY2nQoIF/pVTDhg0Pe279+vVWrFgx2717dxrdHYCAgt579uzxx9pqP3fu3KHz/N0Bx08TQZlQAgBA/CEADgAAAAAAUm3//v22bNkyXkEgjYX/Xa1Zs+aI5wGkvg3Lnj07Lx8AAHGGADgAAACQQVa3aKWYBssTEhIsV65crHYBkCJz5sw54upw/f+i/1cApC39XWnlt4LfZcuWtZw5c/7rPIDjky1bNl5CAADiEAFwAAAAAACQakodq0k1ANKW0p0Htb8V/A5Pfy783QHHj/TnAADEJwLgAAAAQAbA4B4AAOmvHnHSoHf4dQAAAACSd9JhjgMAAABI51I6OM4gOgAAseNo7TLtNgAAAHBkBMABAAAAAACAGHK4IDfBbwAAAODoSIEOAAAAZPC057qOAXUgYxowYEC0bwHAYaht3r17ty1btswSEhKo+Q0AAACkECvAAQAAgAwyiL5r1y5bvHixbwl4AwAAAAAAIB4RAAcAAAAAAAAAAAAAxAVSoAMAAAAZQErToQMAAAAAAADpGSvAAQAAAAAAAAAAAABxgQA4AAAAEKdSWuebeuAAAAAAAACIFwTAAQAAgAye9pz06AAAAAAAAIgXBMABAAAAAAAAAAAAAHGBADgAAACQASjN+a5du2zx4sW+Je05AAAAAAAA4hEBcAAAAAAAAAAAAABAXMgS7RsAAAAAcOJR5xsAAAAAAAAZASvAAQAAgDiV0jTnpEMHAAAAAABAvCAADgAAAAAAAAAAAACICwTAAQAAgAye9pz06AAAAAAAAIgXBMABAACADEBpznft2mWLFy/2LWnPAQAAAAAAEI8IgAMAAAAAAAAAAAAA4gIBcAAAAAAAAAAAAABAXCAADgAAAGQASet8U/cbAAAAAAAA8ShLtG8AAAAAwImhOt/hge7cuXMf9joAAAAAAAAgHrACHAAAAIhjRwtuE/wGAAAAAABAPGEFOAAAAJCOrF271rZv335M37NkyRKrWrVqsseXLl16zPeQL18+O/XUU4/5+wAAAAAAAIATjQA4AAAAkE5s3brV6tSpY//8888xf2+JEiX+dezyyy9P1X1kzpzZvvnmGytYsGCqvh8AAAAAAAA4UQiAAwAAAOmEAs6ffvrpMa8AD6xYscKGDx9ud999t1WoUCHV96EV4AS/AQAAAAAAEIsIgAMAAADpyPGkHs+UKZPlypXLTj/9dKtcuXKa3hcAAAAAABnZrl27bNmyZZaQkGC5c+eO9u0AGRoBcAAAAAAAAAAAAOA4EPQGYsdJ0b4BAAAAAAAAAAAAAADSAgFwAAAAAAAAAAAAAEBcIAU6AAAAEEG///677d69Oyqv+W+//Rba5siRw6JFdchLlCgRtZ8PAAAAAEBy1q5da9u3b0/Ri7NkyRKrWrVqiq5bunRpil/wfPny2amnnsobBBwHAuAAAABABIPf7dq1i/rrPXz48Gjfgo0aNYogOAAAAAAgZmzdutXq1Klj//zzT4q/R5O71dc/0vnLL7/8mO4jc+bM9s0331jBggWP6fsAxHgAXP+5aFDutddesx07dth5551nvXr1stKlS0f71gAAQDJou4GUCVZ+d+7c2UqVKhXxl23v3r22bNkyS0hIiNoK8HXr1tnQoUOjtgoeAO02AADpDX1uIDIUcP70009TvAI8XHIrwbXyOzW0ApzgNxCHAfARI0bYpEmTbMCAAVasWDEbPHiwtW3b1mbOnGnZsmWL9u0BAIAkaLuBY6Pgd4UKFSL+sinovG/fPjvttNM8DTmAjIl2GwCA9IW2G4hs2bGcOXMe8/f8/PPPtnLlSl/ceffdd1v58uVT/fMPHDhgK1asSPX3U3YMiMEA+P79+23MmDHWpUsXq1+/vh974okn7KKLLrL333/faYsUPQABAABJREFUGjduHO1bBAAAYWi7AQBIP2i3AQBIX2i7gZSj7Nj/UHYMGV3MBcB//PFH27Vrl9WqVStRuodKlSrZokWLCIADABBjaLsBAEg/aLcBAEhfaLuBlKPsGGXHgJgNgP/xxx++LV68eKLjp5xySuhcUg0bNjzs861fv97TqFNjEPHsm2++sc2bN6f6+9euXWs7d+5M1ff+/ffftmfPHk8LkyVL6v5LyZMnj5166ql2PAoXLmxnn332cT0HEIsOHTpkmTJlslhG2w0cWw1utZk//PCD/fXXX6l66dTmp/azrdrtP//801atWpXqdjtIp6a2NzU2btzor4FeCz6jI97QbgPx53j72/HQ56a/jXhG2w3EZ59bNbyj2edetmxZ1PrcwecG+tzI6O12zAXA9ccpSWt9Z8+ePdX/YSlNjP7DAeLRpk2bbMGCBXbOOeek+jnKlCljsfAf1/GYNWuWf7ApUqRImt0TEAvUhqkNjGW03UDKrVu3zhISErzd0+PUOumkk1L1ffqMXbRoUTte6kgfz/3rNVBqOtUjB+IJ7TYQX9Kivx0PfW7624hntN1AfKHP/f/R50a8OpZ2O+YC4Dly5Aj9EsFj0eCYZq0kZ86cOYd9Pq0O14d8/cED8Uj/tlUmIKOvAL/ssstYAY64lHRCWCyi7QaOrd0uXbr0cQ1Cp8Vs9AIFCkRtNrqcccYZMREMANIa7TYQX9Kivx0PfW7624hntN1AfKHP/f/R50a8OpZ2O+YC4EHqc6VGDB8U077+aFNDy+E1SAfEqwsvvDBqP1sD8MqwoA8X/J0BaS/W058LbTdwbI53FdnxoN0GTizabSD+RLO/LbTdwIlF2w3EH/rcQPw6lnY7dbkTT6AzzzzTZ6YuXLgwdExpjVUn8bzzzovqvQEAgH+j7QYAIP2g3QYAIH2h7QYA4NhlicXl6zfddJMNGTLEChYsaCVLlrTBgwdbsWLF7NJLL4327QEAgCRouwEASD9otwEASF9ouwEAiIMAuHTs2NFrHD388MO2d+9eX/n94osvWtasWaN9awAAIBm03QAApB+02wAApC+03QAAxEEAPHPmzPbAAw/4FwAAiH203QAApB+02wAApC+03QAAHJuYqwEOAAAAAAAAAAAAAEBqEAAHAAAAAAAAAAAAAMQFAuAAAAAAAAAAAAAAgLhAABwAAAAAAAAAAAAAEBcIgAMAAAAAAAAAAAAA4gIBcAAAAAAAAAAAAABAXMhicW7jxo128OBBa9iwYbRvBYhLhw4dsv3791u2bNksU6ZM0b4dIO6sX7/eMmfObBkJbTdw4tBuAycW7TaAtEbbDZxYtN0A0hLtNhA77XbcrwDPnj27ZckS93F+IGr++OMP27p1K8Fv4ARRG6a2LCOh7QZOHNpt4MSi3QaQ1mi7gROLthtAWqLdBmKn3c50SFNSACCVguwKc+bM4TUEACDG0W4DAJC+0HYDAJB+0G4DsSPuV4ADAAAAAAAAAAAAADIGAuAAAAAAAAAAAAAAgLhAABwAAAAAAAAAAAAAEBcIgAMAAAAAAAAAAAAA4gIBcAAAAAAAAAAAAABAXCAADgAAAAAAAAAAAACIC5kOHTp0KNo3AQAAAAAAAAAAAADA8WIFOAAAAAAAAAAAAAAgLhAABwAAAAAAAAAAAADEBQLgAAAAAAAAAAAAAIC4QAAcAAAAAAAAAAAAABAXCIADAAAAAAAAAAAAAOICAXAAAAAAAAAAAAAAQFwgAA4gQ/nnn3+ifQsAAOA4rF+/3nbs2MFrCABAOrNhw4bQ40OHDkX1XgAAABDfCIADyFBOOun//7c3ZcoUW7t2bbRvBwAAHIO9e/famDFj7J133vH9H374gcltAACkA7t27bKZM2d62y1///13tG8JAAAcBhPVEA+yRPsGACBSK7+D4PfLL79sQ4YMsRdffNFOPfVU3gAAANKJHDlyWNasWe2RRx6xt956yzJnzmzDhw+3PHnyRPvWAADAEWzevNknsf3888/eN8+VK5f17NnTB9gzZcrEawcAQIwIb5s3bdpkRYoUifYtAanCCnAAGUIQ/J4+fbqtWLHCBg4caOedd160bwsAAKTQwYMHffvggw9apUqVbNGiRVatWjWC3wAApIMJ6Zp8PmzYMPvwww/tzTfftHPPPdfPEfwGACC22uygbf744499stpPP/0U7dsCUoUAOIAMNXtNq8SU/vzTTz+1AwcOhI4DAIDYpbZaq71l6tSpnka1adOmNnr0aHvllVds//790b5FAABwmDY8mJC+cuVKX/mdP39+H1RfsmQJrxkAADGYQXXOnDn26quv2sKFC23UqFGewQVIb0iBDiBuJU2lpscffPCB3Xzzzd6IN2jQwOrVq2dZsvBfIQAA6aE9V/mS1157zQYPHmxVq1a1AgUK2GOPPebnr732WsuWLVu0bxcAACQzkK62e/HixT6YvmrVKuvWrZvXAb/11lutSpUqvGYAAERZ0GYrc+p7771ntWrVsgsuuMCzr8ntt99uZ555ZpTvEkg5oj4A4r6j/csvv3ja1J07d3rHWjXAW7RoYf379/daojVr1vRVZdQeAwAg9gTB71mzZtmCBQvs3nvv9eB3kA5d5xUEl0svvdS+++47q1OnTuhzAAAAiI6gLdZK77Vr11qvXr2sWLFiVrx4cX/cp08fb8fbtGnj5U327dtn2bNn5+0CACBKNFlNfe+nnnoq1O+eMWOGTZs2zZ5//nm76667rHz58rw/SBcIgAOI6xRrSnk+d+5c27Bhg6dHvfjii61Hjx6+eqxZs2b26KOPWu/eve38889nJTgAADFq+fLlNmHCBPv666+9/RatGlMWlwceeMD31aar3a9cubJddNFFUb5jAAAgH330kXXo0MFKlSplOXPmDE1su+SSS3yrIPjWrVu9z66VZqo1CgAAokOT0TS2rmxrwWKxq666ykuJqs2W9u3bW8WKFXmLEPNYFgEg7gQdag2Cjx8/3jp27OgB78svv9ymT5/uM8+14lsz1/LkyeMz13744Ydo3zYAAPg/6miHq1Chgv33v/+1kiVL2rBhw2zz5s0e/FYQXBQE13Fdo/ZfnwWSPgcAAIicoB3Wyu7rrrvOfv/9d1u6dGkoY1sQBNdgugbZzzjjDHvooYd4iwAAiJCgPQ6nDKo7duzwvrb61VpQJio5VrhwYc+49tJLL3m7DsS6TIcYGQIQh9RYK0WqOtqXXXaZzZ4922uMde/e3UqUKOFp0ZUGXY25ZpgrdaqC4gAAIHbKmKjjvX37dg98yyeffGKDBg3yCWwjRoywQoUK+Uz0rFmzJnqOYHU4AACIThseXmJsz5499vDDD3u//JlnnrG6desmunb37t2WK1cu2nAAAKLQZq9fv9770KVLl/b95s2bez/7lVdeCbXPytSitvy0007z9lwZVhs0aMD7hZhGABxAXNq0aZM1btzYnnvuOe9sa5W3VofdcMMNNnr0aF8RrlrgRYsWDX2P6oQTBAcAIHrCB8tHjhxpn332mc8wT0hIsHr16lm7du08CK7V3kqjqiB4wYIFacMBAIihgXT1t7XaWxlbypUr55PTg8nnc+bM8SC4ypWEt/uSdB8AAJxYqvX99ttv265du7xt7t+/v3377beelUXtssbUNV7++uuv+2pwZVvVgrMzzzwzlBIdiFWkQAcQl+latDLs7LPPtjFjxtg999zjq78V/BY11vnz508U/BaC3wAAxE4ZE01Uu+KKK+yRRx6xYsWK2auvvuqdcQXCVd5EM9JbtmzpK8RpwwEAiK4g+D148GAbOnSoP1bQ+80337RmzZrZ3r177fHHH/fVYvfdd58HwpMGuwl+AwBwYmkBWGDcuHE2adIku+WWW7yc2IcffmidO3f24PYLL7zgpciefvppe/bZZz3rmo6JSpecfvrpvFWIeeQFBBA3s8xXrlxpf/31l6c410B5/fr1rXfv3p4C/corr/RrtBr8q6++8nQtAAAg9vz666/e8Vaqc81AF6VKVQB86tSpPsFN7bra/MWLF1vu3LmjfcsAAMDMPv/8c/vggw88E5vaa/n666995beyuGhluFaLderUySe6NWzYkNcNAIAIUM1ujZkHk8cXLVrkJURVFrRRo0Y+xl6tWjXr0qWLde3a1VeGK+OasqzqnBabaaKasrgsWbLEF5sBsY4AOIB0LQh+DxkyxGbNmuUp1rS6u0aNGt6x1qowdb7bt29vhQsXtj/++MNTuiitqpBiDQCA2KIVYmqv8+XLF5qhrjTnrVq1svfee88WLFjgAfCmTZvatddeG7qGVeAAAER/cF0lSrRiLFClShUvR6aBcrXjl19+uU9yC9p5AABwYqkdVvD7/vvv930FsO+++24fI3/iiSdCY+x16tTxTC4PPvigZ1TVuSJFivj1t99+u/e5NRH9xRdftLJly/K2IeaRAh1Auk97PmPGDHvjjTd8VrlWhikd6ooVKzzofdttt1m/fv18xbcacq0kU80SpW1ROjZSrAEAED2aiBa+DWgC2+rVq0P7arPz5s3rA+oqZSLhbTjBbwAAot8/37Ztmw+mK/Na0L5nyZLFKlWq5JPV1L6LJq2rf55cOTMAAJC2VEZMtbxlx44dnuJcmVly5MjhE8wDwdi5FprNnj3bS5NJ1apVvbSoVodPnDjR23UgPWAFOIB0vfL77bff9tTnWgWm9KhSvnx5n9Wm+iSqZaIZakEK9IA63+qIAwCA6Jcx2bhxowexs2XL5rXEmjdv7qnYtPI7aN8V+NbKMnXeAQBAbLThQf9a+2qzVf97zJgxPkgePkGtTJkyVrRo0UTPE/4cAAAgbQWZTxs3buz7Kis2d+5cz8rSunVrb88V7Fb2Fq0SD9rm2rVr2+TJk+2ss84KPZdqhAPpDdEfAOmyo60Oth737dvXZ5knDXCrYZ8zZ45/KQCeFCvFAACIrmDQ++mnn/Z6oWrPs2fP7unWlB5V+5qlrtTnOv7NN9/4qrLk2nUAABC5wfSgDR8/frx9//33PildfXDVEO3fv789/PDDXldU+8rgosnp+j6lVgUAAJGRNPOpMrGsWrXK22X1tdu0aePHFQRX2965c2ff12PVAw+ysbGIDOlVpkNJ8w0CQDqgDrZWeiu1mgbGtXJsxIgRnoIl6Ixr1vlnn31mo0aNIuANAECMzUIXlTBRqZLevXt7x/qLL77wY1o1plnnCoxPnz7dSpUqZSVLlrRHH33Uy5hQ8xsAgOiu/NZK79dee80uu+wyH1BX3/vcc8/1kmT79u2zRx55xA4cOGCnnHKKFS5c2F544QXacAAAotBmh3vllVd8AlvlypW9zrf62qrprXrfLVq08D43EC8IgANId1SDpFOnTjZgwABf+b17925PgZ4vXz7r0aOH1weVDh06eJo1DawDAIDYa88/+eQTO+200+zWW28NHdeKcE1eU8dctca0gixPnjyh88xABwAgutavX28jR460K664wmrVquXHlH3tqaee8lImCo7/8ccfns1FE9fKlSvng/C04QAARDb4/d5779mmTZts69atPn6usXJNMtfEtCpVqoSC4OqHf/755zZp0qR/rRwH0isC4ADSHaVAHTt2rC1dujSUJjUIgmsleOnSpa148eLesE+cONHriYavNgMAANH1448/+sqwJUuWWNeuXb3+mFaJaZBclN1FdUIHDhzonffgOO05AADRNWvWLLv33nvt5JNPtuHDh9t5550XOqdBdmVxeemll3w1eEpWogEAgLQT3mfW4rE333zTTj31VE99ronlytSismJTp061cePGeZ1vLSIrW7Zs6HvpdyNe8MkTQExLrkrD2WefbXfccYdvVV9MnexcuXJ5ylSlRf/pp5+sXr16oeD3/v37CX4DABBFGvQOp/b6xhtv9BVhM2bMsB07dniQWyvD1PYXKFDAcubM6SVMguC3MJkNAIDo9MmDrWqCavL5X3/95V+iPrcoHbpSnq9evfpfz0PwGwCAEy/oM2/YsMFLjD3//POe8lyPL7jgAps2bZqXMGnevLn997//tblz59rbb78d+l6C34gnBMABpItGW8HsefPmhY5rdtptt93ms8qV4lxpVDVQrgZds9q01aoydcQVBAcAANERvuJLK78XLVpkW7ZssSZNmtidd97pAW6VMFGbnSVLFr/+zz//tEKFCh12MhwAADjx1CYHffJdu3Z5WZJixYrZAw884OnPH3roIfv5559DfW613zly5Ai14QAAIPJU07t9+/Y+Vl6yZEnvZ0vfvn19MvrLL7/s+zfddJPX/Na1ASadI56QAh1AuqgvplTna9eutcGDB/tstUCQOlUrx3TNVVddZXv27LHrrrvOU6CrBlmNGjWiev8AAGRU4bPHhw0bZu+//76tW7fOB8zV2daK73fffddnpav9PvPMMz1Yvnz5cp+FHnTUAQBA9CawqZ3+8MMPva1WivOLLrrI64mqnIlWlLVr186zsn388ce2efNmX1lGGw4AQHTab/W7lTX14MGD3q/Onz+/7du3z7Jnz24rVqywa665xhebKatLQNcqAxsQT1gBDiDm06Sqnrc62VWrVrVu3brZggULQud07PTTT/dUqVoFrtVjmt02ZcoUn+Gm9GsAACA6guD3s88+a5MnT7bevXt7DbLLL7/c06YqLZtWgt93332+Ymzx4sV28cUXe31RDZyrEw4AACIvCH4PHTrUa4T+5z//8fIl1atX9+NFihSxQYMGWd26df0alSZTPXC197ThAABEZxxd7bf621rZvXfvXhs4cKAfV/BbtIhM9b7Vjocj+I14xJIKADE7y3zhwoX2+++/e0rzc845x1Oejx492tOkaiW40p9r9poa6HvuuccaNWrkA+3hQXAAABBdSnf+1Vdf+SC5srhoxvmrr75q06dP9zZfKVQ7d+5su3fv9hImqkl25ZVXhjroAAAgOlS6RKu6n376ac+s9uuvv9oHH3zgk9ny5s3r5cg0uU0p0DV57e677/bHBw4c8BInAAAgMuPoWhi2Zs0an4SmcfQGDRp48FtlS5SZTfW+dW7kyJG+kEwlTYB4Rwp0ADGZJlUBbs0gV42xG264we69995QyvNnnnnGV4hpwFz1xrQ6TCnWFAgPf47wxwAAIPLtuWjWuTrbCQkJvjJs+PDhVrRoUatSpYpfO3fuXHvllVd8IF3p0LXKTG37hAkT/BgAAIiORYsWedmSsWPH2k8//WQvvPCC99FLly5ty5Yt89SpCo4ro4tSrX7++ec2ZMgQT5EOAAAi0+9WoPuNN96wEiVKeDutcqLKotqyZUsPjGsxmTKwaWW4ypCpPJkmrIUH0IF4xApwADEjaLTVuX799dc9XepZZ51l27dv95XgarwrV65sffv2tZdeesmWLl1q5cuX930Fv5PWKiH4DQBAZCXXgVZq86uvvtpXfav+2K233mqXXnqpt/Hz5s2zr7/+2ttwrRRTelVlctHnALX/BMABAIheG64At9popT5Xze8WLVrYJZdcYvXq1bPHH3/ctm3b5tdpYlvPnj2ta9euvtVkdrX/AADgxAjGvb/44gvPojpixAhvt3/77TdfKKYMLblz57arrrrKx8sfeeQRz6SqiWvqe5OtBRkBK8ABxBStEuvevbvVrFnTrrvuOvvuu+9sxowZPmCumW1nnHGGrwDPkyePXxt0qjV7TWlcAABA9GegT5w40dOeFy9e3DO2KNitGedqrwsVKuTXKNCtVKnqjKuzHnyvBtr37NnjbT0AAIhs8Pujjz7ysiRqhxXo1upuHVPmFrXngVatWnl2F60wC9rwzZs3ezuugDgAADixNGauFd5qf7WgLCgjpr73k08+6YHxl19+2fLnz2+ffPKJPfjgg9awYUN77LHHfAU4EO+IFgGIKQpoawBdaU///PNPT4N65plnWuvWrX3W2nPPPed1x9TRDoLfup7gNwAAsRH8Hjp0qKc0r169un3zzTeeDvWuu+6yiy++2Ntw1RxTCRMNtqtjrprf+l7ta6uAOMFvAAAi14YHwW+t6p46darlzJnTV3e3b9/eJ6uplMnKlStDZUw0QV3nNZAetOF6jsKFC/O2AQAQIar5rYnnWs2tTC2lSpXy4yeffLLVrl3bZs6c6X1utc/qj6vk6J133unBbwXBgXhHABxAzGncuLEPnI8fP97TpF522WV26qmn+qC50qcmTW1OqnMAAKIraIsV8F6yZIm9+OKLnn5NM85Hjx7tZU2UZu3CCy+0cuXK2Y4dO3zbtm1bn8RGJhcAAKI7gU31vrXSW/1wmTt3rq8eU3C7Y8eOnjZVq8w0Eb1kyZJeD1xteNJSZAAAIDKlStQ+FytWzBeMaaX3Lbfc4m20aKuAeNBG63uV2WXUqFFWunRp3iJkCATAAcScBg0aeDoWpUZVI61U57t27fJa30rZUrFixWjfIgAASCb92pw5c3wgXdlb5IILLvCOugLiTzzxhA+Uq46ovgIaOCeTCwAAkRcEv9955x1vw+vWrWuVKlXyYypjIgqCaxJbhw4dbMqUKR4Iz5s3r59jAhsAAJENfs+bN8+2bNniac+1aEwlRNUeq+63Sphcc801nsll2LBhnk21TJkyoefROLuC4EBGQQAcQMwJrx+m2eezZs2yU045xTva6nCrwU9u1hsAAIierVu3+urvnTt3eprUYAC9Vq1avlVNsu7du9ugQYOsRo0aoe9j1RgAANGzceNG+/jjj/1LAfBAgQIF7Prrr/f++VNPPeUpz1XvO6gZSikyAAAiIxgDV19aac21QGzdunU2adIka9WqlWdQFa0EV4kxTUTXyvA+ffowjo4MjQA4gJiloHfNmjW9bolqlTRt2tQHyZllDgBAdIVPRAva5datW/tg+YgRIzzluWqGJiQkhILgyuyieuCqDQ4AAKIj6WRy9btvu+02P/bGG2/YRRddZNdee62fU7uulWWa3LZ48WIPeouC4pQiAwAgcqZOneoZWxTk1qpuTUjTBPPJkyf72PkNN9zg7fRLL73kbXu7du38GvXDg8lrQEaT6VDw6RUAYrQWWTjqiwEAEDsD5+qEL1++3CeoPfTQQ35MqddUf6xChQre6Q7SoYejPQcAIPLC2/AFCxbYhg0b7LzzzvM6ob/88otPYJs/f7516dLFU6gGFABXGlX10Q/XVwcAACfO448/bnv27PFV3UFQW9lSNfH8jz/+8JXhMnr0aHvzzTetWrVqvjK8fPnyvC3IsFgBDiAiwjvJ6jznyZPniNcH1yYdIKejDQBAdNvzYOB84MCBXppEq7yXLVvmgfDhw4dbixYt/LzKmLzwwgu+MrxKlSqJnoe05wAARK8NHzJkiE9i08C5BtAfffRRu+KKK6x9+/be5x46dKhvr776ar8+6L8T/AYAIPKT19T+fvvtt54hVYKV3dmzZ7eOHTt6H1zlyKpWrWpt27b1DG0vvviiX6fyJVmzZuVtQ4ZEAV0AEfXkk0/6yrCUUOMeDJArxcvatWup+w0AQBQFE9HGjRtnM2bMsAkTJvhXhw4dfCWZZp9rVro64DfffLMf+/DDD3nPAACIkTZck9VUH1QT2RYtWmQlSpTwld/vvfeelStXzrO3KA16165dbd68eck+BwAAODG0GCycJq9pfLxRo0b2/fff25w5c/x4kNb8r7/+sooVK1rx4sU9WC6ahK5JbVoBTvAbGRkBcAAnjAbBVYckCGZrZtonn3wSmq12pAoM4TPL9RwPPvigrVu3jncLAIAoCDrSga+//tqD3lr9rZnob731lrf7mqymrbK9NG/e3AfXtQ8AAKIj6Hdr+/vvv/vEtMcee8zq1avnGVw2b97s53v27GmzZs0KBcG1ouzCCy/kbQMAIAK2bt3q22AxmDK1qL1+/vnnvUzJ5ZdfbsWKFfPJ6GqvRaVMNCG9aNGiVqhQIQ+WBwH0G2+80UqXLs17hwyNADiAE+LPP/+0nDlz2iOPPOIrxIIGWLPSFAgXBbiTDqgnDX6/+uqrNmjQIBs2bJjVrl2bdwsAgCimTP3yyy/twIEDtmrVKm/rt23b5hPVGjZsaHfccYdde+21XjtUdUN1rVaQqQOfdBY7AAA48dTfDvrWar/19dtvv1nZsmXt119/9fSoar81kU2D58rYpslrBQsWtDvvvJM2HACACOjXr5/17t3b1q9f7/tqi/WltOYqLdarVy9v0zXOrv71Qw895H3tNm3a2MaNG23EiBHeZ9c1lBsD/oca4ABOiAIFCljnzp3t5JNP9tXbaoA1GK6Zart27QrVAQ8G1APhNb8V/B48eLD179/fLr30Ut4pAAAiTO130FY/9dRTXpJEnWutElM7vnTpUg+EK/CtFGya/KYaomr/zz777NDz0AkHACB6bbgG1nfs2GF9+vTxFKo6pxSqqh1avXp1n+ymlWPK5LJ9+3bLnTs3bTgAABGSI0cOn2Q+cuRIXwD23Xff+Urvs846y0uUvPzyy9a9e3dvz9UfVxa25cuXW5kyZTyji/rbf//9t9f+BvA//EUAOGEdbQW7NRNNQW3NTNPMcw2WP/HEEzZz5kyfVa7UqWqodU2NGjWSDX5fdtllvEsAAERBMHA+e/ZsHxRXh7t8+fLe0VYtsS5duvjENrXh8tlnn1mtWrWsbdu2/5rYBgAAIt+GK825an2rT67JatoqwK2B9KuvvtoqV65se/futVy5ctmjjz7q/fMgW1vSCesAACDtBFlQtYgsb9689u6773oJULXTGjMXpT7XdQqC9+jRw7p27ep9bn0F1O8m+A38G59kAaSppJ3kU045xRvxG264wbp162bz5s2zpk2b2pVXXmn79u3zAfWWLVvaM888E6pNpuC3Up4T/AYAIPI0k1xpUQPff/+9rxj7+OOPQ8eCtv60007zNOiPP/643XrrrV63rHXr1qHrCH4DABA5a9asCdX0DvrWrVq18swsWuktmpSugXKtCFcbv3LlSrv77rs9harSqRL8BgAgMsLLg6okiTKg/vDDD/bjjz8mas+VZe2WW27xxwqAq+0OR78bSB4BcAAnJPitNC2dOnXytOdqtG+++Wa77bbbvGFXvTENkqve2PTp023KlCk2ZswYP7dw4UKfdd63b19WfgMAEAVaxX3TTTf5wLgmqikVqjK6yIwZMxJ1sDVQriC4Oun58uXzNl0zz6n5DQBAZO3fv9+mTp3q9bxFwe0LLrjAihcvbt98842XLQmo733dddfZhx9+aO3atfNsLgqWq31n5TcAACdeEPgOandLhw4dvF1We6wSZFoNHtBK8GbNmtn555/vY+sAji7ToWDJJQCkUtL0pkpxro63OtRKpaZ6JY0bN7Y//vjDg97jx4+3AQMGeHA8ORpEr1SpEu8HAABR8Msvv/is8p9//tnbeGVvUYdck9YGDRrkk9qUPjWwZ88eT4euzwIaUKf2GAAA0aGMLC+99JKXJlFAfOLEifbbb795aZL8+fN7O66Ja6Kg919//eUrzJQGXQPwtOEAAJx44ZPN1M/WWLjabWVek+eee84ntCl7i4LiJUqU+NdzUG4MODpqgAM4buHBb9UXmzVrls9SC+qBBrZs2eIz1dTIa+C8UKFCvnIsacNN8BsAgOhRfW9NXvv666+tcOHCPkBetGhRL2EiGjxXoFtBclHwO6g3prm11B4DACA6VHZs7ty59tVXX3mqVLXLWiX2wgsveDYX1f1WkLxcuXJeX1RfwaC6+um04QAAnHhB8HvgwIEeANf4uEqU/Pnnn1agQAFr3769ZcuWzReYjRo1yieylS5dOtFzkPYcODpSoANINdUmefjhhxMd02y1nTt3Ws6cOUPHDhw44ClblE5VaVTvuusuHzSvVatWou+l4QYAIPo0IU0pU9XR1qD5f//7X1u1apXXD1X2lgcffNCzuWgQXcIHyxUYBwAAkad+t/rjaq9VK1RlybQCXKu8FfBWNrZNmzZZjx49bMWKFYcdjAcAACeeVnhrEdmECRNsyJAh1qVLF/v111/t2Weftfnz53sp0RYtWvg17733Hm8JkAqsAAeQappBfvbZZyc6puC3gtz6EqVQ08qwUqVKWcmSJb0euGqVqAZ4cJ5Z5gAAxA5NSGvUqJE/1ixzBbrV5o8dO9YD4srmsm/fPvv000+pEwoAQAy13wpiq5a3FClSxLO2iLK4BEHw5s2be3D8sccei/IdAwCQcW3bts0qVqxop59+ui1atMhefvllz8KmDGxaBa6MLRo/VwmTq666Ktq3C6RLTO8EcMxUU0yBbK0Oy549u40ZMyaUFrV27dpWp04d69Spk61ZsyYU3FZgXIFwNeDhCH4DABC7VCd0wIABVqxYMe98f/755zZlyhQ755xzvIOugXalTAUAANEVrODWJHNR2bHWrVv7qrLXX3/da4H//vvv9vbbb1vv3r2jfLcAAGRMKk8SjIn//PPP1qpVKy9bonZcpUwUDFdWNtUFF425a5KbjgE4NpkOBX9xAJACqiV2ww032NVXX+2d6YSEBHvnnXfskUce8Xqhmkm+fv16D4AvX77cOnbs6A266pBt3rzZXnvtNVKdAwCQzqxdu9bLnuhzgGaoT5s2zdtzdSVIew4AQGzRIHlQYkz1RZXFpXDhwp7JRWVM1HaHXwMAACJL2VMnTZrkE9S0oOzCCy+0fPnyefusoPh1113nJcjocwOpRwAcwDFTwFudaKUyb9++vZUvX94+/PBDn6WmILhWhO/Zs8ev0ay1vHnzWvHixT39mlaB09EGACB91hb95ptvfPW3Bsy18pt6oQAAxKbwfrf68Bs2bPABdU1QZzAdAIDoSdqX/vPPP+2nn36yk08+2YYNG2YbN24MTToHkHoEwAGkqgP91ltveUpUpUG/8847PQg+e/Zs69Gjh68K10pwUYOtxjtbtmw+y5ya3wAApH+05wAAxL7kJqvRhgMAEFsTzUeOHGlvvPGGLxxT+bHRo0eziAxIAwTAAaS64/zRRx9Zz549/xUE17GKFSt6rfBwzDIHACC6grY4vE1OyUru8Ov379/vE9sAAEDkhLfFO3futDx58qTo+5JmYCODCwAAsUXtukqJ5syZ084880zvnzNhDTh+BMABHFV4B/ndd9+1FStWeNq0W2+91ebPn+/1v2vWrGkdOnTwIPicOXPsrrvusptuusnrhQIAgNhqz5ViTYPhuXPnPmpatfABd81K1+eA++67zz8LAACAyAja4yeffNKzrKk/ntLvCdKgq2TZqaeeGoG7BQAAKUG2FuDEOfJSDwDQfxT/N1iuGt5Ke/7ll1/aDz/8YAsXLrSGDRta165d7fPPP7cRI0bYypUr/diECRO8JjgAAIit9vzZZ5+1Nm3a2DXXXGMtWrSwBQsW2J49e446cP7qq6/6pLcaNWoQ/AYAIALuvvtumzx5cqhNVhaWTz75xAoXLhw6djjhbbie48EHH7R169bxvgEAcIIE7XJ4+6wA99H66eHXq61nsjmQNgiAA0iRjz/+2GbOnGnPPPOM1/fu16+f1atXz89deeWV9sQTT9iiRYts4MCB9ttvv/nguFaUKd0aAACInvDOtILYY8eOtZYtW1rbtm3tlFNOsfbt29tbb731r2uTBr+HDBnik+Hq168fhd8CAICMRdlalApVk89mzJjhA+TqX//1118+OC5qp5MbWE/ahqv9HjZsmNWuXTvivwcAABmB2uOg7d22bZtt377d2+1jKTemjGtPP/20pz8HcPwIgANIkV9//dXKlCljVatW9f18+fL5VqvBr776aqtSpYp16tTJg97FixcPfd/R0qoCAIATK+hMa8WYMrg88MADvvL7hhtusOeee86uuuoq69+/v7f1wbVJB84HDx7sk98uu+wy3i4AACKgQIEC1rlzZy8tptXbGhRXQLxYsWK2a9curxcqSQfWNdietA1XO3/ppZfyvgEAcIKQcQ2IPRTuA5Ai6kQrvfnGjRt9tVhQn+TAgQN+bPXq1Z5KVV+Hq18CAACiY+nSpV4zdPny5Xb22Wf7Ma0ey5Ytm/Xt29eWLFliL730kj388MPe5gcT2JQyNRg4J/gNAEBkBP1pBbtVtkRt80MPPeSB7Tx58ngGNmVoK1iwoCUkJHh2Nl0TZGJLGvymDQcA4MRIOnlcGddULlRj5nPnzvWMa+pnaxJ6+LVkXANOPKJTAFKkcuXKlj9/fnv55Zdtw4YNoeC2VoWXLFkylJolSJ1K8BsAgOhJmg61bNmy1rx5cytSpIi9/fbbfkzBb7Xf+ipUqFCozlgwcK6AuAbOH3/8cQbOAQCIkKSTyTUBXSvBlbmlW7duNm/ePGvatKmXItu3b5/Nnj3bS5uoXFnQH9cAvFKeE/wGAODEIuMaELtYAQ4gRTSTvFGjRjZr1iyvYaJ0qZp5PnToUMuVK5edddZZiRp9AAAQ/YHzb775xnLkyGHly5e3//73v5Y1a1YbP3689ezZ01d+K+it6/fs2eOpVsPrjmq2+qOPPkrKVAAAotCGjxs3zjO0/Pzzz14H/Oabb/a+95gxY3xim/b1pZXfP/74o/fJ1R9fuHCht99PPfUUE9gAAIgAMq4BsSnToWB6KACkoBOuWqGaca7a30q1phpkWiGmAXXSngMAEDuGDBlir7/+uk9cu/zyy+2OO+6w0047zaZMmeKD6rlz57YzzjjDduzYYT/99JO98847oVXg6iKotmjevHmj/WsAABD3wsuPiFKcT5061a677jrbu3evB7cbN25sf/zxh7344os+mW3AgAGhEmRJ/fDDD1apUqUI/gYAAGQcScfA1aeeMWOGPf/881ahQgVvqyXImKq+eMWKFb2cSUDj6creomwtl156aRR+CyD+sQIcwFGpQQ865KpbcuONN9ratWs9+F2uXDk/rwY9GDQHAACRF15DTKu3P/jgA3vsscds/fr1NnLkSF/l3bFjR7v++uu9TQ8mtak+2fDhw/37gvZez0PwGwCAyAgPfi9btswzr2kFtzKxhduyZYs1a9bMB941iK4SJhdddFHofNCOE/wGAODEIOMakH4QrQKQIupEBwPrGhBXTfDwTjbBbwAAYqMTrpVimoFer149u/jii/1YyZIlPX3q008/bffcc4/XA9f3TJw40d5//31r0qQJbx8AABGmFWGq8a0Ja4H9+/d7FhZNOA8cOHDANmzYYDfddJONGjXK7rrrLitVqpTVqlXrsIF0AACQ9oJ+d3IZ1zRJTePkyrh27bXXhjKuaQJbmzZtQs+RP39+e/LJJ5l0Dpxg/8vTACBDS0k1hGBVmQbMw9HJBgAgNjrhWi2mTrfSqP3666+h8wqG9+7d277//nt79tlnPTWqrmvZsqWtXLnSbr31Vr+ONh0AgMjRYHjPnj0THVPwW4Pp+hJlW1PJMQW8NaFN9b4LFizobbcmogfpVQEAQGTGzsMzrnXr1s0+//xz74urb62Ma2rft23b5hnXLrvsMp90rjZbwXEh4xoQGQTAgQwqaRA7CG6npLEPBtk/+eQT++67707I/QEAgKO3yUEHWiZMmGCTJ0+2K664wmeaz58/P1R7LDwI/uGHH3oHXIPpqh3aokUL++uvv7yuKAAAOPFU91OB7AsuuMCyZ89uY8aMsaZNm/q52rVrW506daxTp062Zs2aULY1BcbVdhcoUCDRc5GNDQCAEz+OHoydJ824dsMNN3ggXGPkyrj2888/e8Y1rQhXm62+N4DoyHQoJcs+AcRtmlQ1wpqdpvqgQcMdnDtSbdFJkybZM88846vIzjnnnIjePwAAGZ061aeffnpo/7PPPvOaoaVLl7ZLL73UV3+//PLL9u677/oKsfB0a998841VqVIltNpbtcGVWjVfvnxR+V0AAMhIvvrqKx8sv/rqq61169aWkJBg77zzjpcqOeusszxtqvrnCoAvX77cOnbs6EFurTbbvHmzvfbaa2RsAQAgCrTKW2PpWt1dtWpVGzlyZOicFoo9+uij3tdW8FuT0tVma6J60aJFbezYsbxnQISxAhzIgIIA96BBg2zgwIG2ZMkS27dvn9cRGzFihA+EHyn4/eqrr9qwYcOsV69eBL8BAIiwAQMGeL0x0QrwdevW2W233WaDBw+23377zY8rEK46oVoNro52eGf77LPP9oFzpUxV+64aowS/AQCIDE0gV39a6VK18lsT0q+88krvm2sym9r04sWL+7mrrrrKB8/feusty507t2d6URsengEGAACkPTKuAekfK8CBDEorwvr16+cruKtVq2Yff/yxtW/f3kaNGmUVK1b0DncQ9E4a/NYAu2qLqoYJAACIrKVLl9qZZ57paVA3bNjgs8kXLVpk999/vx/v06ePlShRwq/95ZdfPGuLVpMpaN64cWPeLgAAokSB6yADi4LamtSmNOh33nmnlS9f3mbPnm09evTwVeFqu2Xjxo128sknW7Zs2bxfrglspD0HAODEIeMaEB9YAQ5k0JrfSo2q2mIKfs+aNcsHzVUXVAPnDz74oK8KJ/gNAEDsUUo1Bb81cK6AtlKpnnfeeR7g1mMNpiswLmXKlLHrrrvOunfv7qvBAQBA9PrkQfBb1Ib37dvXFi5c6JnYtBL8kksu8YnqSn1+yy23+HWnnHKK1wkP+ucEvwEAOHHIuAbEDwLgQAZLex4MiO/YscN27drltcYeeughD3pff/31tnv3bvvpp59szZo1fl2w8nvixImepo2V3wAAxIb8+fNb5cqVPbj99ddfW82aNT2zy6effurtddDmn3baaXbzzTeTMhUAgCgGv4M+ubKxPfPMM143tFatWj4RXUFw7QdB8Mcee8yPaRsu6J8DAIAT4z//+Y8NHz7cH2/evNlKlSpl48ePt8KFC9v8+fPt999/93OnnnqqtWrVyie0qYyJJqiH04Q12m0gugiAAxmIgt1a/aXAt1Z+a5VYt27d7L777rOWLVv6NTly5LBChQp5ox7QdZqFro45ac8BAIgNderUsQ4dOniHXBPZFATXQLqC4J999pkf27p1a6LvCV95BgAAIiMIfg8aNMhXln355Zf2ww8/eJC7YcOG1rVrV68JHqwE17EJEyZ4fx0AAEQOGdeA+EEAHMhAVFNMNUHnzJnjs8o1cH7gwAE/pxRrK1assF69elm+fPm8DlmgbNmyNn36dFKnAgAQI5QCVc4//3y74447vK1+4IEHQkHwoUOHerBbq8QBAED0ffzxxzZz5kxf/a363ppkXq9ePT935ZVX2hNPPGGLFi3yVWS//fab1ahRg+wtAABECRnXgPQv06Fg9AxAXFFgW/VBw+3bt886duxo+/fvt7Fjx/qxzp07e71v1QRPSEjwFeAvv/yyf+/BgwdZKQYAQIzSx/ggpdoXX3xho0ePtrVr11qfPn0STWQLT7sKAACiQ+lT33vvPS8vFk6rwR955BGbOnWqn581a5Znc6HtBgAgutTPfv75572frSwu1atXtwULFvj4eqVKlXzyWsGCBXmbgBjFSBgQZyZPnuzbIPj9/fffh85lz549FPCeNm2aH9MKMc1AV2Pet29f74zre//++2+C3wAAxDAFv8NXgrdt29azuEyaNMmPBecYQAcAIPo0wVzpzTdu3BiaoBZMXtex1atX2zXXXOO1wNV2B+cBAEBkkXENiA8EwIE4C36/++673rEWPb7tttu8vrdmlW/YsMEqVqzo9cQUBNeKcDnzzDOtbt26Vrly5VBHO0uWLFH+bQAAwLEGwXv37u2z0AEAQGxRf1vpVJVxTX3zYIJamTJlrGTJkj4JXZjABgBAbPWzb7/9djvttNPsoYcesoULF/o4+pgxY5iwBsQ4UqADcWTLli3eoVbNTwW41cH+6KOPfFX3qlWrvD5omzZtbOvWrT5APmXKFKtQoUKiFKoAACB2pLSNpi0HACD2KQObUpzXrFnTrrrqKsuTJ48f2717t6dIJ2sLAACxW3Zs8ODBVqJECXvqqafogwPpAAFwIA5pJlrr1q3trrvusrvvvtuPvfPOO/bVV1/Zq6++atdee63XF1OH+9FHH/W63wAAIPpSW687vGP+ySefWKFChXwiHAAAiK32/bnnnrN58+Z5lraEhATLmTOnvfTSS16KLLWfAwAAwIkR3tf+4YcfPJOq2momoQOxjwA4EAeSNri///67vfLKKzZjxgxr0qSJdenSJXROK8M14/yNN96ws846y2t/AwCA6Asf9H7//fe9Tuj69eutXr16dvHFFx92QDz8c4Dqfz/zzDP27LPP2jnnnBPR+wcAAIenUmXK1iY7duywtWvXevC7XLly3sYrBTqlyAAAiBwyrgHxjQA4EEeD5X/88YcPgBcuXNj++usvn0U+ffp0a9q0qXXq1CnR9+zZs8dXfqsDzow1AABix6BBg3yyWsWKFS1fvnz25ptvekYXlTHRQHm48DZcWV6GDBliffv2tSuuuCJKdw8AAA7ncH3v8OA4AAA4Mci4BmQsWaJ9AwCOr/McBL+HDx9uH374of366682cOBAa9CggbVs2dLPTZs2za+77777Qo197ty5/TEdbQAAYse7777rGVy0grtatWr28ccfewC8SpUqtm3bNg+AB4PnSYPfqkfWv39/u+yyy6L9awAAkOGkZGJ5cD7pADzBbwAA0lfGNQCxj8JCQDoWNL7Dhg2z8ePHW4cOHaxfv3529tlne/q0ggUL+rFmzZr5SvDHHnvMrw9Pq0ZHGwCA6HbCw2kiW+3atT34rVXg999/v/Xu3dvrjD344INeyoTgNwAAsdeGHy34ndxE9k8++cS+++67E3J/AADgf4K2VxnXtHhMfet9+/bZXXfdZSNGjPBsqcm12eGTzjUG36tXL8qNAekEK8CBdG7VqlX22WefeS1vDZZr4FwD5gp4K8W5AuD62rVrl/3222+kOwcAIAY74Rs2bLCiRYt6TVC12e+884716NHDg97XX3+9rV692n766Sdbs2aNVa1aNdQJnzhxoj311FOs/AYAIIJYRQYAQPpDxjUgY2EFOJDOaQW3Bs3XrVtns2fP9hqhkydP9kF0rfRWYFyB8Pbt2/tstmDVGAAAiA0KdqtmtwLfmsz21VdfWbdu3bx0SVDORG15oUKFrHDhwqHv03XK/KIV4qQ9BwAgclhFBgBA7CPjGpCxEQAH0nGjrUB2yZIl7fzzz7e+fft68LtGjRr20EMPeU3wmjVrWtasWf1aDZgnTZkKAACir3z58laiRAmbM2eOXXLJJVanTh07cOCAn1u+fLmtWLHC06zly5fPLrjggtD3lS1b1jO+KHgOAACis4pM6VBHjhwZao+rVKli27Zt88fB5POkKVQHDx7sk9howwEAiEzGNQnPuKbx8yDj2u7du0MZ1yQ845ra+f79+zPpHEiHSIEOpMMUa2+//batXLnS99u1a2edOnWym266yU4++WQ77bTTQtd/8cUXvhI8HMFvAACiR4HtYHJaeCBbE9pef/11u+qqq7wm2cGDB23ChAn2+OOPW0JCgq8AHz9+vGd+0TltCxYs6F8AACCyfXJR+bHatWt79haVIdNAurKynHnmmdalSxd74IEHvGxJcsFvBtIBAIgMBbsffvhhmzdvnrfZ06ZN88caT09JxrWhQ4cS/AbSKQLgQDoRdLQHDhzoAXCtFAtWgWnQXF9r1671zrQ6199//71t3rzZnnvuOb+Gld8AAESPypNoZnkQ/FY7fdZZZ/nj7NmzW+fOnb3zrc54s2bNvJP9448/2saNGz3IXalSJf8s8Pfff3uJEwAAEL1VZJpoHr6KrEePHqFVZKtXrw6tIlMAPHwV2VNPPUXwGwCAKGVc04Tz999/3956661QxjVNLtd4++EyrmliG4D0iRToQDqiQfGZM2d6XW/NHL/xxhs9LeqYMWO8k60Ge+vWrfbtt99auXLlfCWZBto1WM7KbwAAohf8VppUrdwWPb7ttts84P3ll1/6QHrFihWtYcOGtmTJEtu3b59fp4523bp1rXLlyj7orpVnBL8BAIgeBbuVtlyBb60i0+qwbt262X333ZeiVWRaIX7ZZZdF8TcAACB+BaXEDpdxTZRxTW25Mq5dffXVnrFl586diTKuiSaiE/wG0rdMh4KCRABinup6qyaJZparA60g+Pz58z3ArS8FxzWjLXy1NyvFAACIri1btlj+/Pm9M60AtwLaH330ka8EW7VqlXfI27Rp45PYNDA+ZcoUq1ChAtlbAACIMVoppqwtd9xxh68iU99cq8i6du1qNWvWDK0i0+pwtfPaF7XxyurCQDoAACcu41ogPOOaKDOLJqp1797dM64JGdeA+McKcCBGJTc3RbPYtNq7Z8+edvPNN/vstI4dO3ogPG/evLZw4UK/Lgh+6zlYKQYAQHRpFZgGwNVOq1M+YsQIX+2tNl0D5wp2d+jQwVeD792710aPHu1bsrcAABA9rCIDACD2kXENwOGwAhyIQUpxGtQX0yxxDYAXKVLE9/v27WsrV660Jk2aeOq0PHny+OzyVq1aedq1+vXrR/nuAQCAhGdkkd9//91eeeUVmzFjhrfjXbp0CZ3TyvBZs2bZG2+84TPVVe4EAABEHqvIAABIP8i4BuBwCIADMRz81gqxt99+2/cvuOACe/jhh0MD6kqhphnpqhP6+OOP26ZNmzxlapBiDQAAxEZ7/scff3ggXLVA//rrL3vppZds+vTp1rRpU+vUqVOi79mzZ4/XDlV7njSADgAAIrOK7MUXX/S2WI8fffRRO+2003ziWqlSpaxo0aKewSVnzpyeSjV79uxH/BwAAABOPGVca926td1111129913+7F33nknVEb02muvtalTp3oJE7Xt6ncDiG9Zon0DABILOsmDBg3yRrlt27Ye7NaKMHWie/Xq5XW9x40b56lTlTY1V65c3pCrg37w4EGC4AAARJEC10F7Pnz4cPvwww/t119/9ZqgDRo08NpjMm3aNL9OGVxE7Xzu3Ln9Me05AACRd8kll1jz5s29T63sLMq6li1bNq/nrdrfZcuWtTZt2ljt2rWtd+/enolNffKkk9YIfgMAcGIlbXtLly7t4+ivvfaalxTTxLUrr7zSvxT0Vsa1AgUK+Dg7wW8gY2AFOBCDPvnkE+vXr58NGTLEqlatarNnz/YVYqrzrRTnOqeB8ffff99nn1erVs076AqMU/MbAIDYMGzYMF9J9thjj3nnvEaNGpYvXz4PdOtr5MiR9vrrr9ull14ayvICAACij1VkAADELjKuAUgJVoADMWj16tU+I03B72XLlvls83vvvddnkQ8dOtRXh2n2+RVXXBH6HgXECX4DABAbVq1aZZ999pnX8tZENa0A14xzpT7XbPMOHTr4165du+y3334j3TkAAFHEKjIAANIHMq4BSCkC4ECUJVffU7XETj31VFu/fr299dZbVrFiRbvhhht8gFwB8Jdfftl27Njhtb8D1P4GACB2qF3esGGDrVu3zjZt2mTPPPOMt/eqHaqgtwLjKmfSvn17K1SokJ+j5jcAALGxikyZ1m699VY/rslr2iorm2iieuXKle3OO+8MpVClDQcAIDKCcfSkGdfOPvtsz45asGBBn2wuasN37tzpGdfCF44xjg5kDATAgRjpaKs2iRrpPHnyWJMmTTxN6r59+2zu3Lne0VZQXNfUqlXLG3GtJgMAALHVnos63yVLlrTzzz/f+vbta9u2bbMbb7zRGjVqZDVr1rRRo0bZ4sWL/drChQsfdkIcAAA4sVhFBgBA+kPGNQApQQAciIGOtgbCv/rqK/vpp5+sbt26PkBep04dmzdvns9S0yC6UpyrVqhmmFevXt0HyXWMGWsAAMRG8Pvtt9+2lStX+n67du18AttNN91kJ598sp122mmh67/44gtfWRaO4DcAAJHHKjIAANIfMq4BSAkC4ECUB8ufe+45Gzt2rN1+++1WtmxZW7Jkic2fP98HzS+44ALbsmWL3XPPPX5t9uzZbdq0ad5J13MQ/AYAILqC9nzgwIEeAC9RooS336IJbPpau3atDR482Nvv77//3jZv3uztv7DyGwCA6GIVGQAAsYuMawBSiwA4EMXBcnW0tVLskUcesSuvvNKPfffdd17jW6u9le58/PjxvlIsa9asvopM9UqUKj28bgkAAIgeTU6bOXOmjR492s4880zbuHGjrVixwhYsWGAXX3yxt+Fbt271euCnn366vfDCC7TnAADECFaRAQAQm8i4BuB4EEEDouSXX37xoLcGxRs0aBA6XrlyZWvZsqXdd9999umnn3o98PB630p7TvAbAIDYsX79ervqqqs8+K2SJq+++qpnc9GEtWeffdaD448//nii1d5MZgMAIPJYRQYAQPpBxjUAx4MAOBAlZcqUsXHjxlnr1q3txx9/tPr161vOnDn9nGp8FyhQwFePJUXacwAAoie5lOUHDhywMWPG2I4dO+z111+3unXrWseOHe3888+3W2+91RYuXGhNmzYNfZ+eg8lsAABEFqvIAABIf8i4BiC1CIADUVSzZk178cUXrV27dp4StVGjRl7ne+fOnT7DTUFyAAAQewPnSnOugHaRIkXs/vvv97ZbZU169+5tl112meXJk8cD4vnz5/dJbeGSBtABAMCJxyoyAADSHzKuAUgtAuBAlNWuXdtGjBhhHTp0sE8++cRKly5t33//va8mUzpVAAAQW8Fvtdtvv/22719wwQX28MMPW8+ePX1lt2p9Kxi+ZcsWT3uuzC0XXXRRtG8fAACwigwAgJhGxjUAaYkAOBADlCr1hRdesNtuu83OOussu/jii23UqFF+jhqhAABEXxD8HjRokE2dOtXatm3rwe433njDg+O9evXyNlvlTZQOvUKFCpYrVy6vB64g+MGDByljAgBAlLGKDACA2ETGNQBpjQA4ECMuvPBCGzt2rN1+++3WpEkTXwGeNWtWaoQCABAjlKll9uzZNnr0aKtatao/njRpks2aNcv27dtn/fr1s/vuu88qVapkRYsWtWrVqnnQm8lsAABEHqvIAABIH8i4BuBEIAAOxJBatWrZyJEj7a677rK9e/fajTfeaHnz5o32bQEAADNbvXq11/NW8HvZsmU2ceJEu/fee311+NChQy137tzWuXNnu+KKK0Kvl1Z+Z8nCR24AACKJVWQAAKQfZFwDcCJkOqQpsQBiyocffmjdu3e39957z/Lnzx/t2wEAIMNJbtXY5MmT7csvv7T777/fJkyY4Cu7teL7t99+s2uuucb3mzZt6rW/AQBAbK4iC9p5lTJR5jVlcVHbvWnTJpsyZQolSwAAiFLGNWVVGzJkSCjjWqdOnXxxWP369f2cJpi///77ZFwDkCIsRwFiUIMGDTwIrtqhAAAgegPnysiiwHaePHm8REmNGjV8oHzu3LneGc+ZM6dfoywuHTp08LTnAAAgelhFBgBA+kPGNQBpjQA4EKMIfgMAEHlaERYMnI8aNcq++uor++mnn6xu3brWqFEjq1Onjs2bN8927txpJUuW9BnoKl+SI0cOq169uq8a1zHV/gYAANFbRaaVY6NHjw6tIps0aZLNmjXLJ7JpFZmyuFSqVIlVZAAAxEDGNU0uP/XUU239+vX21ltvWcWKFe2GG27wjGsqOfbyyy/bjh07EmVco98N4EgIgAMAAABJVn4/99xzNnbsWLv99tutbNmytmTJEps/f76v+lYK1S1bttg999zj12bPnt2mTZvmHXg9B51wAACii1VkAADEJjKuAYgUAuAAAABAWMrUVatW2cqVK+2RRx6xK6+80o999913PuNcq72V7nz8+PH2xRdfWNasWe2mm26yLFmyeKp0bQEAQOSwigwAgPSBjGsAIokROgAAAOD//PLLLx70VmC7QYMGodelcuXK1rJlS0+X+umnn3o98PB630p7TvAbAIDIYhUZAADpAxnXAEQaAXAAAADg/5QpU8bGjRtnrVu3th9//NHq16/vtchENb4LFChgK1as+NfrRdpzAAAii1VkAACkH2RcAxBpBMABAACAMDVr1rQXX3zR2rVrZ6effro1atTI63zv3LnTO+0KkgMAgOhhFRkAAOkPGdcARBIBcAAAACCJ2rVr24gRI6xDhw72ySefWOnSpe3777+3AwcO2FVXXcXrBQBAFLGKDACA9IeMawAi6aSI/jQAAAAgnahbt6698MILNnPmTA+CV6lSxR+rPvjff/8d7dsDACBDC1aRvffee5YpU6bQ8cqVK1vLli1t+/bt9umnn1q1atXs9ttv9/ImWbJksYMHD/oWAABEL+OavubMmWP79u3z42RcA5DWCIADAAAAh3HhhRfa2LFjbfny5ZYnTx5fAS4MnAMAEBuryNQ2//jjj7Znz57QuerVq1uBAgVsxYoV//q+zJkzR/hOAQBAchnXunbtag8//LA9/fTT1rlzZzKuAUhTBMABAACAI6hVq5aNHDnShg0b5rPUd+zYwesFAEAMYBUZAADpExnXAJxomQ4dOnTohP8UAAAAIJ378MMPrXv37p5qNX/+/NG+HQAA8H/mzp1rHTp08JTopUuXtu+//95+//13mz59upcuAQAAsWnBggVeqqRLly5244030m4DSDMEwAEAAIAU2r17t+XKlYvXCwCAGPPZZ5/ZbbfdZmeddZZdfPHFdvfdd/vxv//+m9IlAADEsHnz5tldd91ld955pwfB8+bNG+1bAhAHSIEOAAAApBDBbwAAYtOFF15oY8eOteXLl1uePHm8jqhkyZIl2rcGAACO4KKLLrInn3zSxo0bZwcPHuS1ApAmWAEOAAAAAACAuMAqMgAA0icyrgFISwTAAQAAAAAAEDc+/PBD6969u7333nuWP3/+aN8OAAAAgAgjAA4AAAAAAIC4wioyAAAAIOMiAA4AAAAAAAAAAAAAiAsnRfsGAAAAAAAAAAAAAABICwTAAQAAAAAAAAAAAABxgQA4AAAAAAAAAAAAACAuEAAHAAAAAAAAAAAAAMQFAuAAAAAAAAAAAAAAgLhAABwAAAAAAAAAAAAAEBcIgAMAAAAAAAAAAAAA4gIBcAAAAAAAAAAAAABAXCAADgAAAAAAAAAAAACICwTAAQAAAAAAAAAAAABxgQA4AAAAAAAAAAAAACAuEAAHAAAAkO4dOnQo2rcAAACOEe03AAAATgQC4EAUNGjQwB566KGYe+3XrVtnZ5xxhk2fPt33tdW+jqfEsV6fWs8884z/nFgSi/cEAIg90foMsHDhQm+ntI0Vuh+1n8frjz/+sDvuuMN+++23Y/q+Vq1a+RcAAOHor0em/dy/f7/179/fZs6ceUzfR98bAJAS9L3TVqTG/YG0lCVNnw1AigwfPtzy5MkT869W/fr1bfLkyXbKKadE+1ZiXosWLeyiiy6K9m0AAGJctD4DnHXWWd6mV6hQweLNZ599Zp988km0bwMAECfor0fGxo0b7aWXXrLHH388Qj8RAJCR0PdOW8QJkB4RAAeioFKlSunidS9YsKB/4eiKFSvmXwAAxOJnAAXdzz777Kj8bAAA0hP66wAApH/0vdMWcQKkR6RAR4ZLffLEE094mq3zzjvPLrjgAnvwwQdt27ZtoWtee+01u/baa32QuGrVqnb11Vfbu+++Gzr/zz//+HPouSpXruzboUOH2oEDB0LXvPXWW3bVVVf599esWdO6dOliGzZsSDb96WWXXWYdO3b8173q53bo0CG0P3v2bL+vKlWqWO3ate2xxx6z3bt3p2qWddeuXa1WrVpWvXp1u+mmm+zrr79OcWoTrbD673//669PnTp1rFevXrZ9+/Zkv1/H9Xvo9/39999TfI+//PKLtW/f3t+fatWq2fXXX5/syq6PP/7YX2e9Jnod33jjjX/9rt26dbN69er5e9G8eXObM2dOomv0+02YMMFfE70eF154ofXr18/27dsXukbp3fR+Pffcc37+3HPPtTvvvDNRqtWkadj0PT169LDnn3/eZ8jpHvW6LVmy5F+/g95X3Z9+B/3badSoUZqkhAUA/E9G/wyQNAW62pnLL7/cPvjgA2vcuLE/t36uPhN88803ntlEv4POLViwIPQ8+j79Dh999JF/v9rp6667LtWp1Xfu3Ont5fnnn+/tsF6PzZs3J7rmnXfe8d9f5/X767PHX3/9FfqsorZeGjZsmCi9vN7P//znP/5eqS3WvR88eDBV9wkAOPEyeludXvrrQd3uF154wdtXvY7qsyft6y5dutTatGnj7+M555zjffyff/7Zz+me1W6L2nHdQ2Dx4sX+e+szhj4f6PXYunXrMd0fACB6Mnp7Hot9b7WjvXv3tosvvthfT7Wvd911V+gzhMa8dTzoZwfGjRvn2eS2bNmS7OeOo72PQLQRAEeGM2nSJPvqq688zVbnzp29g9iuXTvvwE2cONE7iJdccomNGjXKhgwZYtmyZfMGVPUlRZ28V155xRuJMWPGWMuWLe3FF1+0kSNH+vkvv/zSG/VLL73Ur1Vn7vPPP/eflRw11LoHDQAHVq5caT/++KM3GqKaWPp5p512mj377LN2991324wZMzwIq/tOqV27dvn9qqF84IEHPBVM9uzZ7bbbbrM1a9Yc9fvV4Oq1KlSokD355JP+uuiDwf3335/sz7r99tu9U/3yyy9biRIlUnSP+oCjn7Fnzx4bNGiQjRgxwvLnz+8fRtauXZvoWr1XrVu39tdeq6/1oUavm2jwXAFvdZ51f/rQULJkSX8d9dqFe+qpp7wh1+/Utm1bTxGrTnY4Bc7V0D/88MP+gWHZsmUe5NZ9Hs6sWbP8+/Q9w4YN83u65557QoPv+neh97B48eJ+fzfeeKM98sgjtn79+hS9VgCAY5ORPwMkR7/XgAEDfEBabaHabA0KdOrUyTvh+nn6GWpH9+7dm6jzrHbyhhtu8O/LkSOHD3CrbTxW+oygQQw9j16nDz/80Pr06RM6r88Buh91qJ9++ml/LdS+qg3WPWngPRiw0OcavS6i97Bnz54eQFBnXm2s3hMdAwDErozcVqeH/npAr6MG8tWuDh482AP3ao///vtvP6/XVL+LKACiAIL6uQrO6/VTmTX9fqLvCx4vWrTI+/j6bKHfoXv37vbFF1/YzTffnOizCAAgtmXk9jzW+t56Xr328+fP99dYr6N+NwXbNQ4tTZo08Tb8/fffT/S9b7/9tk+o02eLpFLyPgLRRgp0ZDgnnXSSjR071vLmzRtK36HGbd68efbrr796IxIMnoqCpprJpIZVq4jU+dKMqGbNmvl5zZjKmTNn6Pl0nRqjO+64w//TFwVwNftZDU6mTJn+1QAr+KmO6TXXXBOawZYvXz6f5aXvUQOi+tLaBsqWLesdQzXeGvxNiddff91XLWubkJDgxzQTWz9XHU0NEh+J7lPfp85p8Hvod1QDHL5aS6un1YnVrLvx48dbqVKlLKUUiF61apW/B1q5LZpBpp+5f//+RNeqE123bl1/XKZMGV85rffnzDPP9PdYHxI0SK73UPR8es0UWNesOv1bCP4NaHA8S5Ysfo2O6wOagtXly5f3axToVgC8dOnSvq8PQ02bNvVV50HHPil9cNCHiqDWqwYZ9KFFH1L0b0iv5+mnn57o9dQHCn34AQCkvYz8GSA5atvU4Q3a0hUrVvisemVC0SQy0Wx3dcxXr14d+uyg73v00UdD96zZ9ur0KuuJZukfC81+V7ss+hzy7bffhrK+aPa5Bjg0y10d60DFihU9oD1t2jTf6jOA6P70mWPHjh0eONdqNE1CE3Xa9V5o/9Zbb/X2FwAQezJyW50e+usBPa/afb12ooF8tbH6LKH+uD5PnHrqqX5N5syZQ22x+uya0KZ7Cn5HteNBmlp9X7ly5XwgPfg+rXjTexu0+wCA2JeR2/NY63trkppeO41J16hRw49pVb4ysGoRWPD6a7W+XhMF5EXnld3lcD8nJe8jEG2sAEeGo0YtaCyDfQU+1aHUCmLNUlLnTSlI3nzzTZ/NJEHwVQ2EZkxp5tXo0aO9wVJ6rmC2mBoLNU4KsKoh0wpkdfQ0sypp4ysKqKpTq/Se4bOrlNpEDbiCwZo1pftUQDX40s9RYFX3klJqfNS5DRpRUQOoIHHQuB2OZp/98MMP3siG/x5XXnmlf3/hwoVDxzQDT7PWFUAOAsYppeepUKGCzyRXw6zZd1oVrpl8SQerg0Zbgk57kN5NH5SUMi4Ifod/4Nm0aZO/rgHNctO/gYDS4oj+TQT0HoX/Luqgaz/8mqT0ewTBbylatKhv9e9D/56U6kYzFcNfT73v4fcCAEg7GfkzwOHo5weCtlwDzYHwge2AXjP9jgENPKgjf6Q28XBUViSc2vPgZ+l90Gsf/rOC9l/tu9r65Kh91eeWpK9bkF41LV43AMCJkZHb6vTQXw/v6wafEcL745qEpgF8BSCuuOKKUBBbFGRQ6tXDtd96XzQRTpPSFYgIXkvdoyam034DQPqRkdvzWOt7azxa2V7U91b6cv0umgCnFfrhi800Zq7n1bh58Prodw8vUxIuJe8jEG0EwJHhBEHI8BlpBQoU8FVGmtmkWV1q3NSoavVukMIrSHWiFNlahaQOpmaEaTaTGiKlWREFXTULSw2rZrpphrIaJjUsh6PG+7PPPrM///zTO4pK9R006EF9FKXdVs2N8C+lbdEsrpTScyWXsiQl9ProNUjJ92smue5P6Vu06vlY6EOKUttoZtunn37qDalqrtx3333/qkOSK1eu0ONgNXfwPunaIkWK/Ov5gw8Y4R8mkv6bCH7H8J+X9JrguqT3FE6DFeGCe1RAX++FUqEnfT01QBA+kAAASDsZ+TPA4YRP1Dpc+5VcW5p0spbas/CabikV3pYH70l4Wx78vOTuQYPsyQnuQ6sBwl+zCy+80I+nxesGADgxMnJbnR7660dqv4O+rtpn3cuxtt/qo+v7lco26Wv5008/0X4DQDqSkdvzWOx7K5W7JqE1bNjQM4+qZKeC6eGCRVlBDW8FwLVILOl1gZS8j0C0scwQGY4auXAKQuqYUrFooDRr1qw2depUn3Wt//Q1w0wzmMIbbDWq+lK6bqVAUfpszZ7WDCrNGlO6FH1pJpoaZs2yUrpuzepSOu+kNDNa55WGRTPOtKopWBGlWdLBLG2le0nq5JNPTvHvrpl3mumVlGZ86XlUX+xIjbSC00orHk7p0/Q7hs9YU8o1NeBKeaI0KUH60WP5kKT0LkoNo1os7733nneC9UEpqE1yNPp9ghlr4YJjeq7D/ZsI0sPp38ThrgmuC9KuHit9WNG/tfBUdOHBcQBA2svInwHSUnLtlNqz1A7aH07w++m5VXokaXt+uFVrweumgRKlrEsquQF5AEBsyMhtdXrpr6fk99C9JO3rBu334SZ8586d279Pg+nJpU09WpAAABA7MnJ7Hmt9b62OV5bVVq1aecryYHKCSpEp+0x4+63V3gqAK9X6zz//7Blak6Px65S8j0C0sQIcGc7cuXMTpeHQjCfNTlI9SdXYUN0N1aMMZlfp+uA/dvnvf//rjaWosVGnUY2xZitrRtjAgQO9PolmOqmDptlVamTk999/T/aeglRguhelJ1PKkSBdiwZ89XPUEdZ9BV9qrJTiRWnOUkopQ1WfQw1YeIdYHx7UWB2JOqNqzD766KN/vZ5q8MJnwmlg+YwzzvCOq1KfKI1ZSiltqVZoqcaIXgP9zPvvv9/fn8O9fsnR7DM9l2qoJZ3xppXhqkcW+PDDDxNdo/dAP1uNfUAfCMI/vH333Xf+nhytDtvhaKW3Ut/oPQ+newlmywEA0lZG/gyQljQLX7Xbwvf1WqW2TTwcDVxoYEN1yJJ24PV6BinkglVn4d+njrhWuIW/bnpfhw0blmxwAQAQGzJyW50e+uspXR2uuq0aQFfAI6CV3x9//HEo2BCeHj0I4qvUmIIS4a+lSqGpbqvStgMA0oeM3J7HWt9b4+N6XfV5Igh+q33Wavjw11y0Il7pzF955RUrUaJEspMBRGPkKXkfgWhjBTgynPXr11uHDh3s5ptv9scaCNVsMdXG0kohdQCLFSvmjaIaGM0eE80mCwKrStGtTqPSrWhwValW1CBoFpuCptpXHQw1pAcOHPBaJZrlHB5QTUrXduzY0RugIP1K0ClUAFhpX/RYDbUa+xEjRoRSl6WUPiwoFYx+f/0srYLW76d7VE2Vo9H36HuVKkUpyjXjTK+f6ozpA4yCwuFUd0WdXs0onz59ug9GH406vEqtohl3apj1OqtBXrZsmb9nKXXrrbd6sFudet2HXv833njDZwT2798/0WC5GnalWtfrrhXn6lxfd911iVaW6f1X+h39/koTp5ny+p2T1iU9Fno9NftOW31g0Ae0p556ys8lV68GAHB8MvJngLTWrVs3L0+iQQKlOlO9T722aUmvmwbtlaJVnyH0+2tAQm2lao82bdo00Wz9Dz74wNPeqU6o2mxdp8ER1Y/T66V9ta9nnnlmmt4nACDtZOS2Oj3011Oqc+fOvspM7bjuXb+DUtUqGHLXXXf5NUFt2AULFnjbrQlsund9j75fr7leb72fCtLfeeedaXZ/AIATKyO357HW9w5Ww/fp08cnDSgNvV5/jYGLni9Iz673SK/h5MmTvU99uPFp3YtW0B/tfQSijQA4Mhyl0tJ/ymo4NDNZg6dq4ESNWr9+/bzx1IojDa6OHDnSA6ZabaRg5b333uvnpk2b5gOyQXoQddCkXr163pCrkVaHUg2FZjirAThSbWd9n55LQddy5colOteiRQuf0a2GXA2Q7lurnvRzDpf+MzlqzCZMmOApTvr27euzsc4++2y/Nz3P0VZEqfFXuhmlTFOnVR84mjRp4oHq5GgGnj44tGvXzju7QUf3SJTWTa+dZtfpvdCHDaUvVSOtAYGU0ipvzVbT82jGoD4IacBb77HqnYS75ZZb/MOM3i8NMrRv397vOelsfH2A6tGjh+/rPVeQXv8WUkvPqWC7BuTVmdcHB6WW0b9Hvd8AgLSVkT8DpDWVKtFro1Sruh+1ueHZVdJKMBlOn1/0++t1VG2y4D0UBbiVPUZtvgbR9ZlD5/VZYNKkSf7aKWWdZslrYD0YcAcAxJ6M3Fanh/56SqnNVWDi6aef9rZX74n6v1qxpxXdwe+riet6zZTaVilt69Sp44P7+h0UoFBQXkEHPZdeCwBA+pCR2/NY63urv6z2Xm2pyoyqf61jwecFZT3V6yJaya33ThPyNFngSFLyPgLRlukQFemRgaih1EyxAQMGRPtWECOU+k0flA43KCBBg63GPy0p5Y5myYXPIlS6O60qTy5QDwBIPT4DpA1N3FJHefny5fxzBACkKdpqAADSP9rztEHfGzh+rAAH4oDSthxtLotmwiWtsRVJur/w+l+Ho3vMKOm/P/30U3vnnXc8/bpmHWoVumbKqe6MZr4DAJDePgNotVpK6n0FNcIAAIh3sdZWJ4f+OgAA6as9p+8NHB0jT0AcaNSokf32229HvEYr39N6BfOxeP31171mydEoVY3SsGQEXbt29XrnCnpv3LjRU/So1orS+SgVPAAA6e0zQPfu3b3NPxpWkAMAMopYa6uTQ38dAID01Z7T9waOjhToQBzQIPL+/fuPeI1qmGhlcbT8+eefR61ZJloJrVpgAAAg/X0GUFuvNv9oqlSpEpH7AQAg2mKtrU4O/XUAANJXe07fGzg6AuAAAAAAAAAAAAAAgLhwUrRvAAAAAAAAAAAAAACAtEAAHAAAAAAAAAAAAAAQF7JYnKtRo4bXZihSpEi0bwUAgGO2adMmy5Ytmy1evDjDvHq03QCA9Ip2GwCA9IW2GwCA+Gy34z4Avm/fPjt48GC0bwOIW4cOHfJJJvpPJ1OmTNG+HSDu/P333/53lpHQdgMnDu02cGLRbgNIa7TdwIlF2w0gLdFuA7HTbsd9APyUU07x7Zw5c6J9K0Bc2r17ty1btswSEhIsV65c0b4dIO40bNjQMhrabuDEod0GTizabQBpjbYbOLFouwGkJdptIHbabWqAAwAAAAAAAAAAAADiAgFwAAAAAAAAAAAAAEBcIAAOAAAAAAAAAAAAAIgLBMABAAAAAAAAAAAAAHGBADgAAAAAAAAAAAAAIC4QAAcAAAAAAAAAAAAAxIUsFmMWLlxoN998c7LnSpUqZXPmzIn4PQEAAAAAEC/+/vtve/bZZ+2NN96wbdu2WaVKleyBBx6ws88+O9q3BgAAAABA/AXAq1evbp9++mmiY998843dc889duedd0btvgD828GDB23u3Ln25Zdf2qZNm6xRo0aWOXNmXioAAGIQ7TaAwMiRI+21116zAQMGWOnSpe2FF16wtm3b2jvvvGOnnHIKLxQQI2i7AQBIP2i3gdgScwHwbNmyWZEiRUL7u3fvtscff9yaNm1qzZo1i+q9Afif6dOnW+fOnW3NmjWhY2XLlrWhQ4fatddey0sFAEAMod0GEG727NnWuHFjq1Onju8/9NBDHhDX5PNLL72UFwuIAbTdAACkH7TbQOyJ+Rrgzz33nO3Zs8e6du0a7VsBENagN2/e3KpUqWIfffSRrwLXVvs6rvMAACA20G4DSKpQoUL++X3dunW+UmXy5Mk+Gf3MM8/kxQJiAG03AADpB+02EJtiOgC+detWGzdunLVv397y588f7dsB8H+pXLTyWytGVDPw/PPPt1y5cvlW+zrepUsXvw4AAEQX7TaA5PTo0cOyZs1qDRs29EmsTzzxhD399NNWpkwZXjAgymi7AQBIP2i3gdgVcynQw02aNMny5s1r119//RGvU6f9cNavX2/FihXzVOoAjp9Weyvt+dixY23v3r2eoUGC7f33328NGjSwDz74wOrWrctLDhynQ4cOWaZMmXgdAaTKvHnzvN1+5ZVX7KSTEs991X63bt3swgsv9Ovq16/PqwxkECtWrPC+9rPPPmtFixb19OeaxDphwgRLSEj41/X0uYHIoc8NRBZ9bgDHgz43ELtiOgCu1aTXXHON5ciR47ieZ//+/bZs2bI0uy8gI/vyyy99mzlz5kR/V0EtcB0PritSpEiU7hKIH2rDsmfPHu3bAJBOaTKoVK5cOdnzwfHgOgDxT3/vyuikbGs1atTwY1oFrqD4M888YyNGjDjm56TPDaQd+txAZNHnBnA86HMDsStmA+A//vij/frrr9akSZOjXjtnzpzDntNMdc3kS24WO4Bjt2nTplB6F/1daeW3gt9ly5a1nDlz2sKFC/38ueee+//Yuw/oqKrt8eObltB7FYTQDSBNpCnIA7H9UfpTBBWEBwrok96r9O4DRJCmFOmKFEGJDRWQgKBAAKmKhqqA1ND+a+/3u/NmQoIhZWYy+X7WmnXn3nsyuU4cztyzz9lb+NwBCaf1OAEgvgoUKGDbXbt2SfXq1W87r8fd2wEIfDt37pRr165Z0NtdhQoVbOVpTLjnBryHe27Au7jnBpAQ3HMD/stvA+Dh4eGSK1cuue+++xL8Wpo6VmsUA0i4+vXrW7B7woQJlqXBocFvzdag9QOLFi1q7ZzV4ADij/TnABKiVq1a1m+PGDHCo99WN2/elJEjR1q/re0ApAxaIkzt27dPypcv7zq+f/9++/ciPrjnBhIP99yAd3HPDSAhuOcG/JdnIUA/smfPHildurSvLwNANBrUHj9+vKxevdpKFOiK74sXL9pW9/X4uHHjCH4DAOAH6LcBRKdBb83W1KtXL9m8ebNlc5o0aZJs2rRJ2rdvzxsG+Bh9NwAAyQf9NuC/0vpzyqfs2bP7+jIAxKBJkyaybNkyqx1Yt25d13FdQabH9TwAAPAP9NsA3KVOnVqmTZtmQe8+ffrIuXPnpFSpUlYTXNOgA/A9+m4AAJIP+m3AP/ltAPzdd9/19SUA+JuOvWHDhvLZZ5/Jtm3bbBUJac8BAPBP9NsA3GXLlk0GDRpkDwD+ib4bSDlOnDghtWvXvu24livSfwsiIiJk+PDhsmvXLsmZM6e0bt1aXnzxRZ9cK4CY0W8D/sdvA+AAkkeKF/2CnidPHgkNDSXtOQAAfox+GwCA5IW+G0gZ9u7dK8HBwbJhwwaPmuRZsmSRP//8U9q0aWMZGIcMGSI7duywbaZMmaRp06Y+vW4Anui3Af9CABwAAAAAAAAAAB/Yv3+/hISESN68eW87995770m6dOlk6NChkjZtWilevLgcPXpUZsyYQQAcAIA7SH2nkwAAAAAAAAAAIGns27fPAtsxCQ8Pl6pVq1rw21G9enU5cuSInD59mj8JAACxIAAOAAAAAAAAAICPVoD/8ccf0rJlS6lZs6a0aNFCvv76azt3/PhxyZ8/v0d7Z6V4ZGQkfy8AAGJBCnQAAAAAAAAAALzs+vXrcujQISlRooT07t1bMmfOLGvWrJH27dvLnDlz5MqVKxIUFOTxM1ovXF29ejXW161Xr16s5zRwrkH1S5cuJeJ/CQB1+fJljy2AxHXr1i1JlSpVnNoSAAcAAAAAAAAAwMs0tfmWLVskTZo0kj59ejtWrlw5+fnnn2XWrFl2LCoqyuNnnMB3xowZ4/179TUjIiISePUAYqNlCgAkPu2/nIlgf4cAOAAAAAAAAAAAPpApU6bbjpUsWVK++eYbW6l98uRJj3POfr58+WJ9zbCwsDuuDtcVdKGhoQm6bgC305XfGvwOCQmRDBky8BYBiSx6VpQ7IQAOAAAAAAAAAICX6UrvZ599VqZNmybVqlVzHd+1a5elRdcg9aJFi+TGjRu2Slxt3rxZihYtKrly5Yr379X0sQlZQQ7gzjT4zWcMSHxxTX+uUifB7wcAAAAAAAAAAHdQvHhxKVasmAwdOlTCw8Pl4MGDMnLkSNmxY4e8+uqr0rRpU7lw4YL069dPDhw4ICtWrJC5c+dKhw4deF8BALgDVoADAAAAAAAAAOBlqVOnlnfeeUfGjx8vb7zxhpw/f17KlCkjc+bMkVKlSlmbmTNnyvDhw6Vx48aSJ08e6dmzpz0HAACxIwAOAAAAAAAAAIAP5M6d21Z9x6Z8+fKyePFir14TAADJHSnQAQAAAAAAAAAAAAABgQA4AAAAAAAAAAAAACAgEAAHAAAAAAAAAAAAAAQEAuAAACDODh8+LJUqVZIVK1a4jkVEREirVq2kYsWKUrduXXn//fd5RwEAAAAAAAAAPkEAHAAAxMm1a9eke/fucunSJdexP//8U9q0aSOFCxeW5cuXS6dOnWTcuHH2HAAAAAAAAAAAb0vr9d8IAACSpcmTJ0vmzJk9ji1ZskTSpUsnQ4cOlbRp00rx4sXl6NGjMmPGDGnatKnPrhUAAAAAAAAAkDKxAhwAAPytrVu3yuLFi2XUqFEex8PDw6Vq1aoW/HZUr15djhw5IqdPn+adBQAAAAAAAAB4FSvAAQDAHZ0/f1569uwp/fv3lwIFCnicO378uJQqVcrjWN68eW0bGRkpuXPnjvE169WrF+vv05/Lnz+/R6p1AInj8uXLHlsAievWrVuSKlUq3lYAAAAAAHyIADgAALijwYMHS6VKleTpp5++7dyVK1ckKCjI41hwcLBtr169Gu93NioqSiIiIvjLAElEszQASHzafzn9IAAAAAAA8A0C4AAAIFYfffSRpTlftWpVjOfTp09vg/3unMB3xowZY33dsLCwWM/p6nBdQRcaGspfBkhkuvJbg98hISGSIUMG3l8gkUWfFAYAAAAAALyPADgAAIjV8uXL5cyZM1KnTh2P44MGDZK1a9daqvKTJ096nHP28+XLF+93VtPH3imADiBhNPjNZwxIfKQ/BwAAAADA9wiAAwCAWI0bN87SnLt77LHH5PXXX5dnnnlGVq5cKYsWLZIbN25ImjRp7PzmzZulaNGikitXLt5ZAAAAAAAAAIBXEQAHAACxim0Vtwa39VzTpk1l5syZ0q9fP2nXrp38+OOPMnfuXBkyZAjvKgAAfmjLli3y4osvxniuUKFCdyxTAgAAAABAckAAHAAAxJsGwjUAPnz4cGncuLHkyZNHevbsac8BAID/qVSpknzzzTcex3bs2CGvvfaadOzY0WfXBeB2mmXp66+/lm3btsmpU6ekfv36rqxLAAAAAGJHABwAANyVffv2eeyXL19eFi9ezLsIAEAyEBQUZBPWHJcuXZKRI0fa5DXN7ALAP6xYsUK6desmR44ccR0LCQmR8ePHS5MmTXx6bQAAAIC/S+3rCwAAAAAAAL7xzjvvyOXLl6VXr178CQA/Cn43a9ZM7r//fvniiy9sFbhudV+P63kAAAAAsSMADgAAAKSgNKrr1q2zre4DSNn++OMPmTt3rrzyyiuSPXt2X18OgP/rr3Xld4MGDeSjjz6SqlWrSsaMGW2r+3q8e/fu9OMAAABAckyBrl/qZ8yYIb/++qsULlxYOnfuLE8++aSvLwsAAABIdkijCiAmCxculCxZssizzz57xzeoXr16sZ6LjIyU/PnzWyp1AAmnk9Q07fmcOXPkypUrlqFBOdsuXbpI3bp15bPPPpPatWvzlgMJdOvWLUmVKhXvIwAAAcYvA+ArV66Ufv36Sd++faVWrVqyZs0a6dq1q91UV6pUydeXB+D/REVFyZQpUyQ8PFyqVKkib7zxhtUUBAAA/pdGVVeM6WB6mjRpbNXYhAkT7PiyZcuoJQqkUDrxvFGjRpI+ffoE3xdEREQk2nUBKdm2bdtsq/21++fKqQWux512efLk8dFVAoFD+7Dg4GBfXwYAAAj0ALjOunvrrbfkxRdflJYtW9qxV1991QJs33//PQFwwE/07NlTJk6cKNevX7f9pUuX2sQVnY0+ZswYX18eAACIIY2qriTTwfTQ0FBX4EvTqDZs2NA1oA4gZdi7d69lXHv66af/tm1YWNgdV4frfbz+uwIg4U6dOuXqw/VzpSu/NfgdEhIiGTJkkC1bttj5Bx54gM8dkAhYyAEAQGDyuwD44cOH5bfffrvtJnzWrFk+uyYAtwe/x44dK/ny5ZOBAwdK8eLF5eDBgzJ06FA7rgiCAwDgexs3brRB8w8++EBSp07tcU73+/TpIzVr1rR2derU8dl1AvA+nWSeK1cuue+++xL8Wpo6VmsUA0i4+vXrW7BbM7XoZDWHBr81W4NORC9atKi1Y/IakHCkPwcAIDB5joL5SQBcaf2wtm3bSo0aNaR58+by+eef+/rSAPxfaii94dbg97Fjx6R169aSO3du2+q+Htfz2g4AAPiW1uZV5cqVi/G8c9xpByDl2LNnj5QuXdrXlwEgGg1qjx8/XlavXm2ZWnTF98WLF22r+3p83LhxBL8BAACA5LQC/MKFC7bt1auXdO7c2VIyrl+/Xjp27Gg1CzUgHlPKtdjoYJ7WDteAOoCE05rfmvZcV35rkFvTsSln279/f3nttddk0qRJ9hkGkDCaUpQZ6QDiq0CBArbdtWuXVK9e/bbzety9HYCUlWY5e/bsvr4MADFo0qSJLFu2zMqY1K1b13VcV37rcT0PAAAAIBkFwNOlS2dbXf3duHFje641j3R2emwB8L+jQTqtdQggcVIlKk177v650vSqqkSJEq52fO6AhNM+LDg4mLcSQLzUqlXL0qiOGDHCI42qunnzpowcOdIG07UdgJTl3Xff9fUlALgDDXI3bNhQPvvsM9m2bZvV/CbtOQAAAJBMA+CaPlmVKlXK47gG1b788ssYfyYsLCzW19PV4bp6ToPoABKuSpUqsnTpUqv5rYPluvJbg986uK41yTZt2uRqx+cOSLigoCDeRgAJTqParFkzS5vapUsXO6ZpVLVkiaZR1ZVk1BAFAMD/aP9cu3ZtyZMnj91f018DAAAAyTQAXrZsWcmUKZPs3LnTAmiO/fv3S+HCheP1mpo6NmPGjIl4lUDK9cYbb0i/fv1k6NCh0r59e9dxDX5roG7YsGGSNm1aa0fgDkg40p8DSCjSqAIAAAAAACAlSS1+Jn369NKuXTuZOnWqrUj55ZdfZNq0afLtt99KmzZtfH15QIqnQW1dPXbixAkpVKiQzJ492+oH6lb39bieJ/gNAIB/BcEPHDggn3zyiU1W0+3PP/9MDVEAAAAAABLBjRs35Ouvv5Z169bZVvcB+I7frQBXHTt2tNWkmpZRg2laa3jy5MlSrVo1X18aABEZM2aMvQ/6GX3ttddc74mu/O7Ro4frPAAA8B+kUQUAAAAAIPGtWLFCunXrZqVCHVoyVEuS6YR0AN7nlwFwpau9WfEN+C8NcusKskmTJkl4eLiVLCDtOQAAAAAAAAAgJQW/mzVrJg0aNJA5c+bY5HNd/T1hwgQ7vmzZMoLggA/4bQAcgP/TNOedO3eWiIgICQ0NJe05AAB+LCoqSqZMmcLENQAAAAAAEoEGunXltwa/P/roI7ly5YprrFz3GzVqJN27d5eGDRtaYBxACq4BDgAAACBx9ezZUzJlyiS9evWSpUuX2lb39TgAAAAAALh7GzdutLTnffv2ldSpPcNtut+nTx85fPiwtQPgXQTAAQAAgACmQe6xY8dKrly5ZOrUqbJu3Trb6r4eJwgOAAAAAMDdi4yMtG25cuViPO8cd9oB8B4C4AAAAEAApz2fOHGi5MuXT44dOyatW7eW3Llz21b39bie13YAAAAAACDuChQoYNtdu3bFeN457rQD4D0EwAEAAIAA9fbbb8v169dl2LBhkjZtWo9zuj906FA7r+0AAAAAAEDc1apVS0JCQmTEiBFy8+ZNj3O6P3LkSClatKi1A+BdBMABAACAAHXw4EHbNmjQIMbzznGnHQAAAAAAiJs0adLI+PHjZfXq1dKoUSPZsmWLXLx40ba6r8fHjRtn7QB4l+cyEAAAAAABo3jx4rbVm+6WLVtKly5dZOfOnVKhQgWZNGmSHXdvBwAAAAAA4q5JkyaybNky6datm9StW9d1XFd+63E9D8D7CIADAAAAAapjx47So0cP6dSpk/zrX/9yHdfZ6DNmzJCgoCBLha7tAAAAAADA3dMgd8OGDeWzzz6Tbdu2yQMPPCD169dn5TfgQ6RABwAAAAKUBriLFCkiUVFRtq834LNmzbKt0uN6XtsBAAAAAAAAgYAV4AAAAECAunz5stX31npjt27dstno+lBODTI9r+0yZMjg46sFAAAAACD5WbFihaVAP3LkiOtYSEiI1QcnBTrgG6wABwAAAAKUpj93thrkHj16tDRv3ty2ly5dsht093YAAAAAAODugt/NmjWT+++/X7744gv5+uuvbav7elzPA/A+AuAAAABAgPr5559t265dO0tz3rlzZ+nVq5dtdb9t27Ye7QAAAAAAQNzcuHHDJpY3aNBAPvroI6latapkzJjRtrqvx7t3727tAHgXAXAAAAAgQJUsWdK2M2fOjPG81gN3bwcAAAAAAOJm48aNlva8b9++kjq1Z7hN9/v06SOHDx+2dgC8iwA4AAAAEKDGjh1r2wkTJlgKdE3Ftm7dOtvq/qRJkzzaAQAAAPAdDZRVqlTJI2VyRESEtGrVSipWrCh169aV999/nz8R4CciIyNtW65cuRjPO8eddgC8J60XfxcAAAAAL8qQIYM0bNhQVq5caWnYYqLntR0AAAAA37l27ZqlSr506ZLr2J9//ilt2rSxwPeQIUNkx44dts2UKZM0bdqUPxfgYwUKFLDtrl27pHr16red1+Pu7QB4DyvAAQAAgAD24osvJug8AAAAgKQ3efJkyZw5s8exJUuWSLp06WTo0KFSvHhxC3q3bt1aZsyYwZ8E8AO1atWSkJAQGTFihNy8edPjnO6PHDlSihYtau0AeBcBcAAAACBA3bhxQ7p16yZPP/20XLhwQdq3by/VqlWzre7rcV1lou0AAAAA+MbWrVtl8eLFMmrUKI/j4eHhUrVqVUmb9n+JXHWVqdYcPn36tA+uFIC7NGnSyPjx42X16tXSqFEj2bJli1y8eNG2uq/Hx40bZ+0AeBcp0AEAAIAAtXHjRhsc++CDDyxN4sSJE62GYGhoqKVE79Onj9SsWdPa1alTx9eXCwAAAKQ458+fl549e0r//v1vS5N8/PhxKVWqlMexvHnzumoK586d26vXCuB2TZo0kWXLltnkcy1X4NCV33pczwPwPgLgAAAAQIDSQTFVrly5GM87x512AFKOjz76yNKn/vrrr1K4cGHp3LmzPPnkk76+LAAAUpzBgwdLpUqVLDtTdFeuXJGgoCCPY8HBwba9evVqrK9Zr169WM/pd//8+fN71BoHkDBPPPGE1K9fXz7//HOr+6332hoM15XffNaAxHPr1i1JlSpVnNoSAAcAAAAClLOCRG/AH3zwQfn6669l27ZtcurUKbs51+Pu7QCkDCtXrpR+/fpJ3759rR7hmjVrpGvXrjYYrgPwAADAexPSNM35qlWrYjyfPn16iYqK8jjmBL41o1N86WtqZigAiatQoUL2UPv37+ftBRKZ9l/ORLC/QwAcAAAACFAa2AoJCZHXXnvNagRqOnSHHteUiZqWTdsBSDkz5t966y158cUXpWXLlnbs1VdftcH377//ngA4AABetHz5cjlz5sxt5YgGDRoka9eutclpJ0+e9Djn7OfLly/W1w0LC7vj6nD9PqBlkQAkrsuXL9t9t95vZ8iQgbcXSGTRs6LcCQFwAAAAIEBpurXmzZvL2LFjbYBsypQpUrx4cTl48KC8+eabFvDq0aOHtQOQMhw+fFh+++2329Kszpo1y2fXBABASjVu3DhLc+7usccek9dff12eeeYZy9qyaNEiuXHjhus7++bNm20Sa65cueL9ezV9bEJWkAO4Mw1+8xkDEl9c05+r1Enw+wEAAAD4AR0oW7p0qVSpUsXSJzo1fnWrN+R6fNmyZdYOQMoJgCutRdi2bVupUaOGTZTReoUAAMC7dJJqkSJFPB5Kg9t6rmnTpnLhwgUrXXLgwAFZsWKFzJ07Vzp06MCfCgCAO2AFOAAAABCgNm7caOnXPvjgA6sB/tlnn1kN8AceeMBqgGu645o1a1q76GkXAQQmHURXvXr1sskw3bt3l/Xr10vHjh1lzpw5FhCPKVVqbCIjIy09qwbUASRNKlX3LYDEpanA72Y1mbdpIHzmzJkyfPhwady4seTJk0d69uxpzwEAQOwIgAMAAAABSgNTqly5cpYysXbt2jZopvX+dF+Pu7cDEPjSpUtnW1397Qye678Je/bsiTUA/neioqIkIiIi0a8VwP/ohDYAiU/7sODgYL96a/ft2+exX758eVm8eLHPrgcAgOSIADgAAAAQoAoUKGDbXbt2WbC7RYsWFqTSYJeuCtfj7u0ABD5Np6pKlSrlcbxEiRLy5ZdfxvgzYWFhsb6erg7X1XP67wqAxKcrvzX4HRISYuVLACSuoKAg3lIAAAIQAXAAAAAgQNWqVcsGzJ944gk5d+6c6/jBgwclS5Yski1bNilatKi1A5AylC1bVjJlyiQ7d+6UKlWquI7v379fChcuHK/X1NSxGTNmTMSrBBCdBr/5nAGJz5/TnwMAgPhLnYCfBQAAAODHNM25Ppzgt9b9njVrlm2VHk+dOrW1AZAypE+fXtq1aydTp06V1atXyy+//CLTpk2Tb7/9Vtq0aePrywMAAAAAIMFYAQ4AAAAEqAsXLthqb13ZUrBgQfnss8/soe699145duyYndd2mTNn9vXlAvCSjh072mrSiRMnyokTJ6R48eIyefJkqVatGn8DAAAAAECy55crwPUGvHTp0rc9VqxY4etLA+BGB8ufffZZ10P3AQCA/3jhhRds26pVK6sf+sknn8iwYcNse/jwYXn++ec92gFIOXS1t9b23rVrl6xcuVIeffRRX18SAAAAAACBuwJ87969EhwcLBs2bPCow6J1CgH4h6pVq8rWrVtvqyX64IMPyvfff+/TawMAAP/rn1X37t0tzXnt2rUlT548Ehoaavtdu3aVBQsWuNoBAAAAAAAAyZ1frgDfv3+/hISESN68eW2AznlorTIA/hP81gkqunJs4cKFttV9Pa7nAQCA72laYzVu3LgYz0+YMMGjHQAAAAAAAJDc+WUAfN++fQzCAX5K05w7we9Lly7Ju+++K6VKlbKt7jtBcNKhAwDge/PmzbPt/Pnz5eLFi/L111/LunXrbKv7OonNvR0AAAAAAACQ3KX11xXgOXLkkJYtW1ptwiJFisirr75qKRtjUq9evVhfKzIyUvLnz2+BOQAJ16JFC9f25s2bcvnyZdvXbYYMGawW+KJFi+z84sWLecuBBLp165ZHORAAuBuZM2e28iQ6OU2fx0TPx3YOAAAAAAAASG78LgB+/fp1OXTokJQoUUJ69+5tg3Fr1qyR9u3by5w5c6RGjRp3/ZpRUVESERGRJNcLpDTOZ6lBgwYen6sjR464jmsAXM/xuQMSTvuw4OBg3koA8abfqZs2bXrH8wAAAAAAAECg8LsAeNq0aWXLli2SJk0aV83vcuXKyc8//yyzZs2KMQAeFhYW6+vp6nBdPRcaGpqk1w2kFPpZOnjwoKxevdrSnuvKbw1+h4SE2Apwp8aotuNzByRcUFAQbyOAeLtx44Z069ZNnn76aUuDrhmWdIKa9tELFiyQVq1aSffu3aVhw4b2/RsAAAAAAABI7vwuAK4yZcp027GSJUvKN998E6/X09SxGTNmTIQrA/DBBx9IlixZbKuTUjTorXSbOnVqV9pzPc/nDkg40p8DSIiNGzfaRDXtl7NmzWr9tBMA1366T58+UrNmTWtXp04d3mwAAAAAAAAke6nFz+hK78qVK9sqcHe7du2ytOgA/KOWqGZW0IHztm3byt69e22r+3qcWqIAAPiHyMhIV0almDjHnXYAAAAAAABAcud3AfDixYtLsWLFZOjQoRIeHm6plkeOHCk7duyQV1991deXB0BEvv/+e1cQXOt9a/pU3TrBbz0PIHCcOXNGevToIdWrV5dKlSpJ+/btrX926GpS/XegYsWKUrduXXn//fd9er0A/qdAgQKuyaRatqRLly7SqVMn2+q+HndvBwAAAAAAACR3fpcCXVMov/POOzJ+/Hh544035Pz581KmTBmZM2eOlCpVyteXB+D/aJD7woUL0qJFC1cqVU2vqivEAQQWDZbdvHlTZsyYYWVK3nrrLWndurV8+umncuXKFWnTpo0FvocMGWIT1nSr7Zo2berrSwdSvFq1aklISIg0atRITpw44Xo/NNuSfqbz5csnRYsWtXYAAAAAAABAIPC7ALjKnTu3rfoG4N802B29liiAwHLu3DkpWLCgdOjQwTURrWPHjtKwYUMrW7Jp0yZJly6dZW5JmzatZXI5evSoBdYIgAO+lyZNGsmTJ49s3bpVUqVKJc8995w0aNBAVq9ebdlbNCiu2Vu0HQAAAAAAABAI/C4FOgAA8B/ZsmWzrCxO8PuPP/6QuXPnSv78+aVEiRJWrqRq1aoW/HZoqvQjR47I6dOnfXjlAJSmOdfgt35GCxUqZNlaWrZsadt7773Xjut5bQcAAAAAAAAEAr9cAQ4AAPzPgAEDZMmSJRIUFCTTpk2zrA/Hjx+/rURJ3rx5bRsZGWlZXWJSr169WH+P/pwG2C9dupTI/wVAyqO1vpWWFho4cKB8/vnnVve7XLlyVrpg8ODBMmHCBDs/ceJEX18ukOzdunXLsi0AAAAAAADfIQAOAADi5KWXXpJnn31WFixYYHXBFy5caDXANSDuLjg42LZXr16N9zsbFRVl5RUAJMzOnTtt+9BDD8n+/fttFbg+lO7rcQ2Aazs+c0DCaf/l9IMAAAAAAMA3CIADAIA40ZTnavjw4RYsmz9/vqRPn94G+905gW9dIR6bsLCwWM/p6nBdQRcaGspfBkigChUqyJYtW+Tbb7+NcQW4TmRx2vGZAxIu+qQwAAAAAADgfQTAAQBArLTm96ZNm+Txxx931flOnTq1BcNPnjxpqcp1687Zz5cvX7zfWU0fe6cAOoC4mTRpksyYMcO2S5culaNHj7rOFSlSRH777TdXuwwZMvC2AglE+nMAAAAAAHwvta8vAAAA+K/Tp09L165dLQjuuHbtmuzZs0eKFy8uDz74oGzbtk1u3LjhOr9582YpWrSo5MqVy0dXDcChQW39nF6/fl1++eUXee6556yMgW51X4/reYLfAAAAAADEn2ZInDJliowePdq20TMmAvAuAuAAACBWpUqVktq1a8uwYcNk69atVjO4d+/ecv78eWndurU0bdpULly4IP369ZMDBw7IihUrZO7cudKhQwfeVcAP6OSUU6dOWUYGLS2waNEiadmypW11X4/rRBf3SSwAAAAAACDuevbsKZkyZZJevXpZ9jXd6r4eB+AbBMABAMAdTZgwQWrUqCFdunSR5s2by9mzZ20F6T333GOrvGfOnCmHDx+Wxo0b2wxX/XKvzwH43saNG+XIkSPy0UcfyaVLl6R9+/ZSrVo12+r+hx9+aJ9fbQcAAAAAAO6OjoONHTvWxsimTp0q69ats63u63GC4IBvUAMcAADcUZYsWWTw4MH2iEn58uVl8eLFvIuAH4qMjLRtuXLlLM35xIkTJSIiQkJDQ21fj7u3AwAAAAAAcaNpzvU+W7OrHTt2zPb1nrtWrVo28bxQoUJ2XjMrBgUF8bYCXsQKcAAAACBAFShQwLa7du2K8bxz3GkHAAAAAADi5u2335br169bgDttWs/1pro/dOhQO6/tAHgXAXAAAAAgQOms85CQEBkxYoScP39enn32WddD90eOHClFixa1dgAAAAAAIO4OHjxo2wYNGsR43jnutAPgPaRABwAAAAJUmjRpZPz48dK0aVPJli2b67jefDv7y5cvt3YAAAAAACDuihcvbtvVq1dLu3btbjuvx93bAfAeVoADAAAAAWzUqFEJOg8AAAAAAG7XsWNHS3Xev39/S3XuTvcHDhxo57UdAO8iAA4AAAAEqAsXLsjWrVslVapU9vyTTz6x2mS61X09ruf1OYCU48SJE1K6dOnbHitWrPD1pQEAAADJRlBQkHTp0sW+XxcqVEhmz54tp06dsq3u63E9r+0AeBcp0AEAAIAA9cILL9i2VatWkilTJqldu7bkyZNHQkNDJWPGjPL888/LggULrN2HH37o68sF4CV79+6V4OBg2bBhg02EcWTJkoW/AQAAAHAXxowZY9uJEyfKa6+95jquK7979OjhOg/Au1gBDgAAAAQorfWtunfvHuP5rl27erQDkDLs379fQkJCJG/evDYpxnmkT5/e15cGAAAAJDsa5L548aKMHj1amjdvblvdJ/gN+A4BcAAAACBAFS9e3Lbjxo2TqKgomTJlit2I61b3J0yY4NEOQMqwb98+PvcAAABAIkqTJo2UL19eKlSoYFvdB+A7pEAHAAAAAtS8efMspbFuFy5cKDdu3LDjS5culb59+7r29TyAlLUCPEeOHNKyZUs5fPiwFClSRF599VUrkxCTevXqxfpakZGRkj9/frl06VISXjGQcl2+fNljCyBx3bp1y6McCADEx4oVK6Rbt25y5MgR1zHNuDR+/Hhp0qQJbyrgAwTAAQAAgACVOXNmyZcvn5w4ccKC3Q8++KC8+OKL8v7778vWrVutjZ7XdgBShuvXr8uhQ4ekRIkS0rt3b/v8r1mzRtq3by9z5syRGjVq3PVrakaJiIiIJLleAP/lPqAOIPFoHxYcHMxbCiBBwe9mzZpJgwYN7Pu0rvzW+2/NuKbHly1bRhAc8AEC4AAAAEAAD+idOXNG0qZNa0EvDXo7gW+lx/W8tgsKCvLptQLwDv3cb9myxQbmnJrf5cqVk59//llmzZoVYwA8LCws1tfT1eG6ei40NDRJrxtIqXTltwa/dRVZhgwZfH05QMDhOzCAhNBAt6781uD3Rx99JFeuXLGJofrdWPcbNWok3bt3l4YNG5ISHfAyAuAAAABAgHr77bct8P3uu+/Kc889Jy1atHDdjH/wwQeWFr1Dhw7W7o033vD15QLwkkyZMt12rGTJkvLNN9/E6/U0dWzGjBkT4coAxEaD33zOgMRH+nMACbFx40abqKb316lTp/Y4p/t9+vSRmjVrWrs6derwZgNe5PmJBAAAABAwDh48aFudja5pjhcvXux66L4ed28HIPDpSu/KlSvbKnB3u3btsrToAAAAAOImMjLSlVFJV4N//fXXsm7dOtvqvh53bwfAe1gBDgAAAASo4sWL23b16tXSrl27287rcfd2AAKfft6LFSsmQ4cOlSFDhkiOHDlkyZIlsmPHDlm+fLmvLw8AAABINgoUKGDbKVOmyPTp0201uEPLl7Rv396jHQDvYQU4AAAAEKA6duxo9X779+9vM8419XmtWrVsq/sDBw6089oOQMqgqRjfeecdKV++vJU+aNy4sezcuVPmzJkjpUqV8vXlAQAAAMmG3l/nyZPHUp3rau8vvvjCVn/rVvf79u0refPmtXYAvIsV4AAAAECACgoKki5dusjYsWPlnnvucR3/5ZdfXPs9evSwdgBSjty5c8vIkSN9fRkAAABAspcqVSrX81u3brkeAHyLFeAAAABAAJsxY0aCzgMAAAAAgNtt3LhRTp48aZNLd+3aJXXr1pVHHnnEtrt375YRI0bYeW0HwLsIgAMAAAAB6tSpU3Lu3DnX89GjR0vz5s1tq/tKzzvPAQAAAHjXmTNnLCtT9erVpVKlSlYz+ODBg67zERER0qpVK6lYsaIF1d5//33+RICf0NJiqnPnznLgwAH55JNPZNiwYbb9+eef7bh7OwDeQwp0AAAAIEBVrVrVtmXLlrWUx3rzrQNoWgM8Y8aMttV9bXf48GFfXy4AAACQ4nTq1Elu3rxpmZkyZcokb731lrRu3Vo+/fRTuXLlirRp08YC30OGDJEdO3bYVts1bdrU15cOpHgFChSw90BXf+skltq1a1tNcL3XTpMmjR13bwfAe/x+BbgOxOnMtxUrVvj6UgBEs2/fPsmaNatUqVLFtroPAAD8h7OyW1d8x2T48OEe7QAAAAB4j2ZjKliwoK0YLV++vBQvXlw6duxoKZN19eiSJUskXbp0MnToUDunQW8NjlPGCPAPtWrVkpCQEEt1rhNZ3Om+pkYvWrSotQPgXX4dAL927Zp0795dLl265OtLARBNqlSp5L777pMbN27Yvm51X48DAAD/oDPPVa9eveTy5cvSpUsXW2GiW93v16+fRzsAAAAA3pMtWzYZP368lCpVyvb/+OMPmTt3ruTPn19KlCgh4eHhlq0pbdr/JXLVVaZHjhyR06dP86cCfExXeetnePXq1dKoUSPZsmWLXLx40ba6r8fHjRtn7QB4l1+nQJ88ebJkzpzZ15cBIBr3IHdwcLDNPNUv51evXnWdv3XrFu8bAAA+9v3330vevHll9+7dlvLcoTfj7qtGtB0AAAAA3xkwYICt+A4KCpJp06bZ9/fjx4+7guMO/X7v1BTWMkcAfKtJkyaybNky6datm5UrcOjKbz2u5wF4n98GwLdu3SqLFy+Wjz76SOrUqePrywHwf9zTnP/222+SPXt2qx06YcIEOXv2rKVtctqVLl2a9w0AAB/Sld26WuT69eu2nzNnTmnXrp3MnDnTVpcoPc8KcAAAAMC3XnrpJXn22WdlwYIFlrVp4cKFVgNcA+LudDGKchaixKRevXqxntPAua4wJ+sqkHieeOIJqV+/vnz++edW97tcuXIWDNeV33zWgMSjCy/jmoXYLwPg58+fl549e0r//v2lQIECf9ueDh3wnrJly7q+bGvwW9OnKt3qvh7XL+DaTj/LALzXqQNAdNo/O8FvpUHvMWPGeLTR89ouQ4YMvIEAAACAj2jKczV8+HDZuXOnzJ8/X9KnTy9RUVEe7ZzAt3uGp7ulr6kLWgAkrkKFCtlD7d+/n7cXSGTafzkTwZJlAHzw4MFSqVIlefrppxPl9ejQgcTj1PzWtOfuX5S19pBq1aqVzJo1y9rxRRrwbqcOANH16NHDtr1795auXbtKlSpV5NSpU7biW+sJai0yDYhruylTpvAGAgAAAF6kE1Q3bdokjz/+uKvOd+rUqS0YfvLkSVuprVt3zn6+fPlifd2wsLA7LibTyfahoaGJ9t8B4L90crmOk4eEhDDJHEgC0bOiJKsAuKY818G4VatWxfln6NAB79G0LRrc1prfmvY8eqeus1OddnyRBrzbqQNAdD///LNtNe25Br11cpo+tI/WFSNt27a1ALjTDgAAAID3nD592iaqaomiWrVq2bFr167Jnj17LH2y1vhetGiRjcXpWJvavHmz1RbOlStXvH+vZppLyApyAHem4+R8xoDEdzeZUv0uAL58+XI5c+bMbXW/Bw0aJGvXrrUvA3eLDh1IPLt375b77rvP0i1pzW9Ne+506rrvpGHSdnTyQMKR/hxAQpQsWVI+/fRT+w6tq8C1LtmhQ4ekWLFism7dOsva4rQDAAAA4F2lSpWS2rVry7Bhw+yRLVs2mT59upUV1OyLmhFOv8v369fPJrX++OOPtihlyJAh/KkAAEhOAXBNw3jlyhWPY4899pi8/vrr8swzz/jsugD8V+nSpV1vRcGCBe2LuKY915XfTvA7ejsAAOAbY8eOlalTp8qoUaPs4Z420ZnE5rQDAAAA4H2aYXH8+PHSpUsX+euvv6xs0YIFC+See+6x8xoA17rgjRs3tqxOPXv2tOcAACAZBcBjq12iKV3uVNcEgPdonSBnVaoGvZ3VY+7nAQCA/6Rdu3Tpku1ryZL27dvLjBkzrISJ0vPaDgAAAID3ZcmSRQYPHmyPmJQvX14WL17s9esCACA5S+3rCwCQPGmQe+/eva76Q7rVfYLfAAD4j3PnzrmC30qD3n379nUFv5We13YAAAAAAABAIEgWAfB9+/ZJkyZNfH0ZAKLRNOdakyg8PNy2pD0HAMC//L//9/9sq7W/NdCtq7+rVatmW93XUkPu7QAAAAAAAIDkzu9SoAMAAABIHL/88ottBw0aZGnOJ06cKBERERIaGmr7/fv3l08//dTVDgAAAAAAAEjuksUKcAAAAAB3r3DhwrYdMmRIjOeHDRvm0Q4AAAAAAABI7giAAwAAAAFqzZo1tl23bp38+OOPkj17dqlSpYptdV9Xf7u3AwAAAAAAAJI7AuAAAABAgMqWLZsUL17cnleoUEGuXbtmz3Wr+0rPazsAAAAAAAAgEBAABwAAAALYoUOHEnQeAAAAAAAASE4IgAMAAAAB6sCBA3Lr1i17vnfvXqlevbrkzZvXtrqv9Ly2AwAAAAAAAAJBWl9fAAAAAICkUaZMGdtmzJhRSpcuLWFhYRIRESGhoaF2TB+XLl2ydlFRUfwZAAAAAAAAkOyxAhwAAAAIUE7N7yFDhsR4vm/fvh7tAAAAAAAAgOSOADgAAAAQoNKlS2fbQYMGyeHDhyVXrlxSpUoV2+r+iBEjPNoBSHn034JKlSrJihUrfH0pAKK5fPmydOnSRTp16mRb3QcAAP5Js6pNmTJFRo8ebVuyrAG+RQAcAAAACFB79uyxraY5L1asmFy5csX2dav7ety9HYCURbM/dO/e3fVvAQD/0ahRIytVMmPGDNmyZYttdV+PAwAA/9KzZ0/JlCmT9OrVS5YuXWpb3dfjAHyDADgAAAAQoEqUKHHbserVq8epHYDAN3nyZMmcObOvLwNANBrkXrlypQQFBdkklQ8//NC2uq/HCYIDAOA/NMg9duxYy7Q2depUWbdunW11X48TBAd8gwA4AAAAEMCpjaPbvHlznNoBCGxbt26VxYsXy6hRo3x9KQDcaJpzJ/j9119/yZAhQ+Tee++1re47QXDSoQMA4Hua5nzixImSL18+OXbsmLRu3Vpy585tW93X43qedOiA96X1we8EAAAA4AVlypSxbdasWWXbtm22rymPtea3pj2vXLmyDabrcQbSgZTj/PnzthKlf//+UqBAgb9tX69evVjPRUZGSv78+UmjDiQSrfWtXn/9dbl+/bqrf9ZthgwZpHPnzjJhwgR54403bEAdQMLcunVLUqVKxdsIIF7efvtt66+HDRsmadOm9Qh06/7QoUOlQ4cO1k77bgDeQwAcAAAACFBXr161rd6Ma5rzs2fPSkREhISGhlod0UGDBllKVacdgJRh8ODBUqlSJXn66acT5fV0oE//bQGQcDt37rTtQw895PG5OnLkiOu4BsC1HZ87IHH6sODgYN5KAPFy8OBB2zZo0EAuXLggLVq0cN1zf/DBB3bcvR0A7yEADgAAAAQoHcy7cuWKrfLUG29d6a376dOntxXgmk7VaQcgZfjoo48kPDxcVq1aFeefCQsLu+PqcF09p4N8ABKuQoUKsmXLFvn222+tn9aV3xr8DgkJsRXgCxcudLXjcwcknJYVAID4Kl68uG1r1KjhmqzmBLyzZMkiRYoU8WgHwHsIgAMAAAABSoPcxYoVs3THunVoENx9X9sBSBmWL18uZ86ckTp16ngc14wQa9eulZkzZ971a2rqWM0qASDhJk2aJDNmzJD//Oc/Mnz4cAt6K91qKtUpU6a42jnnAMQf6c8BJETHjh2tfIkGv/XfE10BrpPPV69ebSvAjx496moHwLtSe/n3AQAAAPCSokWL3nasVq1acWoHIDCNGzfOAt26Etx5OPWGNdgGwLc0qN2wYUNLy6wrxwYMGGCD57rVfT2u5wl+AwDge+41v3PmzGkrwXPkyGFb3Y+pHQDvYAU4AAAAEKAOHz5827GNGzfG2I4gOJAy5MuXL8bjuXLlivUcAO/SiSmNGjWSlStXWr1vfTg0+O1MXAEAAL71wgsv2FbLje3fv19ee+011znN3KLlSrQmuLb78MMPfXilQMrDCnAAAAAgQOlNuMqaNascOnTIan8r3eq+riRzbwcAAPyDBrkvXbok7du3l2rVqtlW9wl+AwDgP7TWt9J05xcvXpTRo0dL8+bNbav78+fP92gHwHsIgAMAAAAB6urVq7YdNmyYrfDWur/h4eG21X2t+eveDkDKtG/fPmnSpImvLwNANJrmfOLEiTJ16lTbkvYcAAD/Urx4cVeZIU1zrhnXtm/fblvdd7K4OO0AeA8BcAAAcEdnz56VgQMHSu3ataVy5crSokULC6A5Nm3aZIPmFSpUkCeeeELWrFnDOwr4ieDgYNv2798/xvNDhgzxaAcAAAAAAOJm3rx5rq1mWFu9erWt9tat7i9YsMCjHQDvIQAOAADuqGvXrvLDDz/YrNXly5db/aK2bdta+mT9Ut+hQwepVauWrFixwtI89ezZ04LiAHxvz549tj1//rx89913kj17dqlSpYptdf+vv/7yaAcAAAAAAOImc+bMkjFjRtd+kSJFZPjw4bZ16HltB8C70nr59wEAgGTk6NGj8u2338rChQvlgQcesGMDBgywVE6rVq2yNMqlS5eWLl26uFI6aSBt5syZUqNGDR9fPQBNc546dWq5efOmPPTQQ6435Nq1a659Pa/tAAAAAABA3F24cEEuXbrkMY7Wr18/jzZ6XtsRBAe8ixXgAAAgVjly5JAZM2bI/fff7zqWKlUqe+iKUk2FHj3QXb16ddm2bZvcunWLdxbwA3/3WeSzCgAAAADA3XvhhRdcW82w1qBBA1scolvdb9mypUc7AN5DABwAAMQqa9as8sgjj0hQUJDr2Pr1621Gq6Y9P378uOTPn9/jZ/LmzSuXL1+WP//8k3cW8LEDBw64Atya8jx9+vT2XLe6r/S8tgMAAAAAAHGnpQFV9+7dJSoqyvZPnTplW93XsoLu7QB4DynQAQBAnG3fvl369Okjjz32mNSpU0euXLniERxXzr5+0Y9NvXr1Yj0XGRlpQXX3FFIA4qdMmTKummMVKlSQY8eOyZEjRyQkJEQyZMhgx/Wzpu3Onj3L2wwkkE4o0SwpAAAAAAKfrvb+6aefpFq1ajZG5tCsibly5ZLg4GBXOwDeRQAcAADEyYYNG2xGa+XKlWXcuHF2TL/IRw90O/saXIsvfY2IiAj+MkACaa1v1bZtW4/PlAbB1UsvvSTTpk2zdnzmgITT/ssZ5AIAAAAQ2ObNmydZsmRxBb+rVq0qrVu3lrlz58r3338vV69edbUD4F0EwAEAwN+aP3++DB8+XJ544gkZPXq0a5V3gQIF5OTJkx5tdV9XleoNQGzCwsLuuDpcV9CFhobylwESKF26dBbcnjVrljz33HPy0EMPuc59++238t5777na8ZkDEi56VhQAAAAAgSv6opBixYpZOUHdagA8tnYAUmgA/MyZMzJq1CjZuHGjzZB58MEHpVevXqSJAPzMBx98IM8//7xrf+HChdKiRQufXhOAxKef7TfffFNeeOEF6devn0dq1ypVqnh8oVebN2+2VeKpU6eO9+/U36FBdAAJs2fPHilZsqSlOXcPfiv3fW3HZw5IONKfAwAAACnHI488YlunvNiiRYvs4XCOaztNlQ7Ae+I/Mp2EOnXqJEePHpUZM2bIsmXLJH369JY24vLly76+NABug3vuwW+l+wz6AYHl8OHDMmLECKlfv7506NBBTp8+LadOnbLHX3/9ZUHxH3/80VKiHzx4UGbPni3r1q2Tdu3a+frSAYhIiRIlYq0L/nftAAAAAABA7H7//Xfbrlq1ysbJGjRoYAs5dav7K1as8GgHIAWvAD937pwULFjQBtlLlSplxzp27CgNGzaUn3/+WcqXL+/rSwRSvOhB7vvuu0/27t3rcV7TFwNI/tavX2/pkz/77DN7uGvcuLFlbHn77bdl7Nixlkq5UKFC9rxGjRo+u2YA/7Njx47b3g5d7R1Tu4oVK/LWAQAAAAAQR/fcc4/88ccfljHxm2++scWd27ZtkwceeEAyZMggAwcOdLUDkMID4NmyZZPx48e79vUfj7lz50r+/PlZmQL4Sdpzh5Yp0DTHERERVjd0+/btUqtWLVc70qEDyd8rr7xijzupXbu2PQD4n0qVKtlWSxLs27fPVn/rpBat+a2B8NKlS8vNmzetHZPXAAAAAACIu6+++kpy5cpl5QC17vcvv/ziOle4cGHXvrYDkMID4O4GDBggS5YskaCgIJk2bVqsdQnr1asX62tERkZa8FzrLABIOPe05xr8dkoT6Fb33dtp5gYACaMBKUoLAEiof//73zaZ9OzZs66Ja/rdWrMu6fdsAAAAAABwd3LmzGmLOjWzsQa79V775ZdfthKBeu+t9Ly2A+Bdfh0Af+mll+TZZ5+VBQsWWOqIhQsXStmyZe/6daKiolz/2ABIHJr23P1zdeTIEdtqjROtA6z43AEJp31YcHAwbyWABHnrrbdkwoQJtx2fPn067ywAAAAAAPFw48YNyZEjhy0Oc+JQPXr0cJ3XxZ0a/NZ2adKk4T0GvMivA+C6SkUNHz5cdu7cKfPnz5eRI0fe1i4sLCzW19DV4bp6TmfeAEg8WvNbP1fauWvwOyQkxOqaOMFvxecOSDj9ogwA8fXDDz9YenNNc67fo/v27es6N2LECDvutAMAAAAAAHGnJUJ1bHzTpk1SqlQpefjhh+W3336TggULWk1wLUVWs2ZNa1enTh3eWiAlB8C15rf+Y/H4449L2rRpXTULNRh+8uTJeL2mpo6NLX06gLujmRicNOha89tJe67Bb913b8fnDkg40p8DSIiKFSu6nrsHv6Pvu7cDAAAAAAB/T0vwqnLlytkK71q1atlizgoVKth4uR53bwfAe1KLnzl9+rR07drVguCOa9euyZ49eyy1MgDfatGiheu5duiZMmWyUgW61f2Y2gEAAAAAAAAAEEgKFChg26eeesoWg82YMUO2bNliW93/f//v/3m0A5CCA+CaJqJ27doybNgw2bp1q+zfv1969+4t58+fl9atW/v68gCIWFkBd+5pz2M6DwAAfGPOnDmu59FrgLvvu7cDAAAAAAB/TxeEaaBbU5xrGcPu3bvLhx9+aFvd1+N63n3hGIAUGgB3BuNq1KghXbp0kebNm8vZs2dlwYIFcs899/j60gC4Bbk1zbk73Sf4DQCA/3j55Zddz/W79cWLFyU8PNy2uh9TOwAAAAAA8PeioqLk0qVL9rx+/fq2Ejxnzpy21X2l57UdgBReA1xlyZJFBg8ebA8A/kvTnDds2FAiIiIkNDSUmt8AAPip++67L8bjWmIoeiYXAAAAAADw93r06GHbxo0byw8//CB169Z1nStatKiNna9cudLaTZkyhbcUSOkrwAEAAAAknr1798qOHTskU6ZMUqVKFdvqPsFvAAAAwLc0++nAgQOtLGjlypVtwYlmbXJs2rRJmjRpIhUqVJAnnnhC1qxZ49PrBfA/P//8s23Hjh0rn3/+uaRPn972dRsWFiZjxozxaAfAewiAAwAAAAFq9uzZrueVKlXyOOe+794OAAAAgPd07drVVo5qWdDly5dblsW2bdvKoUOHbMJqhw4drH7wihUrrFxoz549LSgOwPdKlizp2hYrVkyuXLli+7rVfScbm9MOgPcQAAcAAAACVJs2bW47FhwcHKd2AAAAAJLW0aNH5dtvv7VSoJqpSVMmDxgwQPLmzSurVq2S9957T0qXLi1dunSx8kUaGNdV4DNnzuRPA/gBXfmtbt26ZVut/92nTx/buh932gHwHgLgAAAAQIDSNOfRXb16NU7tAASuM2fOWB3C6tWrWzaI9u3bUxIB8EPbtm3zKF+i+wACS44cOWTGjBly//33u46lSpXKHufPn7dU6DVq1PD4Ge2/9d8DJ7AGwHdOnTrlep4mTRpp3bq19du61f2Y2gHwjrRe+j0AAAAAvMxJc546dWpbJfLyyy97pD1v166d3Lx509oxgAakHJ06dbLPvg64a1DtrbfeskG6Tz/9VDJkyODrywPwfwGw6HRAXdFnA4Eja9as8sgjj3gcW79+va0M79u3r3z44YeSP39+j/O6Ovzy5cvy559/ulaZRlevXr1Yf2dkZKS95qVLlxLpvwJIucqUKWPbtGnTyvXr162UgT4cznFtd/LkSR9eKRAY9HtwTN+TY0IAHAAAAAhw//73vy3N+bPPPisRERFWVzBjxoyydetWmTZtmq8vD4AXnTt3TgoWLGj1REuVKmXHOnbsKA0bNpSff/5Zypcvz98D8DH3QT193qRJE6v96wS+9RhBcCAwbd++3dInP/bYY1KnTh2rIxwUFOTRxtmPioqK9+/Rn9X7AgAJ40wk0exKTz31lE0s/fXXX+Xee++1+/CPP/7Y0p9rOz5zQMJp/xVTab+YEAAHAAAAApzehOsAmga4HCtXrpTp06f79LoAeF+2bNlk/Pjxrv0//vhD5s6dayvBSpQowZ8E8DH3NOcHDx60z6YOmL///vty/PhxqwHstHvggQd8eKUAEtuGDRuke/fuUrlyZRk3bpwd00H+6IFuZ/9OWVvCwsJiPaerw3USjU6KBZAwOrH84sWLdm+tk0p37dolv//+u006DQkJkVmzZrna8ZkDEi76pLA7IQAOAAAABKgffvjB0ptrqmP34Ldy39d2AFKeAQMGyJIlS2wQQbNB6MBcTEijCniPk+ZcV3lr8FvTHCvd6r6z+lvb6YA7AO+lUk1K8+fPl+HDh8sTTzwho0ePdg3wFyhQ4La0ybqvfXaWLFni/fv0vzm2fh9A3O3Zs0eKFClik0p11bfj/PnzHvvajs8ckHB302cTAAcAAAACVMWKFW87liNHDqsX+HftAAS+l156yUojLFiwwOqCL1y4UMqWLXvXr0MaVSDxadpz91SpR44cse3TTz9t6VQVqVQB76ZSTSra/7755pvywgsvSL9+/TwG93Wyy/fff+/RfvPmzbZKPHXq1D64WgDuChcu7LGvn8tmzZrJsmXLbCJ6bO0AJD0C4AAAAECAcgbI3UUPfjvtnnnmGS9dFQB/4aQ81xVnO3futNVnI0eOvK0daVQB79Oa35r2XFd+a/Bb06hquuNVq1a52pBKFfBuKtWkcPjwYRkxYoTUr19fOnToIKdPn3adS58+vQXFGzdubCnRdfvVV1/JunXrZObMmT69bgD/pSu/3WnQWzMsxdQuZ86cvG2AFxEABwAAAAJU9DTnmg49pn1tp+kfAQQ+HXzbtGmTPP7445I2bVrXShUNhkdPsRpXpFEFEk94eLit+NR+WWt+a9pzpcFv3Xf6a21HKlUg4Xyd/nz9+vVy7do1+eyzz+zhTgPeo0aNkrffflvGjh0r7733nhQqVMie16hRw2fXDOB/HnnkEdtWr15dFi9eLGXKlJFLly5ZH61pz5s3b25ZHLTdTz/9xFsHeBEBcAAAACDA/eMf/7A051orVNOl6ooxvSGvWbOmfPfdd76+PABepCvLunbtaivHatWqZcd04F0H6OrWrcvfAvCxBx54wPW8ePHiFpzTtOe68tt9spp7OwDJ1yuvvGKPO6ldu7Y9APif33//3ZVRSTNKZMqUyUor6Fb3hw4dKk888YSrHQDvIQAOAAAABLgvvvgixuMEv4GUp1SpUjaIPmzYMHtky5ZNpk+fLufPn5fWrVv7+vIAiFig21mVqs+jlzQhawsAAP7hnnvusQxLjz76qEf/rJmVChQo4OrPtR0A70rt5d8HAAAAwEtWrlzpev6vf/3LZqFrWlXd6n5M7QAEvgkTJljq1C5dulhaxrNnz8qCBQsYmAP8iA6ia5pzd7pP8BsAAP/x1Vdf2dbpn0NCQmTkyJG2dT/utAPgPawABwAAAALUM88843qu6Y7due+7twMQ+LJkySKDBw+2BwD/pWnOo5cvAQAA/kPTnbvLnTu3ZM6c2bZHjhyJtR2ApEcAHAAAAAAAAAAAALgLFStWtG3q1Knl5s2blq3FPYOLc1zbHT9+nPcW8CJSoAMAAAABauzYsa7nnTt39jjnvu/eDgAAAAAA/D0tJaQWL14sZ86csYwtWbNmta3uz5s3z6MdAO8hAA4AAAAEqJ49e7qeT5482dKo6mx03ep+TO0AAAAAAMDfy549u+ueWld479u3T86fP29b3e/bt69HOwDeQwAcAAAACHBafywmOXLk8Pq1AAAAAAAQCHbs2GHbw4cPS9myZS3dudKt7h89etSjHQDvIQAOAAAABLjTp09Lt27dJFOmTFKlShXb6v6ff/7p60sDAAAAACBZyp8//23HateuHad2AJIWAXAAAAAgQI0ZM8b1fMKECR7n3Pfd2wEAAAAAgL+3Z8+e2459/fXXcWoHIGkRAAcAAAACVI8ePRK1HQAAAAAA+K/777/ftunSpZPIyEjJmzevPdet7utz93YAvIcAOAAAABCgNM15YrYDAAAAAAD/5dT87t27t5w7d07OnDkj165ds63ud+nSxaMdAO8hAA4AAAAEqDulOb9TenQAAAAAAHBnqVP/N8T25ptvyn333Sc3btywfd3qvnPf7bQD4D186gAAAIAAlz59ektzfvHiRQkPD7et7jvp2AAAAAAAwN356aefPPaDg4OlQ4cOtr1TOwBJjwA4AAAAEOCuXLkiTz/9tGTKlEmqVKliW93X1GwAAAAAAODupUmTxmNfU51funTptpTn0dsBSHoEwAEAAIAA1bVrV9fz1atXe5xz33dvBwAAAAAA/l7ZsmU99nWS+bx5826bbB69HYCkRwAcAAAACFDjx49P1HYAAAAAAOC/nJrfw4YNk5kzZ3q8Lbo/YMAAj3YAvCet+KGzZ8/KhAkT5Msvv5QLFy5I6dKlpVu3bpauEYD/aN68uSxbtsy136xZM1m6dKlPrwkAAPyPpjmPa7tVq1bx1gEAAAAAEEea2lyD2/3797/tXLt27TzaAfAuv1wBrikYf/jhBwuCL1++XEJDQ6Vt27Zy6NAhX18agP+TKlUqj+C30n09DgAA/MOd0pzfKT06AAAAAAC4s927d992rF69enFqByCFBcCPHj0q3377rQwePNhWfBctWtTSROTNm5dVKYCf+LsgN0FwAAD8j6Y5v3jxooSHh9uWtOcAAAAAAMTf8ePHPfaDg4MlJCTEtndqByAFBsBz5MghM2bMkPvvv98jmKaP8+fP+/TaAPw37bmjd+/eHgPpuh9TOwAAAAAAAAAAAkmdOnU89q9evSqzZs2y7Z3aAUiBNcCzZs0qjzzyiMex9evX28rwvn37xvgzMaWUcERGRkr+/Pnl0qVLiX6tQErknvZcszNcvnzZnutW90eNGuVqx+cOSLhbt26RVQFAvDVo0MCV3vxOGVq0HQAAAAAAuHv//Oc/ZejQoVK2bFmrCa41vzXtec+ePeXjjz/mLQV8wO8C4NFt375d+vTpI4899li8Z8lERUVJREREol8bkNK5f66OHDlyx/MAJN59WPS0SQAQV6tWrYrTJBptBwAAAAAA7t6SJUvkueees+C30u2ePXsIfgM+5NcB8A0bNkj37t2lcuXKMm7cuFjbhYWFxXpOV4fr6rnQ0NAkukog5dLPla781uC31jbJkCHDbecBJExQUBBvIQAAAAAAAOBnvvzyS9fCzSZNmnicc9/XdgC8y28D4PPnz5fhw4fLE088IaNHj05QAEBXvWTMmDFRrw9IqZo1a+ZKg/7mm29a2nOlwW/dd2/H5w5IuLis3ASA2NSsWTPO7b777jveSAAAAAAA4ih6OV+VKVMmuXjx4t+2A5C0UosfWrhwoQXSWrZsKRMmTGD1G+BHli5d6nqu9b61Q69SpYptnfrf0dsBAADf2LRpk+u5ZkXSm/Dw8HDb6n5M7QAAAAAAwN/78MMPbzsWPfgdWzsAKSwAfvjwYRkxYoTUr19fOnToIKdPn5ZTp07Z46+//vL15QH4vwH0hJwHAAAAAAAAACA5u1Oac/f96OnRAaTAAPj69evl2rVr8tlnn8nDDz/s8dCU6AD8gwa5Nc25O90n+A0AgH/Knj27R+YW3QeQMp09e1YGDhwotWvXlsqVK0uLFi0sOwQA/6Jlxdz7bsqMAQDgn2rVqiXHjx/3OKb71apV89k1ASmd39UAf+WVV+wBwP9pmvNLly5JRESEhIaGcjMOAICfqVGjhiu9+blz5zzOue9rOwApR9euXS3LmpYcy5Url8ybN0/atm1rqRmLFSvm68sDICKpUqW67X24fPmyHWfiOQAA/mXjxo32cPfcc8/57HoA+OEKcAAAAACJ47vvvkvUdgCSv6NHj8q3334rgwcPtlWlRYsWlQEDBkjevHll1apVvr48ALEEv+/mPAAA8I4VK1bcdqxMmTJxagcgaREABwAAAAJUXNOckw4dSDly5MghM2bMkPvvv98jmKaP8+fP+/TaAPw37blDP6cXL160EgW6df/ckg4dAADfi4qKitNEtZjaAUhhKdABAAAAJI7oac6ddOh/lx4dQODKmjWrPPLIIx7H1q9fbyvD+/btG+PP1KtXL9bXi4yMlPz581tpJAAJp2nOHZs3b3bt61b3tRa4s8/nDkg4LSlAVgUA8RVTmvPdu3fH2O7ZZ5/ljQa8iAA4AAAAkAJomnMdKI+IiJDQ0FBbOcZgH4Dt27dLnz595LHHHpM6derE6w3RFS36bwuAxOX+uTpy5MgdzwOQePdhwcHBvH0AEqRatWrSq1cvadKkiUfa8zfffFN++OEH3l3ABwiAAwCAOJs+fbp88803Mm/ePI+Bt+HDh8uuXbskZ86c0rp1a3nxxRd5VwEA8HMbNmyQ7t27S+XKlWXcuHGxtgsLC4v1nK4O19VzOrEGQOLSz5Wu9Nbgd0hIiGTIkOG28wASJigoiLcQQIJt2bJFvv/+e49juk/wG/AdAuAAACBOFixYIJMmTZIqVaq4jv3555/Spk0bqVu3rgwZMkR27NhhW03N2LRpU95ZwMeyZcvmSm9+p9Xe2g5AyjJ//nybwPbEE0/I6NGjExQA0H9fqEcMJA4Ncjtpz6tXr25pz53juu/ejs8dkHBkRAKQEIsWLXKlQR81apTHOfd9bQfAuwiAAwCAOzpx4oQMGjTIZrPqyhN3S5YskXTp0snQoUMlbdq0Urx4cashOmPGDALggB84e/ZsnAb1tB2AlGPhwoWWjvGFF16Qfv36MfgP+BEtV+L03T/99JOr5ndM7QAAgG9pXe+Y6oDH1A6Ad6X28u8DAADJzO7duy3I/fHHH0uFChU8zoWHh0vVqlUt+O3QlSmapvH06dM+uFoAAHAnhw8flhEjRkj9+vWlQ4cO1l+fOnXKHn/99RdvHuAHtKxAQs4DAADv6NOnT6K2A5B4CIADAIA70vTmkydPlnvvvfe2c8ePH5f8+fN7HMubN69tIyMjeWeBZJLSkdSPQMqxfv16uXbtmnz22Wfy8MMPezw0JToA/6BB7ug1v3Wf4DcAAP7jTmnO3fejp0cHkPRIgQ4AAOLtypUrt9UMDQ4Otu3Vq1dj/bl69erFek4D5xpUJ60jkLguXrxoNUU1Q4OWM9BBdPe0qnzmgITTwJS/Tyh55ZVX7AHA/2nfrI+IiAgJDQ2l5jcAAH5K760//fRTj2O6nz59ehs7A+B9BMABAEC86Rf5qKgoj2NO4Dtjxozxfl19TR3oA5B43D9TGgS/03kA8e+/nIlgAAAAAFLOhPPZs2d7HIu+D8C7CIADAIB405XaJ0+e9Djm7OfLly/WnwsLC7vj6nBdQaerXAAknipVqtzxPJ85IOGiZ0UBAAAAELh69+4dp/Tm2g6AdxEABwAA8fbggw9aTaMbN25ImjRp7NjmzZulaNGikitXrni/rqaPTcgKcgB3j88ckHD+nv4cAAAAQOKJvihEpU2bVq5fv/637QAkrdRJ/PoAACCANW3aVC5cuCD9+vWTAwcOyIoVK2Tu3LnSoUMHX18agP+rR5yY7QAAAAAAQOxpzqMHv2NrByBpEQAHAADxpqu8Z86cKYcPH5bGjRvLlClTpGfPnvYcQPJZjcqqVQAAAMD3pk+fLi+88ILHsYiICGnVqpVUrFhR6tatK++//77Prg8AgOSCFOgAACDOYqprVL58eVm8eDHvIgAAAAAA8bRgwQKZNGmSVKlSxXXszz//lDZt2ljge8iQIbJjxw7bZsqUyTKyAQCAmLECHAAAAEgBNM35xYsXJTw83LakPQcAAAB878SJE/LKK6/IuHHjJCQkxOPckiVLJF26dDJ06FApXry4Bb1bt24tM2bM8Nn1Avifl19+OVHbAUg8BMABAACAFEDTnOtKEV1RolvSngMAAAC+t3v3bgtyf/zxx1KhQgWPczp5tWrVqpI27f8SuVavXl2OHDkip0+f9sHVAnD3ww8/JGo7AImHFOgAAAAAAAAAAPiApjfXR0yOHz8upUqV8jiWN29e20ZGRkru3Llj/Ll69erF+vv05/Lnzy+XLl1K0HUDuLsAOJ85IOE0m2FcF3QQAAcAAABS+I0B6dABAAAA/3PlyhUJCgryOBYcHGzbq1evxvt1o6KiJCIiIsHXB+B/nnrqKVm7dm2s+3zmgITT/svpB/8OAXAAAAAgQMV1Vqy2IwgOAAAA+Jf06dPbYL87J/CdMWPGWH8uLCws1nO6Oly/+4eGhibilQL4/PPP77jPZw5IuOiTwu6EADgAAAAAAAAAAH5GU5WfPHnS45izny9fvni/rk6AvVMAHUDcVKpUyZUGXTM2uHPf13Z85gDvLfRQqRPh9wEAAADwc7rK4+LFixIeHm5bVnwDAAAA/u3BBx+Ubdu2yY0bN1zHNm/eLEWLFpVcuXL59NoAiGzfvj1R2wFIPATAAQAAAAAAAADwM02bNpULFy5Iv3795MCBA7JixQqZO3eudOjQwdeXBkBEMmfOnKjtACQeAuAAAABACkkTlSlTJqlSpYpt7yZtFAAAAADv01XeM2fOlMOHD0vjxo1lypQp0rNnT3sOwPc0u5p7mnN37vvu7QB4BzXAAQAAgAClac7jEugmHToAAADge6NGjbrtWPny5WXx4sU+uR4AcefUAo9tH4B3sQIcAAAAAAAAAAAAABAQCIADAAAAASquac5Jhw4AAAAAwN3R8mKJ2Q5ACgqAT58+XV544QVfXwaAGFBLFACA5EPTnGvdsfDwcNuS9hwAAAAAgPiLa21vaoAD3ufXAfAFCxbIpEmTfH0ZAO5ipRgryAAAAAAAAAAAAOAracUPnThxQgYNGiRbtmyRkJAQX18OgLsMcut5VpUBAOBfmKQGAAAAAEDS0DTn7iu9o+8D8C6/XAG+e/duSZcunXz88cdSoUIFX18OgDsMnrunUr1TOwAAAAAAAAAAAlH08XGC34Bv+eUK8Lp169ojrurVqxfrucjISMmfP79cunQpka4OgHsnfvnyZXuuW93XmW0OPndAwmk2BSaUAEjqf0PI3AIAAAAAAIBA4ZcB8MQWFRUlERERvr4MIOC4f66OHDlyx/MA4t+HBQcH8/YBiJe4TqChfAmQck2fPl2++eYbmTdvnq8vBUAc+nEmrQEA4D+YdA74r4AIgIeFhd1xdbj+IxQaGurVawJSAv1c6cpvDX6HhIRIhgwZbjsPIGGCgoJ4CwEAQJJYsGCBTJo0SapUqcI7DCSTSWxMWgMAwH8w6RzwXwERAI/LP0IZM2b09WUAAUfTnTu1TDT47Z7+XPG5AxKO9OcAEotOCtXyJJqhRSepaT/NvzFAynTixAkZNGiQbNmyxSayAvAvf9c/EwQHAAAA7ixFBMABJF1al+hBb/d2AADAfxDsBuDYvXu3pEuXTj7++GOZOnWq/Pbbb7w5gJ/21zrp3Jm85n7/TRAcAAAAiB0BcACJXtuE4DcAAADgv+rWrWuPuNLSYrGJjIyU/PnzW4YJAIlLg99adkzpVvfdg+B87gDv1e8FAADJCwFwAIl6g0DwGwCA5DegR/8NICGioqJshSqAxOX+uTpy5MgdzwOIfx8WHBzM2wcAQIDx+wD4qFGjfH0JAO6iligAAPAfcV3NQhpVAHcSFhZ2x9Xhel+g9wMAEpd+rnTltwa/Q0JCJEOGDLedB5AwQUFBvIUAAAQgvw+AAwAAAAAA/6WTaJgMCyQ+TXeuac+VBr/d058rPndAwpH+HACAwEQAHAAAAEihmVsY8AMAwL/Ll0QPeru3AwAAABCz1LEcBwAAAAAAAOBlfxfcJvgNAAAA3BkrwAEAAIAUgNXeAAAk35Xg7scBAAAA3BkBcAAAACCFDZ7H1A5AyjRq1ChfXwKAuyhfAgAAAODvkQIdAAAAAAAAAAAAABAQCIADAAAAKTztOenRAQAAAAAAECgIgAMAAAApJI3qxYsXJTw83LakPQcAAAAAAEAgIgAOAAAAAAAAAAAAAAgIaX19AQAAAACSHmnOAQAAAABIPJpZLS732mRgA7yPFeAAAAAAAAAAAABAEkw0Z0I64H0EwAEAAIAAFddZ5sxGBwAAAAAAQKAgAA4AAAAEKGajAwAAAAAAIKUhAA4AAAAAAAAAAAAACAgEwAEAAIAUQNOcX7x4UcLDw21L2nMAAAAAAAAEIgLgAAAAAAAAAAAAAICAQAAcAAAASIH1wONaHxwAAAAAAABITtL6+gIAAAAAJA1Nc+4e6M6UKVOs7QAAAAAAAIBAwApwAAAAIID9XXCb4DcAAAAAAAm/97548aKEh4fblnttwLcIgAMAAAABLrYbb27IAQAAAABIOMqOAf6FFOgAAABAMnL06FE5f/78Xf/cjz/+KFeuXJE9e/ZImTJlJH369PLTTz/F6xqyZs0qRYoUidfPAgAAAAAQCCg7BvgvAuAAAABAMvHHH3/Iww8/LDdv3vTpdaRJk0Z27NghOXPm9Ol1AAAAAADgy0nnOtm8fPnydzx/t5PPmXQOJBwBcAAAACCZ0IDzN998E68V4OrAgQMyZcoU6dy5s5QoUSLe16E34wS/AQAAAACBJL6Tzu+55x75/fffYzz+xBNP3PV1MOkcSDgC4AAAAEAykpDU41qTLGPGjFKyZEkpV65col4XAAAAAADJGZPOgcBBABwAAAAAAAAAAAApHpPOgcCQ2tcXAAAAAAAAAAAAAABAYmAFOAAAAOBFWhfs0qVLPnnPf/vtN9c2ffr04iuahl1roQEAAAAAAACJjQA4AAAA4MXgd4cOHXz+fk+ZMsXXlyDTp08nCA4AAAAASFRMOmfSOeC3AfCbN2/aoNzSpUvlr7/+kgcffFAGDhwo9957r68vDQAAxIC+G4gbZ+V3t27dpFChQl5/265cuSIRERESGhrqsxXgx44dk/Hjx/tsFTwA+m0AAJIb7rmBuGHS+f8w6RwpnV8GwN9++21ZuHChjBo1SvLnzy9jx46Vdu3ayapVqyQoKMjXlwcAAKKh7wbujga/S5Qo4fW3TYPOV69elWLFilkacgApE/02AADJC303EDdMOmfSOeC3AfCoqCiZPXu2dO/eXerUqWPHJk6cKLVq1ZJPP/1UGjRo4OtLBAAAbui7AQBIPui3AQBIXui7gbvHpHMAqf3tLdi7d69cvHhRatSo4TqWNWtWKVOmjGzdutWn1wYAAG5H3w0AQPJBvw0AQPJC3w0AQACsAD9+/LhtCxQo4HE8b968rnPR1atXL9bXi4yMtDTq1BhEINuxY4ecPn063j9/9OhRuXDhQrx+9vr163L58mXJkCGDpE0bv39SMmfOLEWKFJGEyJ07t1SsWDFBrwH4o1u3bkmqVKnEn9F3A3dXg1v7zD179si5c+fi9dZpnx/f77bab//5559y6NChePfbStOna98bHydPnrT3QN8LvqMj0NBvA4EnoffbgXDPzf02Ahl9NxBYuOfmnhuB7dZdjJX7XQBcv9Sr6LW+g4OD4z1IqGliIiIiEuX6AH9z6tQp2bRpk1SuXDner1G4cGHxh3+4EmL9+vVy/vx5yZMnT6JdE+APtA/TPtCf0XcDcXfs2DEJDQ21fk+fx1fq1PFL5KTfsfPlyyeJMaiQkOvX9+D333+3euRAIKHfBgJLYtxvB8I9N/fbCGT03UBg4Z77v7jnRqC6m37b7wLg6dOnd/1HOM+VDo7pbNeYhIWFxfp6ujpcv+TrBx4IRPr/tpYJSOkrwB9//HFWgCMgRZ8Q5o/ou4G767fvvffeBA1CJ8YK8Bw5cvhsBbgqXbq0XwQDgMRGvw0ElsS43w6Ee27utxHI6LuBwMI9939xz41AdTf9tt8FwJ3U55oa0X1QTPf1QxsfuhxeB+mAQFWzZk2f/W4dgNcMC/rlgs8ZkPj8Pf25ou8G7k5CV5ElBP02kLTot4HA48v7bUXfDSQt+m4g8HDPDQSuu+m345c7MQndd999NjN1y5YtrmOa1ljrJD744IM+vTYAAHA7+m4AAJIP+m0AAJIX+m4AAO5eWn9cvt6qVSsZN26c5MyZUwoWLChjx46V/Pnzy2OPPebrywMAANHQdwMAkHzQbwMAkLzQdwMAEAABcPX6669bjaP+/fvLlStXbOX3rFmzJF26dL6+NAAAEAP6bgAAkg/6bQAAkhf6bgAAAiAAniZNGunRo4c9AACA/6PvBgAg+aDfBgAgeaHvBgDg7vhdDXAAAAAAAAAAAAAAAOKDADgAAAAAAAAAAAAAICAQAAcAAAAAAAAAAAAABAQC4AAAAAAAAAAAAACAgEAAHAAAAAAAAAAAAAAQEAiAAwAAAAAAAAAAAAACQloJcCdPnpQbN25IvXr1fH0pQEC6deuWREVFSVBQkKRKlcrXlwMEnMjISEmTJo2kJPTdQNKh3waSFv02gMRG3w0kLfpuAImJfhvwn3474FeABwcHS9q0AR/nB3zm+PHj8scffxD8BpKI9mHal6Uk9N1A0qHfBpIW/TaAxEbfDSQt+m4AiYl+G/CffjvVLZ2SAgDx5GRXCAsL4z0EAMDP0W8DAJC80HcDAJB80G8D/iPgV4ADAAAAAAAAAAAAAFIGAuAAAAAAAAAAAAAAgIBAABwAAAAAAAAAAAAAEBAIgAMAAAAAAAAAAAAAAgIBcAAAAAAAAAAAAABAQCAADgAAAAAAAAAAAAAICKlu3bp1y9cXAQAAAAAAAAAAAABAQrECHAAAAAAAAAAAAAAQEAiAAwAAAAAAAAAAAAACAgFwAAAAAAAAAAAAAEBAIAAOAAAAAAAAAAAAAAgIBMABAAAAAAAAAAAAAAGBADgAAAAAAAAAAAAAICAQAAcAAADgF1auXCnHjh3z9WUAAIC7sHfvXt4vAAAA+BUC4ADwf27dusV7AQCAj6xdu1Z69eolS5YskePHj/N3AAAgGZgyZYp06tRJvvvuO19fCgAAiMOYN2PgSCnS+voCAMAf3Lx5U1Kn/u+coAULFkhwcLA0a9bM15cFAECK8dRTT8mhQ4csAK435M8//7wUKFDA15cFAADuoEyZMrJjxw5566237L764Ycf5v0CAMAPx7z/+OMPyZo1q6RNS1gQKQP/pwNI8dy/CPzwww/yzTffyObNmyV79uzy6KOPpvj3BwCApHbjxg1JkyaNdO7c2YLfixcvtuMtW7aU/Pnz8wcAAMBP1a1b1yaQz54924LgiiA4AAD+NeY9c+ZM+fLLL+Xq1avy6quvSrVq1SRTpky+vkQgSZECHUCK53wRGDdunAwePFjOnj1rg/CDBg2Sjz/+OMW/PwAAJCUNeGu/e+3aNdt/7bXXpGnTpvLhhx9aVpbIyEj+AAAA+CEnhepDDz0krVu3tlVlGgTXSeUAAMB3gW/3Me/Ro0fLO++8I/fff78Fvfv37y+fffaZXLp0iT8RAhorwAFAxALdS5culalTp1oKtyNHjsiKFStk/Pjx9mWhQYMGvE8AACThjHTdXrhwQTJnzixdunSR9OnTy/z58+0cK8EBAPAfTv+dKlUq17FatWpJUFCQDbBPmjTJjrESHAAA73PusdWaNWtk7dq1snDhQilVqpSEh4dLq1atLCiuHnvsMcmYMSN/JgQkAuAAICL79u2TqlWrSpUqVez90CC4DsD/9ddfMmzYMMmQIYPUq1eP9woAgCQIfs+bN082bdokhw8flnvvvVc6dOhgadk0NfqiRYtsgF1rgpMOHQAA/+m/dUD9+PHjsn//fnn66aflgQcesElsGgDXleDaf+vqcAAAkPRatGghTz31lLzwwguuY7/88ouNd2vwe+fOndZH6+OLL76QUaNGWTYXHRMvWLAgfyIEHFKgA0ixadqiO3XqlK08cxQuXFjq1KljKdE1Hbre3AMAgMQvQTJ9+nSpVKmS9OvXz2akDx8+XM6cOWM1wZ977jlZuXKltdFjAADA9/33mDFj7LF7924Lgnfs2FFGjhwp5cuXl3/961+WDn3y5Mny+eef8+cCACCJ6Zh28+bN5dlnn/U4/uuvv8r169ct3fnq1astDbqOd7/00ks25q3ZT/V+GwhEBMABpLjZ6k6aNvc6J/fdd5/NWv/qq6/k6tWrruO5c+e2WXCazm3u3LmWGh0AACSOvXv3yoYNGywIroPlWgtcJ6q1b9/eVoP/8ccfFgTXtGw6uJ4zZ07eegAAfEwnh2sZsWnTptnAeadOnWxw/dFHH5Xff/9datSoIe3atZOoqCgC4AAAeIFmMm3SpImVI9H+eejQoXZ88ODB0rZtW4mMjJTt27dLzZo1rdyYBr81EK6Z1zQDGxCISIEOIMXQAXVntvp7770n27Ztk7Rp08orr7xi6do09aquPNO05xUrVpQcOXLYajNNxfrMM8/I66+/bl8WQkJCfP2fAgBAsgx2BwcHS9GiRV3Hzp8/b5PTqlevLmFhYdK9e3fp0aOHPPHEExYQ12wsAwYMsP5Z+3GdxOZsAQBA0tNJ4FoSLF++fK5jel+sE8VDQ0Nl1apVljGtb9++UqRIEeu39aFBcB10L1euHH8mAACSkPs9sk4i11JiWvM7S5YsVppEs7PoWPiJEydskZe2f//99yVXrlzSsmVL+zn9GZ2QDgQSAuAAUtwXAV1lpl8CtKa3Br01EK6p2kaMGCEZM2aUt99+29LG6A2+zprTILjSWih8EQAAIH62bt1qM9F1oHzLli1SunRpyZYtm/W1WidUb8h79+5tKduuXbvmejgIfgMA4F3aDy9btszSmWt2Fl05VrlyZTl69KhlVNuxY4cFv3UC2/PPP2/30drf6z22ThzXAffodcMBAEDicsa8dQz74sWL0rVrV5t8rlladExc97UOuJYmadCgga0A1wyouq+0DWPeCEQEwAGkqC8Cp0+floiICJvl5sxE/+c//2kD7qNGjZL+/ftbvRSdLac36Q8++KB9ARg7dqx9gXBftQYAAOKubt26tsq7fv36Nrv8iy++sIH17Nmz24261iBz6pVpv60D6zr5LKb+HAAAJL106dJZ1rQJEyZYv60pzZcuXWoZ0rREyXPPPSfDhw+Xpk2bWvszZ85Y360rwd0R/AYAIOlpn7148WIb63ZWdmsQXPvhN954w8a+v/nmG5uI/tprr1l7LWGiWyAQMf0SQMDSGia6wtuhK8t0VrqmONfa3o4lS5ZI/vz5LQiuXwI0yK3p2vTLwZAhQyxFus56nzhxouTJk8dH/zUAACRvOiBeqlQpC2xrxhWdWKbZVrRuqPbDP/30k0ydOlVWrFhhNcquXLliWwAA4Ds6YF6yZEnZuXOnVKpUySaxaX/+5JNPyj333CPHjh2zCeQ60Xz06NE2qK7tAABA0tGFW87qbcdDDz1kfbOOh+s9t9YE79atm7zzzjt2r/3oo49aeRJNi65Bb+3TCX4jkBEABxCQDh06JMWLF5cHHnjAdUzri+pqbr0xP378uMeXBQ2C6xcEDXbv3r3bjmmgXOnrfPDBB1KmTBmf/LcAAJBcOTfjutWH9sWzZs2y9OctWrSwuuA66WzYsGEWDJ8/f77NWM+RI4csX77cdVMOAAC8T1d8az+cM2dOadiwofXTM2fOtJrgHTp0kMcff9zKiz3yyCMWKD937pzMmzfP7rvpvwEASDpOdpXz58+7jt13331StmxZC3hrtjWt8d2sWTPp0aOHpTvXPtsdac8R6FLdcp8iAgABSFd+6w37008/bYHxdu3a2UpunZ2udcnc65ENGDDAapgx+w0AgIRx71911beu6NZVYXqTrRPRtA7ZL7/8IrNnz7aVZHqDru20Vpk+NN056dgAAPBd/61Dhu7lRzSN6rvvviv//ve/7b5a+3QtM/bzzz9bnXAddNefpf8GACDp6YKuGTNmWL+si8B0cZdmZXn55ZelUaNG0rp1a2v3559/WtZTzd7CmDdSEgLgAAKO+036yZMnLaitaVU1nbnWHT148KB9EdBUrCNHjrT6ZO43+UoH4bXeWfTXAwAAd9cXa33vzZs3y65du6RChQry8MMP24249tGaeu3o0aPWH+/YscPqhOvgOf0vAADe535f/OGHH1p2NB00L1y4sA2uKy0Npn27rvh+6qmn7P76H//4R4yvAQAAkqafVmvWrJHvvvtO1q5dK+XKlZNq1apJq1atLMOathszZsxtr8EkNaQkBMABBJSYbrb1pl1Xl33//ffSv39/S9OmN+laV/Tee++12iea5hwAACQuTbO2YMECKzGiM82//fZbK0XyzDPP2ArwEydOSN++fWXLli3WF2v9b9KwAQDgW2PHjrU+uVatWpa1Zd++fRYE1/Tm6dOnd60E19SqmlVNjxP0BgDAO2PemuFUa3xrP6wLuLZt22b32osWLbJAuGZC/eijj2TKlClW9xtIqQiAAwjILwKagk1nqhcqVEjy5s1rN+16E799+3aPILgOwDdv3tyC4AAAIPHoTXm3bt2kZ8+eVudbacBb646tXr1aevfubZlZtEbozp07bXW4Br9ZOQYAgO9oilS9Px43bpxUrFjR+mmdTN6vXz/LoqbBbvXpp5/affbzzz9vk9zInAYAQNJwv0fWSeaapUX7XS0lpv11lixZrM3Fixfl7bfftmxrujpcF39p/W8gpSIADiDgaKB73bp1FgDPnDmz3bRr0Fu/CGiK1R9++MHSouug+2+//Sb58+dntRkAAIlsz5490r59e1shFhoa6rppP3XqlKVl03TnvXr18vgZHWRnBTgAAL7zwQcf2Orv+fPnS3BwsKtE2Oeff26B8TfffPO21WSkUwUAIOlpsFvrfmtQ+8KFC/Lee+9JyZIlrTyJjoE7oqKiJCwszMa+qfmNlIyiPACSPR1Qd+jstpUrV1q9b50Np7W+IyMj5fXXX5egoCCrNfrggw9a/TKdxa4z2HWgXQfcAQBAwvti98HwM2fO2KpvpX2tPvLkySNFixa1G/boCH4DAOA9unosOp1IrivILl++7Gqj6VXLli0rV69edR13x+A6AABJS8exdTLazJkzLZuprv4+f/68ZTh99dVX5dKlS657cx0Df/LJJ61/1vtyIKUiAA4g2XNSwHz88ceyf/9+S2v+8MMPS5EiRaR169YWBNcbeJ3JrvXJdNWZfjF44IEHXK/BgDsAAPGjg+HutcgOHz5sg+Ply5eXxx57TPr06SM//vijDZ5rf6vndHBdg+AAAMA3dIA8VapU9lz7Zl0tpqpXr279udYRVU4bHUQvVqyY5M6dmz8ZAABephPLNSOLTkjT8W9d/a0Lvrp27So//fSTvPHGG3LkyBHXvbmDSWpIyUiBDiAg6Kz0f/zjH1aDTAfb//Of/3ic1/qjBw4csFRu7ki1CgBA/Lzzzjs2yUxnlytNu7Z8+XLrkzXDyuzZsy3Q3bdvX9m1a5elQ9cA+ObNmy0NumZq4WYcAADv+vXXX+Xee+917c+YMcNWlZ0+fVq6d+9uk8l1dZn26zqhvHbt2lZbdMKECbbSTCeWM4EcAADv2rBhg60A79Spk913a5/csWNHm6jWoEEDOXv2rNSsWdNKkAH4L1aAAwiIVKva2WttkypVqsjWrVtl586dHmnNy5UrJzly5HDNandw4w4AwN377rvvLMCtM87V2rVrZfHixdK/f39p166dXLlyRZo2bSo5c+a0AXRN0bZw4UL56quvbOWYTkjT4DclSAAA8J4pU6ZYPdCIiAjb1z561qxZUqhQIUmfPr107tzZMqs9++yzMmDAAKszqgPtOqFcM74sWLCAEmIAAPhArVq1pEOHDjYBXUuAVqpUye63NfBdunRpmTdvnkyfPp2/DeCGFeAAkmXw20nnojfuutJMB9orV65sA+nNmjWz+iaDBg2SkiVL2g26pjzX1WijRo3y9eUDAJDsab+7atUqmTNnjtxzzz2Wzjw0NFSaNGli58PDw2XIkCE28WzZsmW2ckxXlrmnTdW+mhXgAAB4zy+//GL98759+2Ts2LHWR7/00ktWtkTpOV1VNnToUGnUqJEcO3ZM/vjjDxts11qjeh9O/w0AgHfp2LdTkkTTnf/73/+W4cOHS5kyZSzjmqZG1wxt2k+T7RT4HwLgAJJthz9mzBhZt26d1Su7dOmSPPXUU9K7d28bZNcB+IMHD1pqN31oCtb58+fbjbv7awAAgPj1xboSbOXKlVYjdO/evTJu3Djri53Jatu3b5c333xTLl68aCvIdHZ6TP05AADwnt9++00GDhxok9WyZ89uKdB15ZjDPQjesGFDj/7afTI6AADwPk19rv2zTkrPkCGDZM2aVZYuXSrp0qWjnwaiIQAOINlwHyzfuHGj9OnTx1K2aQcfGRlpM940BbrWOtHZbi+++KJs27bNUrfpqvDg4GBbiebUKgUAAAkPgmuq1KlTp1qmlblz51q/7LT54YcfbHa6pmf7z3/+w9sNAICf1AGfNGmSpVDVlKkPPvigx/32sGHDbAK53ltrylUAAOB7zkQ0za729ddf2723TkLX7KdkaAFuRwAcQLKzevVq2bBhg9X01jTnjh07dsjzzz8vHTt2tNplGgTXleC68kxv4HXwXYPgAAAg4ZyBcp1cpkHwmTNnSpEiRay+qHsQfP/+/VKiRAm7KQcAAP4TBB88eLCVFdM+XNOougfBtczJCy+8QLkSAAD8SEwpzjUFunMPDuB/yFsEIFnRld6ffvqpfPnllxbYVnqTroPvFStWlJdfftnOnTt3zr4MrFixwtK6vfbaa7YKDQAAJA4dINc+WDOrPP3009K2bVurLap9rt6AO200rar2yXqjDgAA/IOWCtM05/fdd5/861//skC407erNm3aWPBbV5QBAIDE5/S5ztZZ5X0nem/t3kbHxAl+AzEjAA7Ar0Xv9AsUKGBBbk3D9vnnn8t3331nN+lOWvP06dNb7ZNs2bK5ZsQtXrzYBt/1ZwEAQOJxBso1w8ozzzxjffSxY8ekVatWtwW8WQEOAIB/0fIlb775pgXB27dvLzt37vSo+a00CA4AABJ/zNvpc8+ePWu1vfUeWlOc34nefzttPvroIys1xmQ1IGYEwAH4fV0T9dtvv8muXbvkzJkzUr58eenZs6fUrFlTxo8fL5s3b7Y2Fy5csJrfTqDbqX+iW61fpmlZAQBA0gbB//nPf0qhQoVuG0AHAAD+GwTPkyePTJs2zdeXAwBAiuCMeU+dOtWyqTVq1EiaN28umzZtksuXL8f4M+6lShYtWmSlQatUqcJkNSAW1AAH4JfcO/RJkyZJWFiYrSjT1d1ay3vgwIEW8B4zZoylPC9atKgUL15cjhw5IkuWLLEV4e6vAQAAvNN3OynY9LlORGPlGAAA/u/UqVOSK1euv115BgAA4i96EHvcuHHSq1cvKyP29ddfWwC8f//+Fgx3bxvTzw0fPlwef/xx/hxALAiAA/BrM2fOlDlz5siAAQOsRpl+EVi/fr1kzpzZZsjpinANkG/ZskVeeukl6dixo/2cDr47adEBAMDdcW6u3W+y3TOzxMYpP6KuXr1qq8IBAIB3uPfbOmFc75vjIy59PgAAiL+vvvrKFnyVLVtWnn32WddxHQNfvXq1fPzxxzYWHlPwe+zYsTJixAiC38Df4NssAL+kHfu5c+fsy0D37t3liSeesC8Er776qqWFOX36tLz33ntSrFgxadOmjTz00EO28ltrgiuC3wAAeL8WmRP81lpkkydPphYZAAA+oJPEly5dGqe22n871q5dK0ePHiX4DQBAEvrpp5+sr162bJllT3MWcyktS1K4cGEb91Z6L+7cny9evJjgN3AXCIAD8EtOCtXDhw9LhgwZPL4IPP3001K6dGkLjuvNuqZEb926tVSuXNlWgH/77bc+vnoAAJIvapEBAJB8dO7c2QbEld4f632z3ivnzp3bdSw27ivK9DV69uxppccAAEDiTjJ3FxISIs2aNZM8efLImjVrXIu5tISYPrQkiVNKzJlkrgFxXfk9cuRIVn4DcUQAHIBffhFQ2bJls85/48aNtq/PnSB4qVKl7MuAfilQ5cuXl5YtW8qTTz4pBQsW9PLVAwCQ/LkPkGtaNS1B0qJFC2nXrp3kzZtXXnnlFUvFFr1tTLXIxowZI3Xq1PHBfwUAACnHn3/+aRPGBw0aZKlSdRKbrhTTbGrOvbP20THdb0fvv7XvnjBhgmVXAwAAicO9rMiOHTtk7969kj59ennuueekU6dOcvLkSUt7rjTorW0vX74sOXLk8OjvtSzo4MGD5bHHHuNPA8TRf6eRAIAPXbt2zZXuZfPmzRbUzpgxo63o/te//mU34jp7vUuXLq7ZcNquZMmS9nPOjfsDDzwg5cqVo94oAADx4AyC66qxPXv2SI8ePaR58+Z27Pnnn7ebcq0zVr16dWqRAQDgB3RwvFu3bjZ5XFdv6yB7o0aNJH/+/HLx4kVXHfDoZUw0SO6sKHOvJcqgOgAAicvpg3Wi+IcffmglxrTUZ/v27aVp06bWJ8+dO1eaNGliGU//+usvOXPmjJUAdWTPnt1SpmfJkoU/D3AXCIAD8JmBAwdKvXr15JFHHrH9UaNGyfLly+1G/OrVqzJ8+HBbeRYZGWmr0LZv324r0HRfvyz07dvX9VpOEDw4OJi/KAAACaxFtm/fPqlYsaId0xVkOgFNa5H9+OOPlnqtf//+HoPn1CIDAMA3K8o02K2D5Nov9+7d2+6LNeg9ceJEWbVqleTMmVNCQ0PtvlvbVKlSJcbg9+OPP86fEACAROKeaUVXb3/22WcybNgwG9eeNm2arfJ+/fXX5dlnn7V++Z133rEsqL169ZIpU6bYzzn33Po6BL+Bu0cAHIBPHDp0SA4cOGD1ukePHm0rudevXy/vvvuufQHYsGGDdO3a1W7odauru99//33b1+f//ve/LS2MrgZ3aqIAAID4p2Nzr0U2Y8YMq0Wms9Cd7CsqtlpkkydPtlpkrBwDAMD7/bdOFNeV4DpA3qdPHxt018nk9957r2V20ftrHVivVq2arTLTdhr81pTnBL8BAEi6fvrKlSu2qlsnov3jH/+wY1q+U8uX/Oc//5HXXnvN7sH1ZxYsWCCffvqpPP300/xJgESQ6pZ7AT8A8CJd0T1r1izXKjO9OdfAtjp+/LgFw7Xj1wB5w4YNb/t595VnAAAgYbXItA5Z8eLF7ZhmZJk3b571z7ry22nfsmVLq+3doUMHVy2y7t27S+PGjaVBgwb8CQAA8GL/rcFszc7y888/20C6lg5btmyZzJ4921aDv/jii3bfrA+tOVq2bFm7h96yZYu89NJL8tZbb7HyGwCAJKL9rAa0z549K+XLl7eV3w6doKY1ve+//35Lh67pz5cuXSrz58+XfPnyWTZUAAnDskkAPrth1xrfeiOuHfsnn3xig+oOTeOm9b91ZrreuGvtMvfziuA3AADxRy0yAACSD2cCuNN/a4pzDXb/85//tIFynUSu6c1btWplJcV0ZXfWrFmtJrj+nA68O3Ql+IoVK6RMmTI+/C8CACBw6DpTHfN2xqt1vFtLhT3//PO2CEyzoOpCMKe2t64IHzJkiHTs2NEysZUrV876bO3DtYSJ9us6Pg4g/lgBDsCnqdqUzljX1Knh4eHy9ttvS40aNVznTpw4YWnZjh49ainaAABA4tYiGz58uE02c2qRVahQwWqRlShRwgbWNWWq1gHXWmROKjaysAAA4DsRERHSpUsXqyWqQW93u3fvtsF3XUWmGdU0s1qtWrVc5+nDAQBIXJqJpWTJkq797777zvpqzXaqZcJ+/fVXK+2pC8DatGnjCoI72dh0FbgTONfSoNeuXbNJbAAShhXgAHwS/NaUa7///rsULlzYanp36tRJpk+fLv369bOBeCcIrjPZdcA9e/bstw3aAwCA+PfF1CIDAMD/aVpUrfGtwW6HTkzTLGkZMmRwHdPBcp1ArivA9d5a77ELFSrkMcFckUkNAIDEM2rUKDl8+LD1vTrJTCeWv/zyy3ZOx7SVBsK1f1aa2lzvyTUQrrTsmLp+/br10dq3u/fvAOLPcxkmACQRDVw7A+5jx46Vvn372heEb775xtXZv/rqqzZbToPgmzdvdv1szpw57Wd10J7gNwAA8ef0xVqLrGnTppYeVWejO5w0bLp6bOrUqbJnzx5r16JFCzl48KDrJp3BcwAAvENXiQ0YMMDjmAa/z58/bw9n0DxdunQW8C5YsKDV+9b7aO2306ZNa+cBAEDi+3//7//JlClT7Pnp06etL543b57kzp3b0p7rAjBVpEgReeGFF6RBgwYyevRoWb16tcfraH/NuDeQuAiAA/AKpwPXWW4ffvihjBs3TjZu3Gh1vfWLwLZt26R06dKWglW3OstdB989/sGKljodAADEbRKazkR3OLXInnzySetznVpk0YPgn3/+uXz66ac2oK61yJo3by7nzp2zWmQAACBpvffeexbI1nrdwcHBMnv2bGncuLGde+ihh+Thhx+Wrl27ypEjR2zQ3AmMa7+dI0cOj9dyzgMAgMSl6cu179WAtga3td73gw8+aGPf+lwXgGmGFqWZUP/5z3/awjC9HweQtKgBDsBrNNWqdvDVq1e3zn7Xrl3y8ccfy5o1a2xwXgfhtc7oTz/9JF999ZW88cYbrDADACABqEUGAEDyowPmzz//vDRs2FBat24toaGhsnbtWhk0aJCULVtW5s6daylWNQC+b98+ef311y3I/fXXX9vqM63/TbYWAAC8R7Oc6sRy7Z9HjhwplSpVkk2bNllJklq1atmYuJb6dKcT1emvgaRDAByAV3Xp0sVSqGp6GL1pv++++6RmzZqSKVMmmTZtmn1RKFWqlKs9XwQAAEi8WmSPPvqoqxaZk8786NGjtir8k08+sTSrznGHU4uMdGwAAHiPBrw1RWrVqlXllVdekeLFi1t2lj59+lgQXFeEX7582dps3bpVsmTJIgUKFJAxY8bYSjTupQEA8K7vv/9eZsyYYffY2h87QXCdqFamTBmZOHGilSgB4B0EwAF4VVhYmHzwwQeWyu3FF1+Uxx9/3GqgaP1RnRGnN+86ux0AACSMZlTRiWY6CK4p13S2uQ6Q62Q0PT506FC55557rO0vv/wiCxcutMlpmqpNU7cBAADvcw9cazpVndCmadA7duxoQfANGzZIv3797L5Z+2118uRJyZYtmwQFBdmENZ28RtpzAAC8QzObOhPGNQj+7rvv2mT0sWPHWhBcM7Ronz1z5kxKfAJeRAAcgE++EERFRdlNvaZFVzoYr8/1ywC1vgEASDw6eK41vXUleOXKlWXz5s02iK61Q3UA3UnDdujQIUvb1rJlS9KwAQDgAzdv3rztfviLL76QAQMG3BYE12OaPU1rhcc2CA8AAHwTBNdgt64E14nn2offqa8HkDQIgAPwid9//13mzZsn69evl7x588rVq1dlyZIltkqNLwIAACQeapEBAOD/3O+DtSzJgQMHbBW3lib59ttvrf539erV5dVXX7UguGZX0yxqrVq1kv79+/v68gEASPGiB8F1BbhmXXvrrbeYoAb4AAFwAD6hKdn0Jj4iIkJy584tjRs3ttVmpGoDACDxUYsMAIDkQWuGrlmzRooWLWp1vZs1ayaPPPKIrFq1ykqGua8EDw8Pt9SqTsp0AADgP0HwPXv2WPkxneBGhhbA+wiAA/C62Dp891pnAAAgcftcapEBAODfvvzyS0ttPnXqVClfvrycP39esmbN6rpf3r59u3Tr1s0G03VFeMGCBV3nuJcGACBpxTWITbAb8A8UGwCQYNqpOy5cuPC37Z0vCnqTHtNxAACQOLRvdfrpqlWryr/+9S8pVqyY9O7dW7Zs2SK1a9eW2bNn24x0Tb0KAAB859dff5XChQtb8Fs5we9t27ZJw4YN5f7775euXbtasLtAgQKunyP4DQBA4ot+jxyfseuvvvpKdu3alYhXBSCuCIADSDSTJk2SpUuXxqmtDsY7N+lr166Vo0ePuuqdAQCApAuCt2vXzgbUFy5c6OqTFf0wAAC+pZPEDx48KCdPnvQYeL927ZodO3z4sDRq1EimTZvG5DUAAJKQ9sHOPfKnn35qfe/AgQMlLCzsjpPH3Vd/6z23Tj6PioribwX4ANEmAPHSuXNnWbx4satj145cZ7RpPW/nWFy+COhr9OzZU44dO8ZfAgAALwXBhwwZIhMnTuT9BgDAj5QrV06yZ88u77//vpw4ccI18K6rwjXd+fXr122fyWsAACQtpw8eM2aMjB49Wn788Ue5evWqdOrUSd5++225fPnyHce8Fy1aJBMmTLCgeeXKlflzAT6Q1he/FEDy9ueff0qGDBms5phun3nmGZupfu7cOdeMNu3s3WfKxfZFYOzYsfZl4KGHHvLJfwsAAIEgLjXGnCC4bsuUKeNxHAAA+F6VKlWkfv36sn79eqv/rffamTNnlvHjx0vGjBmlbNmy1o6+GwCApPfJJ5/Ixx9/LFOnTpUKFSrIl19+KStXrrSSJGfPnrVxceceO6Yx7xEjRsjjjz/OnwrwEQLgAO5ajhw5pFu3bpItWzZbva2Bbk3Dlj9/frl48aLVAdeb9OjBbw2SO2nP3b8IPPbYY/wVAAC4C9EnmcW3FlmuXLlstRkAAPCPvl3vtTNlyiQbN26UVq1aSWhoqA2wv/fee66055QtAQAg6fpix6+//mqLtjT4rZPTNJ25ZlO77777pHv37tKjRw8pX748wW/ATxEABxCvLwIa7G7btq0FtbXz14F3DXprOtVVq1ZJzpw57Ub9kUcesTY6kz2m4Dez4AAAiF9f7NQi01qhkZGR1uf+4x//iHVQPHotssmTJ9tMdgAA4HvafzuTxl955RVp2bKlHD161ILfRYsWtfOaAj1tWobyAABIqr5YaRmSfPnyyV9//WWLvdauXSv9+vWzhWDPPvusHD58WPbv3y9HjhyxALhzn71gwQJ56623GPMG/AQ1wAHEexZc3rx5bXb6888/L3369LEZ6o0bN5annnrKaqJs2LBBWrRoYQPsTo0yp/4JwW8AAOL5BZ5aZAAABCQNfjv3zlmyZLEsLcWLF3cFxwl+AwCQtDTY/eSTT1rgW1d+b9++3ca933jjDRvnVunTp7dsarlz53b9nLYbPny4rRBnwRfgH5g2CuCug99z586VH3/8UX7++WerA/7iiy9aPbLZs2dLSEiI7etDb9D37t1rdcp0JtyWLVtk8ODBNhOOLwIAAMQftcgAAEh+3LOxxMY5H30CupNRDQAAJB2deHbPPfdIWFiYPPPMM5Z1bfXq1XZu37591h+PHj1asmbNKtWqVXP9nI6Jr1ixwtKjA/APqW45U0sBIAbudbuVpjhftmyZ/POf/5QrV65YcLtBgwZy/PhxmTVrlsybN09GjRplNcFjsmfPHilTpgzvNQAAdyH6IPiMGTMs9bneeDu1yPRRp04dapEBAOAn4luv2z1Q/tVXX9kqM10NDgAAEs+1a9ckXbp0Hsc0q+nrr78uUVFRMmfOHDumGVB1MZjWBNeSn7oC/P3337efjT52DsB/sAIcwB25d+ARERE2yK4ruLWmt7szZ85I06ZN7QZfB+D1Br1WrVqu886XAYLfAADcPWqRAQCQfIPfunpMJ65FRkbKI488Iv/4xz9iDYy7B78XLlxoJcWmTp3q1WsHACCQLV682Gp5O8Hv3bt32yIvFRwcbAFvTXe+fPlyG+8eP368ZTk9efKk5MyZ08a3tR+/fv065UkAP0YNcAAxat++vfTv39/jmM58u3DhgmTIkMFjptyxY8ekVatWcv78eenUqZP06tVLatSo4fGzzIQDACBhqEUGAEDy4QS4x4wZYxlbdOWYrirTe+a3335bLl++fMfg96JFi2TChAkycOBAqVy5stevHwCAQA1+a0kxXayl9PnLL79sAe9t27bJiRMnpFSpUlKvXj1X3600tXnt2rUtI4v28TrRLW1a1pcC/owAOIAYtW3bVgYMGOBxTIPfGuTWh9JZbjpTrlChQlKwYEGbCaez4Nq0aWNfAPQ8AABI/Fpkjz76qDz88MM2Ec2pRXbgwAEbJI+tFtmTTz7JnwIAAC/SQfWPP/7YAtnTpk1z9cX333+/nD171p47lQmjB7/Hjh0rw4cPp/8GACAR6b20lvHUxVoa4H788cdlxIgRtuBLV37rwq6NGzfKQw89JKtWrbK05+79tSM+JU4AeBefUgAe3nvvPQtk68C5pnyZPXu2NG7c2M5px6+D7V27dpUjR464ZrlpYFwD4Tly5PB4LWbBAQAQP05g250GsnXC2YcffuhaUaYD6fPnz5eGDRtKjx49rE+eN2+e3cw7M9p1cprOVgcAAElLV4O500FzvY+uUKGClRPr0qWLDBkyxPrlnj172sC7Br1jCn7rYLwOygMAgMSjZTv1fnnLli2WBl2zsuhqbx0D1765RIkS8uqrr9pq8CtXrsjMmTNt6/TTAJIPAuAAXLZv3y4jR46UOXPmWL1vlT9/fktx3rp1a9vXVeE6AN+kSROZO3euDbprQFy/BDz11FO8mwAAJDAdm3KvReZwapHpYLnWIlNai0xrg86YMUPefPNNWbBggf2sZmGh/AgAAN7lrAbT9Knqr7/+kosXL1oZk969e9vAug62X7p0Sfbv328Ty5UzqK79uK4WJ/gNAEDiir6C+95775V27drJ0qVLZdy4cXZMx7a1JOjChQslS5Ysttjrjz/+kPTp0/PnAJIhAuAAXLSumN5sb9682Wa9HTx40Dp+rVemAXGth1KgQAE798wzz9gXhNWrV0umTJlswN59tRkAALg71CIDACD502C3ZmjRwLeu/NaJ5n369JE33njD6osqHUjXFWi5c+d2/Zy205TnukKcld8AACRuhhZnstnx48dtolq+fPmsjGejRo1k5cqVNibuKF++vE0+//TTT62ESUwBdAD+L9UtPrkARCxw7awU06D2qFGjLA16x44drebohg0bpF+/fhIaGmorv9XJkyclW7ZsEhQUZF8idLUZac8BAIifM2fOSPbs2V21yMqVKydffPGFrQY7dOiQZWBp27atzUDXwfElS5ZYejb3tKkAAMC39u3bZ4Pm7du3t4njuupb77G1pmj16tWtn9dJ5ro6XPt45z5c+3e9x6ZsCQAAicf9fnnKlCny+eefW4kS7Yvr1q1rAfEPPvjAsqw1a9bMJqwp93Fu93FzAMkHAXAANgvOSdXm0AF3TXcePQiux0qVKmW1wt0x+A4AQOLQWmRaeqRTp07SuXNn12oyXRmmdUG1DMmyZctsUH3w4MGkYwMAwEeuXbvmKlviuHr1qrz++usSFRVl5cWUU8JEB9x1UrmuAH///fftZxlUBwAg6ekKb826NmzYMBvHrlKlimTNmtXGxfWhK70//PBDeeyxxywNOoDk779TWACkWO7B708++UQOHDhgs9s0BYyuLhs0aJDNknv11Vfl0Ucftec6IK9fFty/DLDyDACA+Ik+icy9FtmVK1eke/fuVpJEHxr0Xr9+PbXIAADwIR1A11reTvB79+7dUrZsWXseHBxsAW9Nd66ryZo2bSrjx4+XvXv32grvnDlzSpkyZew+nCxqAAAkPc2o9t1338mMGTOsPIlOSNP76hUrVtikNB331oeWL/ntt99Y6AUECFaAAzBjxoyRNWvWSNGiRSVLliyW8uWRRx6RVatWWUoY95Xg4eHhUqlSJVK/AACQiBPRNPWaBsK1Hui5c+cs24rekDdu3Fi6du3q8TOXL1+2G3VNw0YWFgAAvBv81snjs2bNsn5Yn2tGlmLFitmktUKFClldUU19niFDBunbt68FxeOSiQ0AACS+o0ePSqtWraR3797WJ0+ePNnuvbXP1qC33lNryc/Tp09Lrly57Bz32UDyRwAcgHz55ZeW2nzq1KlSvnx5OX/+vKWAUZqOTVOu6gx2rUWmK8ILFizoOkf9EwAA4odaZAAAJD9nzpyR7Nmz272wpjUvV66clRDTet66wiwkJETatm1rNb01q9qSJUukRIkSDKQDAOAF0SeY6X23jmH36tVLvv32Wzl79qy0bNlS6tevL9WrV5fp06fbYq93333X42fIdgokf6RAB2BpXwoXLmzBb+UEv7dt22YBb60zqivPNDVMgQIFXO8YwW8AAOLPuaGOXousYsWKlhJVU6RqGjalK8EvXLhg5Ue0VAl9MQAAvqErw9SWLVukdevWViKsc+fOUq9ePVm7dq1NINf+u0mTJlbKZObMmbZCXDO3AAAA7wS/NdPpwYMHbb9Dhw42tq2rwLNly2ZZW5z233//vWVucUfwGwgMBMAB2Cw4/UKg9cjy5s3r+rJw7do1O3b48GFp1KiRPRSp2gAASBzUIgMAIHmIvhrs3nvvlXbt2snSpUst0K3pz5966il7PPPMMzaBPEeOHLYSnOA3AABJzwl+azlPDYDfc889VtZTaUZTfWg69LFjx1qfvnv3bkt7/s4778TY1wNI3giAA7CUbZrC7f3335cXXnjBNetNV4XrFwNdheb+JYA6ZQAAJA7NpnLixAk5duyYnDp16rZaZDNmzLBaZK+88gq1yAAA8BH3SeDHjx+3vlrvm9u0aWPHNVOLbnV1mdLsanqf3bFjR1fwm0F1AACS3vLly2XVqlWWgUXLeerirgMHDsimTZvkH//4h6RLl84mp+k9eMmSJS31uWZZ0/Fv92xrAJI/PtEApEqVKlb3RGeoa/1vna2eOXNmGT9+vGTMmFHKli1r7xIz4AAASNxaZDrRrGrVqvLmm2/GWotM5c6d2/Uz9McAAHiP9r1O/z1lyhT5/PPPrYyYri6rW7eutGjRwjXgru3eeOMNV7+fKVMmV9Y1SogBAJD0IiMjbWxbg99almTRokVW+1sD3FOnTrXg+MiRIz3urQl+A4GJADiQwjmD8d26dbOb840bN1o9lNDQUMmQIYO89957dp605wAAJLy/VdQiAwAg+XAGxydMmCCLFy+WYcOG2aB5xYoVbcA8Z86cVvNb6UrwCxcuSP/+/T1WkRH8BgAg8cU0QVxLes6ePVv++usv+fDDD6V27dry+uuv28RzzdyyZcsWady4sevn9DVY+Q0EJgLgQAqng/HObHRNr6orz7QWiga/ixYtaueZBQcAQML7W0UtMgAAkp9Dhw7Jd999Z6VJKlSoYCvANYOaBrw1xbkGwPWh5Ut+++03MrYAAODFSeaa5lwD2nny5JEuXbrYZLSDBw/KkCFD5PHHH7dMpxoQ1xKgOXLk8HgdMqwBgSvVLZ3iAiDFiy2lKqnaAABIHJoadeLEiR61yM6cOeNRi0xTsjm1yPr27UstMgAA/IBOEtdMab1795bg4GCZPHmy3T8XKlTIgt56Pz137lw5ffq05MqVy85RtgQAgKQPfr/99tuWZU33q1WrZllYlPbDWutbV4RfvXrV0p6fOnVKlixZQmYWIIVgBTiQAsTlxts5Hz3VOanaAABIHNQiAwDA/0W/J9b76YIFC1rq1DfffFPOnj1rmdPq168v1atXl+nTp0t4eLi1zZ07t+tnWFEGAEDScPrpMWPGyLJly6Rdu3YW7P7oo4+sHx84cKBlNNXJaZoOvUSJEpIxY0arB65j3Sz4AlIGAuBACrhhj+uNt96kOz/31Vdf2cz1cuXKJdl1AgAQqKhFBgBA8r6X1tVkmj5V9zt06CD/n737AJOqOhsHflCkig0VVEQUGzYsWDB2Yk00lvgZW9RgbwHELoqKBQtiib0QFRKNvaBESawxKtaoiBUVg1gRKQIq/+c93zf734VdpCw7s7O/3/Psc3fu3Jm9e5fh3HPec963V69eeRX44osvnlZZZZWK41944YXUpk2bKu8j+A0AC1aMXT/++OM5w9p6662Xvx8yZEguURIrvs8777zUo0ePtNZaa+V2OkqYRPBbqU9oOATAoYw77H//+99zhz1WnG299dY5vWrlwHhNA/VxsxAp3SINKwAw722xWmQAUH8U2u/+/fvnAPjyyy+f06mGWAUeX5EO/eKLL8795zfffDOnPb/22mvzMVZ+A0Dd+PDDD3M97wh+jxw5Mg0ePDj98Y9/zG35pZdemlq2bJlOOOGEtPPOO1e8JlZ+N24sJAYNhU87lHEKmJjxtvrqq6fFFlssHXPMMenYY49N3bt3T82bN6/ymsqd9EgFM2DAgJzabcMNNyzK7wAA5VqLrE+fPhW1yCZOnJhrgEctspiJvuWWWxb79AGgwbv77rvTgw8+mFeUrbnmmnky23vvvZeee+65PKl8kUUWye34mDFj0mqrrZZuuOGGPJhuRRkALBjVTTCL8e2VVlopL/x66KGH8hj4fvvtlz799NMcAL/11lvTd999l/vbBUp9QsMiAA5l6JFHHkkPPPBAXsEd6V2eeOKJdP/996d111031yuLG4TCjcPMwe+YyX7++eenHXfcsdi/BgDUO2qRAUD9FgPpu+22Ww5+v/zyy7mf/Oyzz+YAd/SxIzgeg+mV+9KC3wCw4CeZf//997nNXXTRRdOuu+6aunTpktOdP/XUU7lUSYx5xzFdu3ZNRx11VB4XBxouAXAow5rfn3zySfrFL36RG/lYBX7KKaeks88+O3fge/funU488cScHkbwGwBqn1pkAFB/V5RNnz493XzzzXnV2L333pu22mqrdPzxx6dNNtkkHXLIIen5559Pe+yxR8Xr4j2kUwWABdNOF8a8r7vuujwx7Z133slt8/bbb5+22GKL9PTTT+fsalGmJFKcX3PNNalZs2Zpgw02yG117LPyGxomAXAoA4UbgXHjxqU2bdrkjvqkSZPS0KFD0+mnn55OOumktM8+++TaKHGTMHr06BwAL3TYo0bK5ZdfbuU3ANQCtcgAoH5NJI8059E/XmaZZVLPnj3zQPr777+fJ5JHdrRYaRb97CWWWCLXG61s5gA6AFC77fS1116bbrnllnTYYYelDh06pNdffz1nZ4lV31FuLEqLHXfccfnYpk2b5nIm0T7Hewh+Q8MlAA5lIoLdUVs0Zr3Fyu9o6OP7uBHYd9998zEx+61169Zp6aWXrnhdzJw777zzcm0Uac8BYO6oRQYA9XtQ/eqrr04PP/xwfhyD6NGv7tOnT27jo9Z3BMNjYD3Snscg+pZbblns0weAsldopz/44IM8Ke2ss85Ku+yyS973xhtv5Brfsdo70p3fdttt6YUXXkiLLLJIOuCAA3JmFuVJAAFwKBMdO3ZMyy+/fBo+fHiuV/b3v/89PfTQQ/m5UaNG5Y56//7902KLLZY79QUxa+6ee+7J6dEBgDmnFhkA1O9B9Ysuuijddddd6dBDD83B7vvuuy+372eeeWYeOB80aFBOh77qqqumFi1a5Hrg0beWThUAFryPP/44B70jsL3ddttV7F9nnXXygq8ePXqkZ555JtcDr1zvO9pp5UkAAXCoh6ImWTT8lUUgO2qdRI2yCIBHRz4a+9tvvz3PVO/UqVNeAR4z4ip32Jdaaqn8BQDMObXIAKB+e/LJJ9Pjjz+ebrzxxlwiLL4fMmRIGjZsWJo6dWrOlBYD62uttVYuNRYD69GHtqIMAOpG+/bt82S0gw8+OL399ttpm222Sc2bN8/PRY3vKEvy3nvvzfI6ac+BIAAO9cgdd9yRa3kXgt9vvvlmWnvttSvqm5xwwgl59lukP99rr71yWvO4OYh6ZhHkjo57zHTXYQeAeacWGQDUfx9++GEeOI/g98iRI9PgwYPTH//4x9xnjr50y5Ytcx975513rniNFWUAULc222yzdNNNN6Ujjjgirbbaamn77bfP4+BRoiTa7AiSA1Sn0YxYvgLUi+D3I488khv8mMUW3/ft2zetssoqqXfv3qldu3Z5VvpJJ52UZ8Kddtpp+WZgdoP2AMC8i1pkUXNs2223naUWWQykxzZStqlFBgDFFUNfjRo1mqWP/dJLL6WePXvmzGkxUTxWfH/66adp9913z4/32GOPnFENACiup556Kh111FG5773iiivmhWH//e9/c2nPmTOlAgQBcKgnvvrqq7TEEkvk4Pfrr7+ea53885//zLPUYwA+UqB379491y07++yz05133pnrlFXX0QcA5k8EtnfYYYfc0Y6yI5VXh73yyit5AD0mqEUtssrUDAWAulV5Evj333+fA9uLLrpomjx5cho7dmzuYx933HGpV69eeVJbTGa7/PLL8yB7Ie05AFB8//rXv9If/vCHnBE12uxjjz0275ftFKiOZaBQT7Ru3Tp3vJ9//vmcBv3qq69O3bp1SzfffHNe9R3B7uigxwz26NRHHbPYCn4DwIKrRTZ9+vRcbmTKlCkVz6lFBgClISaEF4Lf1113XU5xHpPTzjrrrPTyyy+njh07pk8++SSnUV1hhRXyRLXI7tKsWbPcnkcfPPYBAMW3+eabp1tuuSWNGjUqT2aL/nho3FilX2BW/meAEjfzCu5I8XLooYemv/3tbznAHavLIvVLfO22225p2LBhuY5ZrASPTjsAsGCoRQYA9WPl97XXXpsHzA877LCcPS2yqj377LN51femm26aM67FKvAQpcTuvvvu3A+P97ACHABKR9euXfNktWOOOSaPje+///6pVatWxT4toARJgQ71pMP+2Wef5Q740ksvnb799tv05z//Odc4iZpk0Wmv/JpYhRbB7+ioS4EOAAuWWmQAULqiZFgMlEeq1Jg4HiLN+a233ppGjhyZt1Ha5IUXXsilTQ444IC8kkw6VQAoXf/4xz/Saaedlh599NFcNhRgZgLgUKIqB66vuuqq3KhHarb+/fun7bbbLgfE//KXv+SZ6b/97W9zrdFQuZOuzigA1A21yACg9ERge4cddsiB7YsuuijtvPPOFc+98soruR8dWdUiLXpl+tIAUPomT56cWrRoUezTAEqUGuBQogrB7wEDBqTbbrst1/c+77zz0vrrr5+D3EsttVTet9dee+WV4P369Zul5olUbQBQN9QiA4DS0759+zRo0KBcI/Ttt9/O2dIKosZ3lA977733ZnmdvjQAlD7Bb2B21ACHEk/VFivKrr/++tS5c+e8AjxqfEfAO1KcRwA8viZNmpQ+/fRT6c4BoIjUIgOA0rPZZpulm266KR1xxBFptdVWS9tvv32u8z1x4sRcciyC5AAAQHmRAh1K2EcffZTrj51yyim5g37llVfmleHt2rXLQe9Ikx6z2b/88svUunXr/Jya3wBQXGqRAUDpeeqpp/IE8qgDvuKKK6Y333wz/fe//80TzCNFOgAAUD4EwKFE/PTTT3n2eUEEsqPu2Mknn5yeffbZNH78+LT//vvn2eoxg/26665LI0aMSDfccEOV1xRSpwMAxaMWGQCUnsiw9oc//CGtvfbaadttt03HHnts3h9lxiqXEwMAAOo3d/dQYsHvhx9+OL3//vv5caRo69WrV14Fvvjii6dVVlml4vgXXnghtWnTpsr7CH4DQGlQiwwASs/mm2+ebrnllnTYYYelXXfdNdcGj9Xfgt8AAFBeBMChBBSC3/37988B8OWXXz5tuummed8KK6yQvyId+sUXX5yD3JGqLdKeX3vttfkYK78BAADg53Xt2jVdc8016Zhjjknff/99zrTWqlUrlw4AAMqIADiUiLvvvjs9+OCD6cYbb0xrrrlm+vzzz9N7772XnnvuuZyaLWalf/3112nMmDFptdVWy6nPY5a6VG0AAAAw57bccss0cODAdNppp6Xf/e53Lh0AAJQZNcChRFx11VW5XuhJJ52UXn755fTXv/411/6OAHd8RXA8VoZXXu0t+A0AAADzJvrgypYAAED5+d+8y0CdiiD2zKL22M0335z69OmTfv/736eJEyem448/PgfCIx3b888/n48rBL/jPdQpAwAAgHkj+A0AAOVJCnSoYz/99FNFze9Icx4B7WWWWSb17NkzB73ff//9dPbZZ6cdd9wxLbrooum7775LSyyxRFpyySWrvE8hEA4AAAAAAAD8LynQoUjB76uvvjo9/PDD+fGmm26azjjjjIqV3VHrO1aET506NV1wwQXpiy++SHfeeWdaeOGF/b0AAAAAAACgBlaAQx0qBL8vuuiidNddd6VDDz00B7vvu+++HBw/88wzc13vQYMG5XToq666ak7JFmnQI/j9448/CoIDAAAAAABADQTAoY49+eST6fHHH0833nhjWm+99fL3Q4YMScOGDcsrvs8777zUo0ePtNZaa6U2bdqkzp0756B3BMbV/AYAAAAAAICaCYBDHfvwww9zPe8Ifo8cOTINHjw4/fGPf8yrwy+99NLUsmXLdMIJJ6Sdd9654jWx8lvwGwAAAAAAAGbvf/MxAwtE1POeWfPmzdNKK62Uxo4dmx566KG0+uqrp/322y9tueWW+flbb7019e3bt8pr1P4GAAAAAACAn2cFOCwgUdO7UPP7+++/zynMF1100bTrrrumLl265HTnTz31VOrVq1cOiscxXbt2TUcddVROew4AAAAAAADMHet6v/kAAQAASURBVAFwWEArvwvB7+uuuy69/PLL6Z133klbbbVV2n777dMWW2yRnn766TRx4sS0wgor5BTn11xzTWrWrFnaYIMNUqNGjfI+K78BAAAAAABgzjWaUV2OZqBWVn5fe+216ZZbbkmHHXZY+uKLL9Lrr7+et7Hqe9NNN03bbrttWm655fKxTZs2TXfffXdaZJFFqrwHAAAAAAAAMGcEwGEB+eCDD/Kq7ghy77LLLnnfG2+8kWt8jxw5Mm8//vjj9MILL+Sg9wEHHJAaN26cU6XHFgAAAAAAAJg7omywAERgO4LeEdjebrvtKvavs846ad999009evRIzzzzTK4HXrned6Q9F/wGAAAAAACAeSPHMiwA7du3T4MGDUrTp09Pb7/9dpoyZUrFc1Hje8kll0zvvffeLK9T8xsAAAAAAADmnQA4LCCbbbZZuummm/LX8OHD09SpU/P+iRMn5vreESQHAAAAAAAAao8a4LCAPfXUU+moo47KKdFXXHHF9Oabb6b//ve/6Z577skp0gEAAAAAAIDaIQAOdeBf//pX+sMf/pDWXnvttO2226Zjjz027//hhx/U/AYAAAAAAIBaIgU61IHNN9883XLLLWnUqFFp0UUXzbXBQ+PGjV1/AAAAAAAAqCVWgEMdevrpp9MxxxyTjj766LT//vunVq1auf4AAAAAAABQS6wAhzq05ZZbpoEDB6ZBgwalH3/80bUHAAAAAACAWmQFOBTB5MmTU4sWLVx7AAAAAAAAqEUC4AAAAAAAAACUBSnQAQAAAAAAACgLAuAAAAAAAAAAlAUBcAAAAAAAAADKggA4AAAAAAAAAGVBABwAAAAAAACAsiAADgAAAAAAAEBZEAAHAAAAAAAAoCwIgAMAAAAAAABQFgTAAQAAAAAAACgLAuAAAAAAAAAAlAUBcAAAoNbMmDGjQf98ACgV2kQAqH/tcENsvxvi78yCJwAO9dh2222XTjnllFRqxowZk9ZYY410zz335Mexjcexf07M7fF1+bsAwNy48sorczvSUPztb39L/fv3L9rPf/fdd9O+++5btJ8PQOnSJgNA8WiH58zVV1+dbrrpptSQFHscgfIlAA712FVXXZWOPvroVOq22WabdMcdd6Rll1021TdxznHu8TsAALN3zTXXpPHjxxftMj366KPplVdeKdrPB4BSUew2GQAasnlthy+//PI0ZcqU1JC4Z2FBabzA3hlY4NZaa616cZWXWmqp/FUfNWnSJK2//vrFPg0AAAAAAADmgBXgMI+pxy+77LJ0/vnnp4033jhtuumm6aSTTqoyqytSd+y55545eLreeuul3/zmN+mRRx6peP6nn37K7xHvtc466+TtpZdemqZPn15xzEMPPZR22223/PrNNtss9e7dO40bN67aFOg77rhjOv7442c51/i5Rx11VMXjxx9/PJ/Xuuuum37xi1+kfv36pcmTJ8/1Nfj888/TySefnLp27Zo22GCDdMABB9S44qq6lOZPPvlk+t3vfpevzxZbbJHOPPPMNGHChGpfH/vj94jf97///e8cn+OPP/6Yrr/++vTrX/86X8P4WfEz//3vf+fnX3755Xxe//znP6u8buTIkXn/Y489Vm0K9BdffDF17949/+0Lf7tI4xN/UwDqv2g/Bg8enHbdddfcfkQWkEsuuSRNnTo1Px9t70EHHZTOOuustOGGG6Zddtklvyaev+CCC3L7Gm3jqaeeWvGaykaMGJHbzc6dO6dNNtkkt6dff/11xfPR5sQkt7iXiPeKY95777308ccfpyOPPDLfd8Rr99lnn9yezq233347HXvssfneYu21105bbrllvh/4/vvvK46Jtu8vf/lL/l032mijfA6FYyI1Wbw2zuP000+v+B2jPfz000/TvffeO9elTOI9LrroorT11lvntjWu/dChQ6scE+9/xRVX5J+/+eab579NtMejR4/Oz0dbHNlxCucfjwGo37TJdd8m/9w4RHVt7MxpbeNcDzzwwHTXXXelbbfdNt8Xxb1T3INUFv37Xr165d8p7m3imLfeeqvi+UJ//JZbbkk77bRTPubuu++ep39LAMw97XDdtsOFtjT6tYXvo43dfvvt87742TGO/u233+afH7GEHXbYIfehY2zikEMOyePaBXHOBx98cG47I3YQx8UY+1NPPTXHMYpCW/zwww/n8Yhoi2OM5E9/+lOVsfCf+7dS01hKjAHM6z0L/BwrwGEeDRkyJK200kp5oDsGraNh+Oijj9Jf//rX/Fw0hMcdd1xuGKNRuuGGG3LHMTp+bdu2zY+j8YxB7xVXXDG99tprubFZZJFFciD7pZdeykH1SHEegdbPPvssXXzxxemEE05It99++yznEx3UCPZOnDgxLbroonnf+++/nzuYhQD4gw8+mM8hGqIePXrkxiV+ZgyqR4eyUaNGc/S7T5o0KdfXjIbtxBNPTG3atEk333xz+sMf/pAbq8aNZ/9fSwSc45y6deuWBg4cmCcOxKB3nM/MNU7iZx122GE5CH7bbbel5Zdffo7/RtHIxjWOaxYNaHTao3H+4x//mJ544onc0LZv3z434NEpr9zhX2KJJXIDHIH+yuJ6xo1DdL7j2s2YMSNf17gJWWWVVdKvfvWrOT4/AEpTTMq6//77c/vTpUuXPBAb7Ud0JG+88caKIHbTpk3z/phItvDCC6eePXump59+Om/jHiFKaEQbUVlMoopOaXSSow2Me4RIcfb73/8+DxI3a9YsHxdtbLSt5513Xvrmm2/SyiuvnCd0RWmOaDOjrb311ltzexoT7OLnzYlo1/bff/88KezCCy/MmU6i8xv3AfHehx9+eMWxcd8RPzPauGi7//znP6dnnnkmrbnmmrmNffXVV3NnPM7t0EMPzcfF6yN4H/cvc1r6JNrSY445Jk9Mi3ugjh075klocR2nTZuWdt9994pj43eOe6u4/4prF9cn7qXiWu+99975fimuYzyO+y0A6jdtct22yXM7DjE7cd/0wQcf5AD34osvniexxQTAmOAW5xPjKDFBvXnz5qlPnz55G79X3KdEWx73AwXxu0VgIcY6YuAdgLqhHa7bdjj6sTHR/be//W3u31aeMBaT32MsOsbRo12NvnOMS0Q7G+PbEZeIsYVos2OsuzDO/8Ybb+RxgDg+2tE4JmIWMQ4Q7/NzMYqCvn375rHy+D3jfiF+xxgLidjAnPxbKZzPzGMpyy233DxdK5gjM4C5tu22287YZJNNZkyYMKFi32OPPTZj9dVXn/Hkk0/OuOCCC2ZcfPHFVV7zxhtv5Ocfeuih/PgPf/jDjEMOOaTKMbfddtuM++67L39/3XXXzdhggw1mTJ06teL5J554YsaVV14546effqo4j5NPPjl///HHH89YY401Ztx7770Vxw8cOHBGly5d8nvEa7baaqsZ3bt3r/Iz//Wvf+Xz+uc//znHv3+cZ/yst956q2Lf5MmTZ+ywww4z7rzzzhmffPJJfs+77747PxfbeBz7wx577DFj9913r/g9wsMPP5xf/8UXX1Qc/95778048MADZ2y99db595tbvXr1mjFo0KAq+4YNG5bf+5VXXsmPr7jiihnrr7/+jClTpuTHcU7bbLPNjDPPPDM/nvl3iet76KGHzvjxxx8r3jO+32ijjWb06dNnrs8RgNLy7rvv5v/3ox2uLNrn2B9tcbS98f3YsWMrnn/nnXfyviFDhlRpH3bZZZe8v2CfffaZ8etf/3rGDz/8ULHvgw8+mNGpU6cZt99+e35caAcL9wTh888/z/seeOCBin1xH3L++efnnz2nnn766Rn777//jO+++67K/jinuDcpiJ+19957VzyO8432crvttpsxffr0Kq876qijKh5XvjeZU88880z+eXEvUFnv3r1n/OIXv6j4efHe8VX52sV9Ubz266+/rmjXK19vAOovbXLdt8lzMg4R5xPtbWUzt7+Fe6UXX3yxYt+4ceNmrLvuuhVjJQMGDMiPx4wZU3FM/Nxu3brNOO6446r0x0877bS5+j0AmH/a4bpvh6trZwttbOU2NdrL6L/P3Ie++eab87ExflC5Pf7oo48qjnnhhRfyvkcffXSOYhSFtviggw6qcky/fv1mrL322nlsYU7+rVQ+n8pjKfNzreDnSIEO8yjSgbRq1arK41iNFSu7Ip1HrLSOVcsxAyxmP0UKkBArmUKkRnn22WfTfvvtl2dBxSrsmA0daUhCzLaeMmVKnl0Wq8tjdlSkOImUpdWt1I4ZWrGiuXK60JjtFSuVY3VXzLyO2dtxnj/88EPFV/ycmP0V5zKnYpZXu3btUqdOnSr2xWztYcOGVZmdVp1IzxIzwH75y19W+T0i5Um8fumll67YFzPPn3/++TwrLX6/uRXXLdKqxMzyuH6R7uWBBx6o8neIlfMx26yQBj1Wn8WsusLfYWaxCi1mxkUamFgNHuccM9ljpV7l9PUA1E8vvPBC3s6c0SMexyrvaJdCZAqpvMI42pkQ7WzBQgstlNOMFUS7HrOpY9Z0rHoutMXRxsUqp5nb4srtbLSPq666al4hFTOzY2V5pBuLNOurrbbaHP9+cS8RK7hixnXcewwfPjxdc801ua0stI0FkbWmIH73JZdcMqdMr5zpJa7Dd999l+bHc889l+8J4rpUvkeJa/nFF1+kd999t+LYKOES51JQ+BvEtQWgvGiT675NnttxiNmJMYNYAVYQK7ri94gxk0L7H/c6kVGu0PbHvdNWW22V/vWvf9V4TwRA3dAO1307PDuV28IY648sqjGeHhlPo9xnZKUtjG9X7tsvtdRSeYV4TX3on4tRFFTOzBZirCPGwqMk6pz+W6luLAUWJCnQYR5FJ62y6KhF4xfpOKNGZ6T9iA5dpAuJ1NiREiXEgHeIdCgtW7bMQdlIlRKpVGIA+4wzzshpUaNhjZTmgwYNymlJ4/sY/I5aG1FLqzrRMJ177rk5VWrUy4jUJ1GnPBTqk5999tn5a2Yzp/qenXiv1q1bp3kR1yeuwZy8PhrwuJmIlCgRyI/rNTf+85//5N81thGgj8BBIYV64e8QKWPjWsdkgZ133jlv46YgJhPUFMCPaxyTGqKDHp36eH3c8BTeE4D6K9qpsMwyy1TZH//PRztf6NDO3CYVXhfHVFb5fWJiXAStYyJVfM0sgtKVtWjRouL7GHSOlOgRrI704Pfdd1++x4gJZdHWReqyORE/f8CAAXliXiHdWNTnmvlnh0JJlZrOqbbEfUW0oTW1vXGPUujsR3s+8/1XqFx7DIDyoE2u+zZ5XsYh5nTMJMQ4wJtvvlnR/seYRfT5q1N5ctuC+F0BmD3tcN23w7Mz8xhElF+Lcf9Y9BbPReyhcE6Vx6hn7kMXJrQV+tA/F6OoqV2PwHrh38mc/lup7veABUkAHOZRBJkrixXAsS/+84+6FTEoHXWrYsA2/rOP2VMRNK08YBu1reLrq6++ynU8rr322rzaOWZdxUyuLbfcMn9Fxy9mckXdy6gtHjWvYrB6ZhHAjecff/zx3PitsMIKuU5mWGyxxSpWVW+yySazvHZOB85DrHyPAPvMYvV0vE91g+iVbxiioY2VZpVNnTo1/46V63lFLZFopPfcc89ceyQa3jkVtdCjAY/a3xHUjkkIcc3jOseq7cpiFXjUEo3G+NFHH831zWsStUbj9VG3dfPNN6+4sejatescnxsApavQHsbK42hHC2Jmc7Tz0XmrbtJYIfD95ZdfVky2qjwBrdDRizbw4IMPnmVmdHUd05lFhzPqbp111lk5C0m0WRFIj58d++ZEYVA7guY77LBDRTabqDFWLHEO0Z7GfU515rS+OQDlRZtcHHMyDhHjH5XFpLqfGzMp3CcVJsNH+x9jEzFGUZ0YEwGgeLTDpSsW3x1zzDF5Qvx1112Xs8rFWENMdI/A+Nz4uRhFTe16HBuiXY/J/j83jgLFIAU6zKOnnnqqSjqRSCEaK4JXX3319OGHH+aB5EjTWUiFEsdXnl31u9/9LnciCw1FBHmjoYkGI4K3/fv3T3vttVeesRUD4ttuu21OeRoiRXd1Isgdx8W5RJA2AruFWV0RAI6fE4HrOK/CVwymR2qzSEs+pyKN2SeffFIlJWkEsKNhjKD/7MTgf0wKKKRkqXw9Y+JA5aBCzDSPAHYECqIBj7SxcyomAETQ4fe//31e+V1YITbz3yFEupi4zpdffnluvOO6zS79e6SGiRuMQvD7jTfeyAF9q88A6r/CJLGYPFVZPI7B3sLEspkVZkZHULqyyu1dTAJba621chtVuS2O2dVXXnlllbRgM4u0YjHx6vXXX89te7SlPXv2zPcdNd0X1NSORbsY9xiF4HdkXHnnnXdqpR0rtLdze81j4Dza4srXJc4pssDE/dWC/PkAlCZt8vyZlzZxTsYh4n4m7h1mngw/s9GjR6f333+/4nG8Ju5nCpPH4+8bYycrr7xylfY/Fg7EuELlkicA1D3t8PyZ177pnLwuxqJjLD7G0iOTaWH8vxD8npsspT8XoyiIBXeVRewh7hVigty8/luZm98Z5oUV4DCPxo4dm4466qgcYI3vI51ozJKOYGqkC4mAbdSziKB0ND6FVU2FNF5RWytSmUaQN9KMRWcwUoxFgxGryGMgPR5HPfEIyMaMqajDEXUyKqcfmVkce/zxx+fGpXKtjug8xkB5pGaP76MjGw3Z1VdfXZFqfE5FQ3jbbbfl3z9+Vsziit8vzjHqhfyceE28tlevXrl+SMwCj+sXQeUYyI9GvLKoN/bII4/kFeD33HNPXl3/c6ITHR3zmLEWkxDiKxrmQoC+cjq1uKZRd3TIkCH5bzG7lWYx4z3O5S9/+Uuu1xor8CIdbdxoqD8KUP9FcHiPPfZIV1xxRf5/PdrrkSNH5qwkMQEq2vpoB2YWbcc+++yTM5ZEwDYC1DGAO2rUqCrHRdsXndQTTjght9nRXsf9QEzyOvroo2s8rwicN2vWLK+Siglncf8Q9THj3OJeZE5FOxZtf6wEX3/99XPq0ZgxHpP6aqMdi/uemFQXNcDiZ8U5/5xog+M6x+8fX9G+RqA//gZxvQup1eb054eHHnood8RjJjwA9ZM2ue7b5DkZh9hmm23ygHa0s3H/E330uJ+YWQy+R+r0GIeIMYi4l4rVhIVU6jHRPe6VYvuHP/whjysMHTo03XnnnenUU0+dz98egPmlHa77drjwuphY9uKLL+ZFaNUp1B+PdOXRhkZ/PtrjJ554osbMLDX5uRhF4b1iHCQC5NF/j98pYh/RxscCsTn5t7IgrhX8HAFwmEeRujT+c+7Ro0f+jz7+k4//9EMMLEeq7Og0RtquaAQiSBp1OUaMGJE7fH/84x/zc1FfI1Y3xSqs7bbbLg+Ih2hMIpAeDVAEgCPAGrOlItAcnc+axOvivWLAN4LAle299955BXZ0YO+444583lFvM37O3AwQR2D59ttvTxdddFGuhx0rxmIQPc4t3qe69OiVRfA9AtPRCEa6lmhMd9111zygX52YTRaB+yOOOCIP2Mdrfk5cg/g7xDnGtS6sPI/zPuyww/LfIa53QUwWiJlscR6zE3/TGASIFOhxcxE1wCOYHynu//GPf+RAhpnqAPVbtOExoBttdKQYX3bZZXOQOYKzs5uZHGnIo9MYbU3UwIpOXgz8RptRsMUWW6Sbbropt4ExISwmdUXnNTqY0ZbWJMqLxD1BZG2J84tJbB06dEjnnHNOnpg2p6ItjRRk0WbH/UfUAI82MO4zIhAe71sIIs+L6HzH/U737t3z71RTh72yuKbRvkcmljiHyMYSGWoOOeSQOWrzK4u07jGYHu11ZOOJlPEA1F/a5Lptk+dkHCKC0zHZL1aLx+B7LAKIcYyZS5ZFSZjCOcRgeGSyiXGRwvtEW//Xv/4139tEex0r2eLeJv7mxSzNAsD/px2u23Y4xBhCjGnH+HVMDKtOjFdE+xnjCjEuHRPMYjwhFqxF3CHGvSOr6pz4uRhF5eMiQB0xhRhHiLH6ymVE5/XfyvxcK/g5jWbMTT4EIItGIGZBXXjhha4IAAAAwP+JiWgxSB6TxAGA+isWunXr1i1dcMEFczX5HkqBFeBAhVi9/HNzYmIGeDFXOMf5xXn+nDjHQv0TACh3pdiGl+I5AUBDbP9K8ZwAoKG0eaV4TtAQCIADFbbffvv06aefzvaKxMr3SKdSLPfee+8c1QOLFG1RYwQAGoJSbMOjpmes/pqdFVZYweowAMqKNhkAikc7DBRIgQ5UGDVqVK5rPTtRS3uVVVYp2lWLuqU/V2M8RP3zqFUOAA1BKbbhH3zwQZo0adJsj4laY3NamwwA6gNtMgAUj3YYKBAABwAAAAAAAKAsLFTsEwAAAAAAAACA2iAADgAAAAAAAEBZaJzKXJcuXXI9xGWWWabYpwIAc+2LL77INXJHjBjRYK6ethuA+kq7DQD1i7YbAMqz3S77APjUqVPTjz/+WOzTgLI1Y8aMPMkk/tNp1KhRsU8Hys4PP/yQP2cNibYbFhztNixY2m2gtmm7YcHSdgO1SbsNpdNul30AfNlll83b4cOHF/tUoCxNnjw5jRw5MnXq1Cm1aNGi2KcDZadbt26podF2w4Kj3YYFS7sN1DZtNyxY2m6gNmm3oXTabTXAAQAAAAAAACgLAuAAAAAAAAAAlAUBcAAAAAAAAADKggA4AAAAAAAAAGVBABwAAAAAAACAsiAADgAAAAAAAEBZKMkA+A8//JAuv/zytO2226YNNtgg7b///unVV18t9mkBAABAyfrwww9zH/qee+6p8ZhvvvkmnXDCCWnjjTdOm2yySTr77LPTlClT6vQ8AYC5M27cuLTGGmvM8jW7Nh8AGrLGqQRdc8016W9/+1u68MIL04orrphuuOGGdOihh6ahQ4emZZddttinB/yfH3/8MT311FPppZdeSl988UXafvvt08ILL+z6AEAJ0m5DeZs+fXrq3bt3mjx58myPO/7443PAe9CgQWnChAnp9NNPz6/p379/nZ0rMGemTZuWrrrqqjRixIjUpUuX1KNHj9SkSROXDxqgt99+OzVt2jQ9/vjjqVGjRhX7W7VqVdTzAv4/fW4oLSW5Ajwa8l//+tdpiy22SCuttFI65ZRT0nfffWcVOJSQmGG66qqrpp133jmdccYZeRuPzTwFgNKj3Ybyd+WVV6ZFF110tse88sor6YUXXsjB7rXXXjt17do1nXPOOen+++/PK8uA0nHSSSelli1bppNPPjkvEoltPI79QMPzzjvvpA4dOuTFYcsss0zFV7NmzYp9aoA+N5SkkgyAt27dOv3zn/9MY8aMybNm7rjjjjzDdc011yz2qQH/16D/9re/Teuuu27+rMYq8NjG49gvCA4ApUO7DeXvxRdfzP3myKI2O7GKNAbLO3bsWLEv0qDHSrLI6gSUhghyX3zxxXl87E9/+lN69NFH8zYex35BcGh4Ro0aVaX9BkqHPjeUppIMgEcKtkUWWSR169YtB9Quu+yydMUVV6T27dsX+9SgwYtJKVEzMLI03HfffXnArEWLFnkbj2N/pF6M4wCA4tJuQ/mLNOYRDIusTMstt9xsj41V3jMfE5PNl1hiiTR27NgFfKbAnKY9j3GwNm3a5IUhBx98cFp66aXzNh7H/ng+jgMa1grwr7/+Ou2///5p8803T/vuu29ekAIUlz43lK6SrAH+3nvv5folMbs1buwj1VME1G6//fbUqVOnWY6PQHlNohPftm3bn62DBsyZuLkePXp0uuWWW9L333+f6weGwrZnz55pu+22S4899ljaaqutXFaYTzNmzKhS3wtgbjz99NO53f7LX/6SFlqo6tzXeHzqqafmAbQ4bptttnFxoR7q27dv2mCDDdKuu+76s8fGPXt19YOjpujUqVNrfJ0+N9SdqPn9ww8/pDPPPDMHuWfuc8dkl+OOOy4NHDgwHXvssf400AD63PF/wgcffJBLD0ap0Ch58vDDD6fDDz88j89FSZOZabuhbhgrh9Jtt0suAB4B61hdOmjQoNSlS5e8L1aBR1A8appdffXVc/2e0WEYOXLkAjhbaHgKqREXXnjhKp+rGFwv7C8cF+kVgfkTbVgMSgPMi8KKznXWWafa5wv7rfyE+ikyMEVa8wcffHCOjo86odWtGo3gd2R1mlf63FB74jMdItVxdX3uCIAVjjPWBQ2jz924ceP0/PPP5zG3Qs3vuI9/991300033VRtAPznaLuhdhgrh9Jtt0suAP7aa6+l6dOn56B3ZZ07d64xrcvw4cNrfL+Y7RYzAqpbOQ7MvS+++KIivUt8rmIWenTEO3TokJo3b55vyMNGG23kcwe1oLpVWgBzqpDq+I033kibbbbZLM/H/srHAfXL3Xffnb766qtZMjicddZZaejQoenGG2+ssj+yoz3++OOzDCCMHz8+LbvssjX+HH1uqDuxGCQyIb7//vtpyy23nKXP/dxzz1UcZ6wLGk6fu2XLlrPsW2211dIzzzxT7fHabqgbxsqhdNvtkguAR4c8jBo1Kq233npV6pzEzf68iOXw8zObHfj/tt9++/xZHDBgQF5xUhAd8ZiFGrXIVl555XxcYTU4MO9KPRUbUNpi4Dza7fPPP79Kux1++umndMEFF+R2O44D6p9LLrkklyWqbIcddkjHH3982m233WY5fuONN86v+eijj9JKK62U973wwgsVE1jnlT431J4ePXqk008/PZ1zzjk5vXHlPncM+PXr1y+vBo3j6kvgDkpZfehzx0rvffbZJ11zzTVp0003rTKZtZAVYm5pu6F2GCuH0m23qxYCLAER9I6O98knn5z+/e9/51muUdcoZrhWvvEHiiOC2pdeeml66KGH0u67755XfE+aNClv43Hsj0E1wW8AKD7tNpS3Nm3a5EB25a/QunXr/FxkbYpVKYUgeWRW23DDDVPPnj3T66+/nvvcUWc47uPjeKD4Iqgdn9Fx48aldu3apZtvvjl/jmMbj2N/PC/4DQ1HlERYZZVV8sSYKH8QGSJiIuurr76ajjrqqGKfHjRo+txQukpuBfhCCy2UZ7NF0PvUU09N3377bVp99dVzTfDorAPFt+eee6a77rornXDCCWm77bar2B8ryGJ/PA8AlAbtNjRcY8eOzWXBYpA8/i+I2fJXXXVVOvvss9NBBx2Ua6fttNNOue8NlI6LLroobyPD2nHHHVexP1Z+n3jiiRXPAw1DjJdfe+21eUFKZH+YMGFCWmuttdItt9ySx82B4tLnhtLUaEYUyC5j0dn/ubonwLyJFSWPPfZYeumll3LmBmnPofY1xHasIf7OUBe027DgNcQ2rCH+zlBXpk2blheIxIrPqPkt7TnUvobYjjXE3xnqgj43lFYbVnIrwIH6leJlq622Sssss0zq1KmTtOcAUMK02wBQv0Sa82OPPTaNHDky97mlPQeA0qXPDaWl5GqAAwAAAAAAAMC8EAAHAAAAAAAAoCwIgAMAAAAAAABQFgTAAQAAAAAAACgLAuAAAAAAAAAAlAUBcAAAAAAAAADKggA4AAAAAAAAAGVBABwAAAAAAACAsiAADgAAAAAAAEBZEAAHAAAAAAAAoCwIgAMAAAAAAABQFgTAAQAAAAAAACgLAuAAAAAAAAAAlAUBcABgjl133XXpwAMPrLJv5MiR6YADDkjrr79+2m677dKtt97qigIAAAAAUBQC4ADAHBk8eHAaOHBglX3ffPNNOuSQQ1L79u3T3XffnY455ph0ySWX5O8BAAAAAKCuNa7znwgA1Cvjxo1LZ511Vnr++edThw4dqjx35513pkUWWSSdc845qXHjxqljx47po48+Stdff33aa6+9inbOAAAAAAA0TFaAAwCz9eabb+Yg9wMPPJA6d+5c5bkRI0akTTbZJAe/CzbbbLM0evTo9OWXX7qyAAAAAADUKSvAAYDZirre8VWdzz77LK2++upV9i277LJ5O3bs2LT00ktX+7pu3brV+PPidW3btk2TJ0/2l4FaNmXKlCpboHbNmDEjNWrUyGUFAACAIhIABwDm2ffff5+aNGlSZV/Tpk3zdurUqfP8vtOmTUsjR470l4EFJLI0ALUv2q9COwgAAAAUhwA4ADDPmjVrlgf7KysEvlu0aFHj64YPH17jc7E6PFbQderUyV8Galms/I7gd4cOHVLz5s1dX6hlM08KAwAAAOqeADgAMM8iVfnnn39eZV/hcZs2beb5fSN97OwC6MD8ieC3zxjUPunPAQAAoPgWKvYJAAD118Ybb5xeeuml9OOPP1bs+/e//51WXnnl1Lp166KeGwAAAAAADU/JBcCff/75tMYaa1T7FSlRAYDSsddee6WJEyem008/Pb333nvpnnvuSYMGDUpHHHFEsU8NABqEr776Kp144olps802SxtssEE6/PDD0/vvv1/j8Q888EC1/e0xY8bU6XkDAABAg0mBHh32Z555psq+V199NR133HHp6KOPLtp5AQCzilXeN954YzrvvPPSHnvskZZZZpl00kkn5e8BgAXvmGOOST/99FO6/vrrU8uWLdPll1+eDj744PT3v/89lzuY2ahRo9Imm2ySBgwYUGX/Ukst5c8FAABAWSi5AHiTJk3y4HnB5MmT0wUXXJAH0mOVGQBQPBdeeOEs+9Zbb710xx13FOV8AKAh+/bbb9MKK6yQM6+svvrqeV9MHP/Nb36T3n333dxGz+ydd97JK74r97sBAACgnJRcAHxm1157bZoyZUo6+eSTi30qAAAAUDIWX3zxdOmll1Y8/vrrr3MpkrZt26ZVV1212tfECvDtttuuDs8SAAAA6lZJB8ALnfcTTjghLbHEEsU+HQAAAChJffr0SXfeeWfOqnbNNdekFi1aVLtifNy4cWnEiBFpyJAh6ZtvvsmrxKOG+Morr1yU8wYAAIAGFQCPDnmrVq3SPvvsM9vjunXrVuNzY8eOzbPfI5U6UPsiQ0PlLVC7ZsyYkRo1auSyAgCzddBBB+W+8+DBg3Nd8OhPr7322lWOibTohfuLKDX2/fff52D5fvvtlx588MG09NJLV/ve+txQPPrcsGDpcwNAeSrpAPh9992Xdt9999SsWbP5ep9p06alkSNH1tp5AbMaPXq0ywILQLRhTZs2dW0BgNkqpDw/77zz0muvvZZuv/32HOSurEuXLum5555LSy65ZMUEu6uuuipts8026Z577kmHH374PN+v6HPDgqXPDQuGPjcAlKeSDYC//fbb6ZNPPkm77rrrzx47fPjwGp+Lmeoxk69Tp061fIZAYTZ6dMQ7dOiQmjdv7qJALYs0pgAANZUNi4D2jjvumBo3/t/u/UILLZSD4Z9//nm1r1lqqaWqPI57+Hbt2uXU6DXR54bi0eeGBUufGwDKU8kGwKMmWevWrdOaa6453+8VM9urq38G1J4YOPM5g9on/TkAUJMvv/wy9erVK914441pyy23zPumT5+e3nrrrbTddtvNcvwdd9yRBgwYkP75z39W3LtPnDgxT2j97W9/O1/3K/oCsGDpc8OCoc8NAOVpoVSiosO+xhprFPs0AAAAoCStvvrqaauttkr9+vVLL774YnrnnXfSKaeckiZMmJAOPvjg9OOPP6Yvvvgi1/oOcexPP/2UTjrppFwP/D//+U867rjj8qrwPffcs9i/DgAAAJR3ADw66UsssUSxTwMAAABKVqzo7tq1a+rZs2fae++90/jx49PgwYPT8ssvn8aOHZu22GKLNHTo0HzscsstlwYNGpQmT56c9t133xwkb9WqVbr11ltT06ZNi/2rAAAAQHmnQL/hhhuKfQoAAABQ0iKA3bdv3/w1s6jtPWrUqCr71l577XTzzTfX4RkCAABA3SrZFeAAAAAAAAAAMDcEwAEAAAAAAAAoCwLgAAAAAAAAAJQFAXAAAAAAAAAAyoIAOAAAAAAAAABlQQAcAAAAAAAAgLIgAA4AAAAAAABAWRAABwAAAAAAAKAsCIADAAAAAAAAUBYEwAEAAAAAoMR9+OGHaYMNNkj33HNPsU8FAEqaADgAAAAAAJSw6dOnp969e6fJkycX+1SAanz22Wdp5ZVXTl27ds3beAwUT+Mi/mwAAAAAAOBnXHnllWnRRRd1naAEtWzZssrklM8//zwtt9xyqUWLFmnSpElFPTdoqKwABwAAAACAEvXiiy+mO+64I1144YXFPhVgNsHvDh06pAsuuCBvQ+yP54G6JwAOAAAAAAAlaMKECemkk05KZ5xxRl5RCpSOSHNeCH5/88036c0330zbb7993sbjEM9Lhw51Twp0AAAAAAAoQX379k0bbLBB2nXXXef4Nd26davxubFjx6a2bduqJQ61oHPnznkbK76bNGmSpkyZkh/Htnnz5mmllVZKH330UT7uww8/dM1hPs2YMSM1atRojo4VAAcAAAAAgBJz3333pREjRqQHH3ywVt932rRpaeTIkbX6ntAQFVZ5H3HEEVU+U6NHj87bQw89NPXp0ycf5zMHtdN+NW3adI6OFQAHAAAAAIASc/fdd6evvvoqbbPNNlX2n3XWWWno0KHpxhtvrPZ1w4cPn+3q8FhB16lTp1o/X2hollxyyfT555+n6667Lh1//PF55XcEv2NFeKwA32uvvSqO85mD+ReZFuaUADgAAAAAAJSYSy65JH3//fdV9u2www450LbbbrvN8/tG+tgWLVrUwhlCw/baa6+l5ZZbLge9Y2VqBL1DbONxpD8vHOczB/NvTtOfBwFwAAAAAAAoMW3atKl2f+vWrWt8Dqg7bdu2zYHtyZMn51XeUfM70p7Hyu9C8Duej+OAuiUADgAAAAAAAHNp0qRJqWXLljkIHkHvqPldEMHveB6oewLgAAAAAABQD4waNarYpwDMJILcn332WercuXP65ptv8mrwSHtu5TcUjwA4AAAAAAAAzKMIdn/44Ydp5MiRqVOnTmp+Q5EtVOwTAAAAAAAAAICyDoDfd999aZdddknrrrtu+tWvfpUeeeSRYp8SAAAAlJSvvvoqnXjiiWmzzTZLG2ywQTr88MPT+++/X+PxkZLxhBNOSBtvvHHaZJNN0tlnn52mTJlSp+cMAAAADS4Afv/996fTTz897b///unhhx9Ov/71r1OvXr3SK6+8UuxTAyqJgbKePXumY445Jm8NnAEAQN2Ke/GPPvooXX/99emuu+5KzZo1SwcffHCN9+bHH398Pn7QoEHp8ssvT08++WTq27evPxuUoE8//TStsMIKadNNN83beAwAANTDAPiMGTNyJ/z3v/99DoC3b98+HXXUUWnzzTdPL7zwQrFPD/g/u+++e65jEgNtzz//fN7G49gPAAAseN9++20OivXr1y+tt956qWPHjunoo49On3/+eXr33XdnOT4mlUe/un///mnttddOXbt2Teecc06ehD5u3Dh/MighTZs2Te3atUvjx49PP/74Y97G49gPAADUswD4hx9+mGe07rrrrlX233TTTemII44o2nkB/18EuWOQrEmTJql3797p3nvvzdt4HPsFwQEAYMFbfPHF06WXXppWX331/Pjrr7/OK7vbtm2bVl111VmOHzFiRFpmmWVyoLwg0qA3atQovfTSS/5kUCIiyD1t2rT8fXyeI0tDbEPsFwQHAIB6GAAPkydPTt27d88z0vfee+/0j3/8o9inBvxf2vNC8Pu7777LNQNXXHHFvI3HhSC4dOgAAFB3+vTpk/vPUUbsvPPOy9mZZharvJdbbrkq++L+fYkllkhjx46tw7MFahKLQgrB76+++iq9//77uTRgbONxiOelQwcAgJo1TiVm4sSJeXvyySenY489Nq8qHTZsWE7jdsstt+QO/cy6detW4/tFJz5myUZAHZh/Ueu7UDvwhx9+qAh0x7Z58+b5cztgwIDUo0ePdNlll7nkUAulQWJVFgDA7Bx00EFpn332SYMHD851wYcMGZLTnFcW9+wR8J5ZrCadOnVqje+tzw11Z5111snbGMtq1qzZLH3u2P/ZZ5/l4wTBYf7pcwNAeSq5APgiiyySt7H6e4899sjfd+rUKb311ls1BsB/TsyMHTlyZK2fKzREr732Wt7+4he/qPK5Gj16dMX+CIDHcT53MP+kOAQA5kQh5Xms/o578dtvvz1dcMEFVY6JYFphZWllEfyubsX43NyvuPeH2hGZ1cKRRx5ZbZ/70EMPTf369cvH+dzB/NPnBoDyVHIB8DZt2uRtoYZZ5c78E088Ue1rhg8fPtuZ6jGTL4LowPzr3Llzev7559Ozzz6b057HLPToiHfo0CHPRo+VJoXjfO5g/lW3SqsURUaIP/3pT+m+++5L48ePT2uttVY68cQT0/rrr1/sUwOAshU1v5977rm04447psaN/7d7v9BCC+X+8+effz7L8bFy9PHHH59l4D/a7mWXXbbGn6PPDXWnVatW+TN57bXX5vvpmfvckQ69cJw+NzScPjcAUM8D4JGirWXLlnnGepcuXSr2v/POO6l9+/bz9J6ROnZ+ZrMD/9/AgQPT9ddfn6644oq8uiQ64CG2Meh21VVXVRxXeA6Yd/Ul/fk111yT/va3v6ULL7wwrbjiiumGG27Iq1OGDh062wF1AGDeffnll6lXr17pxhtvTFtuuWXeN3369JxBbbvttpvl+I033jhdcskl6aOPPkorrbRS3vfCCy/k7UYbbTTP56HPDbXnjTfeSO3atctpzr///vsqfe54HPsLxxnrgobT5wYA5s5CqcRESrYYMI9VZA899FD6+OOP86B6rDY95JBDin160OBFp/s3v/lNXikSM8779OmTB9BiG49jfzwv+A0NS6wmi9UoW2yxRR5QP+WUU3JaxldffbXYpwYAZSsyp2211VY5HfKLL76YJ45HGzxhwoR08MEHpx9//DF98cUXOWhWyNK04YYbpp49e6bXX389/fvf/05nnnlm2n333SuysQHFtcIKK1SsSG3dunXq2LFjzrIU23gc4vk4DgAAqCcB8HD00Uen4447Ll122WVpl112SY8++mi68sor06abblrsUwNSyp3vQhA86n3vtddeeVsIfsfzQMMSg3H//Oc/05gxY/Jg+x133JEH5tZcc81inxoAlLW4D+/atWsOau+99945dfLgwYPT8ssvn8aOHZsnp0VGlsIqt8jYFKtLDzrooNSjR48cQO/bt2+xfw2gkqlTp1YEwWPFd0xyKaz8jv3xPAAAUI9SoBfEam8rvqF0RZA7apHFoFmULIjVJNKeQ8N1+umnpz/+8Y+pW7duaeGFF871R2PyWk3lS+K4msRgfdQonTx58gI8Y2iYou2uvAVq14wZM+o8lWpkYYoAdnVB7Ah0jxo1apZJa1HOCChtEeT+9NNP0zrrrJMzK8VnPdKeW/kNAAD1OAAOlL5Icx6ZGkaOHJk6deok7Tk0YO+9914elIsSJpFCNeqB9+7dO91+++35/4e5FRkl4v8WYMEYPXq0SwsLQLRfTZs2dW2BWhHB7giCF/rcan4DAMCcEQAHAOZLrNg+4YQT0qBBg1KXLl3yvnXXXTcHxWMV+NVXXz3La4YPH17j+8Xq8FhBNy+Bc2D2YuV3BL87dOhg4hosAIWUxQAAAEDxCIADAPMlyiBMnz49B70ri9IITz311Dy9Z6SPtcIFFmwWF58xqH11nf4cAAAAmNVC1ewDAJhjUa87zFxj9J133smrTAEAAAAAoK4IgAMA82W99dZLG220UTr55JPTv//975xeeeDAgem5555Lhx9+uKsLAAAAAECdkQIdAJgvCy20ULrmmmty0PvUU09N3377bVp99dVzTfBIgw4AAAAAAHVFABwAmG+LL754Ouuss/IXAAAAAAAUixToAAAAAAAAAJQFAXAAAAAAAAAAyoIAOAAAAAAAAABlQQAcAAAAAAAAgLIgAA4AAAAAAABAWRAABwAAAAAAAKAsCIADAAAAAAAAUBYEwAEAAAAAAAAoCwLgAAAAAAAAAJQFAXAAAAAAAAAAyoIAOAAAAAAAAABlQQAcAAAAAAAAgLIgAA4AAAAAAABAWRAABwAAAAAAAKAsCIADAAAAAAAAUBYEwAEAAAAAAAAoCwLgAAAAAAAAAJSFxqkEjRs3Lm211Vaz7L/gggvSnnvuWZRzAmY1ZcqU1LNnz/Taa6+lzp07p4EDB6bmzZu7VAAAUEfGjx+fBgwYkJ544ok0ceLEtMYaa6QTTjghdenSpdrjr7nmmnzfPrNRo0bVwdkCAABAAw2Av/3226lp06bp8ccfT40aNarY36pVq6KeF/D/7b777un++++vePz888+n66+/Pv3mN79J9913n0sFAAB1oFevXumLL77IQfDWrVun2267LXXv3j3de++9aZVVVqk20B337CeeeKK/DwAAAGWpJFOgv/POO6lDhw5p2WWXTcsss0zFV7NmzYp9akCl4HeTJk1S79698+BabONx7I/nAQCABeujjz5Kzz77bOrbt29e8b3yyiunPn365L70gw8+WGN/e6211qrS144vAAAAKBclGQCPGekdO3Ys9mkANaQ9LwS/v/vuu3T22WenFVdcMW/jcSEIHscBAAALzpJLLpmzMK277roV+yKLWnxNmDBhluOnTZuWRo8eXe3KcAAAACgXJZkCPWakR0d+//33Tx9++GFaaaWV0lFHHVVtXfDQrVu3Gt9r7NixqW3btmny5MkL8Iyh4Yia3+H4449PP/zwQ0WgO7ZR//vYY4/N6Rd79OiRLrvssiKfLdR/M2bMqFIOBACgYLHFFktbb711lQsybNiwvDL8tNNOm+VCvffee+nHH3/Mx5x33nlp6tSpaeONN87p0GPVeE30uaF4Kve5gdqnzw0A5ankAuARUPvggw/Sqquumk455ZS06KKLpocffjgdfvjh6ZZbbkldu3ad6/eMWe4jR45cIOcLDc1rr72Wt7/4xS+qfK5iJUlhfwTA4zifO5h/0YY1bdrUpQQAftbLL7+cTj311LTDDjukbbbZptrJ5iEmrl5++eXpq6++yvfuv//979N99903z2XH9LlhwSv0uYHapc8NAOWp5ALgjRs3Ts8//3xaeOGFKzrf66yzTnr33XfTTTfdVG0AfPjw4bOdqR4z+Tp16rRAzxsais6dO+fPaNQajLTnMQs9OuIdOnTIA2lDhgypOM7nDuZflBUAAPg5jz/+eOrdu3facMMN0yWXXFLtMbvvvnvOrLbUUktV7FtttdXyvn/84x9pl112qfZ1+txQPDP3uYHapc8NAOWp5ALgoWXLlrPsi075M888M0/vF6ljW7RoUQtnBgwcODDXGbziiity2sRCBzy2MYHlqquuqjhO5xzmn/TnAMDPuf322/O9+U477ZT69+8/28H8ysHvEKnPl1hiifTZZ5/N84XW54YFL/rXxrag4fa5I2vLhRdemJ5++umKEiYnn3xy6tixY7FPDfg/sYDz0EMPrbgeN954Y+revbvrA0WyUCoxsdI7ZqzHCtPK3njjjZwWHSh+p/s3v/lNThHVqlWr1KdPn1xjMLbxOPbH84LfAACw4EUGpnPPPTftv//+OZ357ILfl112Wdpxxx1zlrSCMWPGpG+++UZ/GwBK2DHHHJPH32JRyl133ZUzpx588ME5SwRQGpNpKge/QzyuL5NsoByVXAA8Zq2tssoq6ZxzzkkjRoxI77//frrgggvSq6++mo466qhinx6QUq4PWAiCxyDbXnvtlbeF4Hc8DwAALFgffvhhOv/889P222+fjjjiiPTll1+mL774In999913+f48vo9tiOM+/fTT1Ldv3/zaF198MR133HF5EvqWW27pzwUAJejbb79NK6ywQurXr19ab7318vj50UcfnT7//PO8mAworpmD3O3bt5/t80ADDYAvtNBC6dprr82NeY8ePdIee+yRXnvttXTLLbek1VdfvdinB/yfCHJPnjw5HX744WnTTTfN23gs+A0AAHVj2LBhafr06emxxx5LW2yxRZWvSIn+yiuv5O9jG9ZZZ510ww03pFGjRqU999wzHXvssalTp065D25gDgBK0+KLL54uvfTSirHxr7/+Og0aNCi1bdtWBhcogbTnle/NJ02alO655568jcfVHQc04BrgSy+9dF71DZS2SHMeaRRHjhyZB86kPQcAgLpz5JFH5q/ZiWB3ZV27ds1fAED9EyUI77zzzlzy5JprrkktWrSo9rhu3brV+B5jx47NwfNYyALMn8ppz2PiaaEsQWzjceXj9t13X5cb5lOU85rTydslGQAHAAAAAAD+v4MOOijts88+afDgwbku+JAhQ9Laa68915coyqPEghagdkTa88qfqdGjR+ftcsstlyedBJ85mH/RfjVt2nSOjhUABwAAAACAErfqqqvmbZQ6ibKht99+e7WZVIcPH17je8Tq8FhBF9kcgdrx8ccf589UrPyO4HeHDh1yttRC8Dv4zMH8iwwoc0oAHAAAAAAASlDU/H7uuefSjjvumBo3/t/h/IUWWigHwz///PN5es9IH1tT+nRgzt14440VadCfeeaZirTnEfyOx5WP85mD+Ten6c/DQrXw8wAAAAAAgFr25Zdfpl69euUgeMH06dPTW2+9lTp27Oh6QxF179694vuYpNKyZcu066675m08ru44oG4IgAMAAAAAQAlaffXV01ZbbZX69euXXnzxxfTOO++kU045JU2YMCEdfPDBxT49aPCipEBlldOeV/c8UDcEwAEAAAAAoEQNGDAgde3aNfXs2TPtvffeafz48Wnw4MFp+eWXL/apAf8X5I4055XFY8FvKB41wAEAAAAAoES1atUq9e3bN38BpSnSnO+7775p5MiRqVOnTmp+Q5FZAQ4AAAAAAABAWRAABwAAAAAAAKAsCIADAAAAAAAAUBYEwAGAWnHfffelXXbZJa277rrpV7/6VXrkkUdcWQAAAAAA6pQAOAAw3+6///50+umnp/333z89/PDD6de//nXq1atXeuWVV1xdAAAAAADqjAA4ADBfZsyYkS6//PL0+9//PgfA27dvn4466qi0+eabpxdeeMHVBQAAAACgzjSuux8FAJSjDz/8MH366adp1113rbL/pptuKto5AQAAAADQMAmAAwDzHQAPkydPTt27d09vvfVWateuXV4Fvt1221X7mm7dutX4fmPHjk1t27bN7wfUrilTplTZArWfFaVRo0YuKwAAABSRADgAMF8mTpyYtyeffHI69thjU+/evdOwYcPS0UcfnW655ZbUtWvXuX7PadOmpZEjR/rLwAIyevRo1xYWgGi/mjZt6toCAABAEQmAAwDzZZFFFsnbWP29xx575O87deqUV4LXFAAfPnx4je8Xq8NjBV28B1C7YuV3BL87dOiQmjdv7vJCLWvSpIlrCgAAAEUmAA4AzJc2bdrk7eqrr15l/6qrrpqeeOKJeXrPSB/bokULfxlYQCL47TMGtU/6cwAAACi+hYp9AgBA/bb22munli1bptdee63K/nfeeSe1b9++aOcFAAAAAEDDYwU4ADBfmjVrlg499ND0pz/9Ka8GX2+99dLDDz+cnn322TRo0CBXFwAAAACAOiMADgDMt6OPPjqnVL7sssvSuHHjUseOHdOVV16ZNt10U1cXAAAAAIA6IwAOANSKQw45JH8BAAAAAECxqAEOAAAAAAAAQFko+QD4hx9+mDbYYIN0zz33FPtUgJl88cUXqVOnTmnLLbfM23gMAADUnfHjx6czzzwzbbXVVmnDDTdM++67bxoxYkSNx48ZMyYdccQR+dgtttgiDRw4MP3444/+ZFCCVlhhhdSyZcvUpUuXvI3HAABAPU+BPn369NS7d+80efLkYp8KMJMlllgiffvttxWPP/7447TsssumxRdfPA/CAQAAC16vXr3yRNQBAwak1q1bp9tuuy1179493XvvvWmVVVaZpY8dz3Xo0CH99a9/zffwp59+elpooYXS8ccf788FJaRRo0az7Pvvf/+b98+YMaMo5wQAAPVFSa8Av/LKK9Oiiy5a7NMAZhP8XmuttfJgW2xD7I/nAQCABeujjz5Kzz77bOrbt29eIbryyiunPn365ImpDz744CzHDxs2LAfQLrroorT66qunX/7ylzmA/uc//zlNmzbNnwtKOPg9N88DAEBDV7IB8BdffDHdcccd6cILLyz2qQCVxOqSQvA7tvFZjXSLsa28Xzp0AABYsJZccsl0/fXXp3XXXbdKYCy+JkyYMMvxkRp97bXXzlmbCjbbbLM0ceLENHLkSH8uKAGV05xHX3vSpEn5sxvbeFzdcQAAQD1IgR4d9ZNOOimdccYZabnllvvZ47t161bjc2PHjk1t27aVRh1qSawsCbHiu3HjxmnKlCn5cWybN2+e1lxzzfT222/n4wyiwfyL9IZWeAAA1VlsscXS1ltvPcsq71gZftppp81y/GeffZb7x5XFavFC37lz587V/hx9bqg7kaWh4JFHHqnS547HUQu8cJySgTD/9LkBoDyVZAA80rdtsMEGadddd62V94tUbgJxUDsKK7sPPfTQKp+r0aNH523UFDzxxBPzcT53UDttWNOmTV1KAOBnvfzyy+nUU09NO+ywQ9pmm21mef7777/PQfPKCvcZU6dOna/7Fff+UPuq63PX9Dwwb/S5AaA8lVwA/L777supnaqrV1aT4cOH1/hczFSPmXydOnWqpTOEhm2ZZZZJH3/8cbrxxhvTEUcckWehR0e8Q4cOeQX4AQccUHGczx3MvyZNmriMAMDPevzxx1Pv3r3ThhtumC655JJqj2nWrNkstb4Lge8WLVrU+N763FAc0aeeuc898/PA/NHnBoDyVHIB8Lvvvjt99dVXs8xWP+uss9LQoUNz0G1uRerY2XXmgTkXE1QiTeJbb72Vfvjhh4oOeGzjcaQ/LxzncwfzT/pzAODn3H777em8885LO+20U+rfv3+Ng/mR/vydd96psu/zzz/P2zZt2szX/Yp7f6gdyy+/fEUa9J133jmnPS/0ueNx5eN87mD+6XMDQHkquQB4zFSPtGyVRfq2448/Pu22225FOy8gVazsXnzxxdO3336bt1HzO9Kex8rvQvA79sdxAADAgjVkyJB07rnnpgMPPDCdfvrpsx3I33jjjXPWtYkTJ6ZFF1007/v3v/+dawrHfT1QfJ9++mnF5/ipp56qqPld3XEAAEA9CYDXNOu8devW8zUjHag948ePT0sssUQOgkfQO2p+F0TwO54HAAAWrA8//DCdf/75afvtt8/lib788ssq6c6jvndh4mqsCv/lL3+ZBg4cmHr06JHTpY8ZMyYNGDAg/eEPf5ACFkpIlPKb3WSWeB4AAKjZQrN5DqBGEeSOdInt27fPqdhiG48FvwEAoG4MGzYsTZ8+PT322GNpiy22qPIVKdFfeeWV/H1sQwTEo6zYTz/9lP7nf/4nnX322Wm//fZLRx99tD8ZlJgIckea88riseA3AADUwxXg1Rk1alSxTwGoRqQ5HzlyZP7q1KmT+mMAAFCHjjzyyPw1N/3plVZaKd18880L+MyA2hBpzidPnqzPDQAAc8kKcAAAAAAAAADKQr1YAQ4AAMyfadOmpauuuiqNGDEidenSJdcAjprAAAAAAFBOrAAHAIAyd9JJJ6WWLVumk08+Of3tb3/L23gc+wEAAACgnAiAAwBAGYsg98UXX5xat26d/vSnP6VHH300b+Nx7BcEBwAAAKCcCIADAEAZpz2/7LLLUps2bdKYMWPSwQcfnJZeeum8jcexP56P4wAAAACgHAiAAwBAmbr66qvTDz/8kPr165caN25c5bl4fM455+Tn4zgAAAAAKAcC4AAAUKbef//9vP31r39d7fOF/YXjAAAAAKC+EwAHAIAy1bFjx7x96KGHqn2+sL9wHAAAAADUdwLgAABQpo4++uic6vyMM87Iqc4ri8dnnnlmfj6OAwAAAIByIAAOAABlqkmTJqlnz55p3LhxqV27dunmm29OX3zxRd7G49gfz8dxAAAAAFAOGhf7BAAAgAXnoosuytvLLrssHXfccRX7Y+X3iSeeWPE8AAAAAJQDAXAAAChzEeTu169fGjhwYBoxYkTq0qVL6tGjh5XfAAAAAJQdAXAAAGgAIs35sccem0aOHJk6deok+A0AAABAWVIDHAAAAAAAAICyIAAOAAAAAAAAQFkQAAcAAAAAAACgLKgBDgAAAAAAJWj8+PFpwIAB6YknnkgTJ05Ma6yxRjrhhBNSly5din1qQCWNGjWa5XrMmDHDNYIisQIcAAAAAABKUK9evdIrr7ySg+B333136tSpU+revXv64IMPin1qwGyC37PbDyx4AuAAAAAAAFBiPvroo/Tss8+mvn375hXfK6+8curTp09adtll04MPPljs0wPmIMgtCA7FIQAOAAAAAAAlZskll0zXX399WnfddasE0+JrwoQJRT03YNbg9qRJk9KIESPytjJBcKh7aoADAAAAAECJWWyxxdLWW29dZd+wYcPyyvDTTjutxtd169atxufGjh2b2rZtmyZPnlyr5woNXQS9p0yZkr+PbTxu2bJlxfM+czD/ZsyYMccTSgTAAQAAAACgxL388svp1FNPTTvssEPaZptt5vl9pk2blkaOHFmr5wYNXeXP1OjRo2f7PDDv7VfTpk3n6FgBcAAAAAAAKGGPP/546t27d9pwww3TJZdcMttjhw8fPtvV4bGCrlOnTgvgLKHhis9UrPyO4HeHDh1S8+bNZ3kemD9NmjSZ42NLMgD+1VdfpQsvvDA9/fTTaerUqWnjjTdOJ598curYsWOxTw2o5Mknn6wy2/SJJ56YJS0TAABQN6677rr0zDPPpNtuu63GYx544IF04oknVjtQ3q5duwV8hgDAvLj99tvTeeedl3baaafUv3//uQoAVCfSx7Zo0cIfA2pRpDsv1P6O4Hfl9OfBZw7m35ymPy/ZAPgxxxyTfvrpp3T99dfn/yQuv/zydPDBB6e///3vs8yaAUrnP5pCMDxmkQIAAHVn8ODBaeDAgalLly6zPW7UqFFpk002SQMGDKiyf6mlllrAZwgAzIshQ4akc889Nx144IHp9NNPn6vBf6Bu6xHPHPSufBxQt0ouAP7tt9+mFVZYIR1xxBFp9dVXz/uOPvro9Jvf/Ca9++67ab311iv2KUKDN/ONdqROqpxaKZ7XqAMAwII3bty4dNZZZ6Xnn38+p1r8Oe+8805aY4010jLLLOPPAwAl7sMPP0znn39+2n777fN4+ZdfflnxXLNmzVKrVq2Ken7ArEHwmRknh+JYKJWYxRdfPF166aUVwe+vv/46DRo0KLVt2zatuuqqxT49aPAi7XnBm2++mdO6ROql2Mbj6o4DGlbnfIMNNkj33HNPsU8FmEnUIuvZs2fOthTbeAzUf3EPvsgii+TU5p07d/7Z42MFuPJiAFA/DBs2LE2fPj099thjaYsttqjyFSnRgdJQU5Bb8BuKp+RWgFfWp0+fdOedd+aaJtdcc02NNRJi9WlNxo4dm4PnkydPXoBnCg1H5ZrfscKkMHge28orTuK4Qs0TYMHNIi0l0Snv3bu3NhdK0O67757uv//+isexUjTKDUWWpfvuu6+o5wbMn+222y5/zWnGtVgxPmLEiJxO9ZtvvslZ1qIm+Morr1zj6/S5oXgq97mBhtfnPvLII/MXUD/+P4k41MiRI1OnTp3U/IYiK+kA+EEHHZT22WefXMssVqpEB33ttdee6/eZNm1a/k8HqD0xCFb5czV69Oi83WqrrdJTTz2Vv/e5g/kXbVjTpk3rxaW88sor06KLLlrs0wBqCH7HpNLjjz8+/eIXv0jPPvtsuuKKK/L+eF4QHBqGKCtWGJy74IIL0vfff58nm++3337pwQcfTEsvvfQ8va8+Nyx4hT430HD73ABAmQTACynPI53La6+9lm6//fbcSZ9Z5drD1QXponMfM26A2hOfu/hcxSz06IjH6u/mzZtXBL+Dzx3MvwhY1QcvvvhiuuOOO3IQrXKmCKC4op0uBL+/++679MMPP+QJameffXa+x46agfF8HBftOFDeunTpkp577rm05JJLVqx2u+qqq3LbHeVLDj/88Gpfp88NxTNznxtomH1uAKCeB8Cj5nd0yHfcccfUuPH/nt5CCy2Ug+Gff/75PL1ndOxrSp8OzJ0nnniiIrhV6ISH6IhXnpEex/ncwfwr5VRsBRMmTEgnnXRSOuOMM9Jyyy03R6+RShXqRtT6DrHyO4LfldOoRtt97LHHpgEDBqQePXqkyy67zJ8FyjyNalhqqaWqPI7/C9q1a5dTo88rfW5Y8OKzqo8Nta/U220AoEwC4F9++WXq1atXuvHGG9OWW25ZUVP0rbfemuO6ZsCCs/XWW1d8XyhJUDnteXXHAeWtb9++aYMNNki77rprrb2nVKpQOyKLUoi059WVLon9EQCP45QugfJPoxrZWuIz/89//rMikDZx4sT8f8Jvf/vbYp8eAAAAlGcAfPXVV8/BtH79+uWvxRdfPF133XV5ddnBBx9c7NMDqlnZMnPwO54HGoZIeT5ixIhcN3RuSKUKdaNz587p+eefzzW/I+35zGlUhwwZUnGc0iVQfmlUf/zxx5xlLcodNGvWLPe1L7nkkpy55Y9//GOuAR4B8VgVvueeexb7dAEAAKA8A+AhOuCXXnppTtkYtQqjTtngwYPT8ssvX+xTAyoFuZ988skqtX4j7bmV39Cw3H333emrr76ape73WWedlYYOHZozuswLqVShdgwcODBdf/316Yorrsg1vwu1Q2Mb5Yai9m/hOHVFofzSqI4dOzaXHbngggtygDtKlQwaNCj3t/fdd998Tx+ZIG699daSXrkOAAAA9T4AHrPTI51qfAGlK4LdkyZNyilTY9WYemTQ8MQqslg9VtkOO+yQ6w3vtttuRTsv4H9FUPs3v/lNuv/++/M9dtT8jmBXrPyO4Heka47nBb+hPFx44YVVHkdt71GjRlXZF2WMbr755jo+MwAAAGjgAXAAoH5o06ZNtftbt25d43NA3Zcq2H333XMQPDItxVdBBL/jeQAAAAAoFwLgAABQ5iLIHfW/e/TokV577bVc81vacwAAAADKkQA4AFCrZk61CpSGSHN+2WWXVZQukfYcAAAAgHK0ULFPAAAAAAAAAABqgwA4AAAAAAAAAGVBABwAAAAAAACAsiAADgAAAAAAAEBZEAAHAAAAAAAAoCwIgAMAAAAAAABQFgTAAQAAAAAAACgLAuAAAAAAAAAAlAUBcAAAAAAAAADKggA4AAAAAAAAAGVBABwAAAAAAACAsiAADgAAAAAAAEBZEAAHAAAAAAAAoCwIgAMAAAAAAABQFgTAAQCgAfj000/TCiuskDbddNO8jccAAAAAUG4aF/sEAACABatp06Zp2rRpFY/Hjx+f2rVrl5o0aZKmTp3q8gMAAABQNqwABwCABhL8btu2berbt2/ehtgfzwMAAABAuRAABwCAMhVpzgvB76+++iq9//776de//nXexuMQz0uHDgAAAEC5EAAHAIAyte666+btcsstl5Zaaqkqz8XjwkrwwnEAAAAAUN8JgAMAQJn67rvv8rZ///7VPt+vX78qxwEAAABAfVeSAfDx48enM888M2211VZpww03TPvuu28aMWJEsU8LmEm7du1Sy5YtU5cuXfI2HgMApaNVq1Z5e/LJJ1f7/BlnnFHlOKB+u+6669KBBx4422O++eabdMIJJ6SNN944bbLJJunss89OU6ZMqbNzBOZco0aNqvS54zEAAFBPA+C9evVKr7zyShowYEC6++67U6dOnVL37t3TBx98UOxTA/5PdLxnrhcaj3XIAaB0/Oc//8nbsWPHpq+//rrKc/H4s88+q3IcUH8NHjw4DRw48GePO/7449NHH32UBg0alC6//PL05JNPpr59+9bJOQJzrqa+tT43AADUwwB4dMSfffbZ3AGPGa4rr7xy6tOnT1p22WXTgw8+WOzTA+agw61DDgClYYUVVkhNmjTJ37du3Tp17Ngx3XfffXkbj0M8H8cB9dO4cePSkUcemS655JLUoUOH2R4bE81feOGFXBZh7bXXTl27dk3nnHNOuv/++/P7AKVBnxsAAMosAL7kkkum66+/Pq277rpVbvzja8KECUU9N+B/054XbL311mnSpEm5REFs43GBdOgAUBqmTp1aEQSPFd9R97uw8jv2x/NA/fXmm2+mRRZZJD3wwAOpc+fOsz027tuXWWaZPAmmINKgR3/7pZdeqoOzBeY2+F25zz274wAAgP+vcSoxiy22WJUgWhg2bFheGX7aaadV+5pu3brV+H6R7rFt27Zp8uTJtX6u0BBVTns+dOjQinqBsY3HUZescJzPHcy/GTNmGNwC5lsEuaNtXmedddJ3332Xa36/8cYbVn5DGdhuu+3y15yIVd7LLbdclX0xEWaJJZbIfeea6HNDcUTQu3KfOx4X+txBnxvmnz43AJSnkguAz+zll19Op556atphhx3SNttsM0/vMW3atDRy5MhaPzdo6Cp/rkaPHj3b54E0z21Y06ZNXT5gvkWa8wiCR/vcqVOn1KJFC1cVGpgIoBUyQlQW9xrzkw1CnxsWDH1uWPD0uQGgPJV0APzxxx9PvXv3ThtuuGGuZ1aT4cOHz3ameszki0E+oHbF5yoG0SL4HfUGmzdvPsvzwPypbpAaAGBeNGvWLA/0zyyC37ObFKPPDcWhzw0Lnj43AJSnkg2A33777em8885LO+20U+rfv/983YxEXSQrXKB2V4+FXXbZJac9DxH8jseVj/O5g/mnth8AUFuiPFhMNK8sAuLjx49Pyy677Dy/rz43LBiR7rxQ+zv63JXTnwd9bph/+twAUJ5KMgA+ZMiQdO6556YDDzwwnX766W5EoISMGTOm4jP55JNPztIBr3wcAABQOjbeeOOcXe2jjz5KK620Ut73wgsv5O1GG21U5LMDqqtHXFOfO44DAACqt1AqMR9++GE6//zz0/bbb5+OOOKI9OWXX6Yvvvgif3333XfFPj1gDjraOuIAAFB8P/74Y+5Lf//99/lx586dc4mxnj17ptdffz39+9//TmeeeWbafffdU5s2bYp9usD/0ecGAIAyC4APGzYsTZ8+PT322GNpiy22qPIVKdGB0umQR5rzyuKx4DcAAJSGsWPH5r50oWxRrCq96qqrUrt27dJBBx2UevTokbbaaqvUt2/fYp8qMJOa+tb63AAAUA9ToB955JH5Cyh9keZ88uTJaeTIkalTp07qjwEAQBFdeOGFVR5HoHvUqFFV9rVu3TpdccUVdXxmwLyIYLc+NwAAlMEKcAAAAAAAAACYFwLgAAAAAAAAAJSFkkuBDgAAAAAAzOq6665LzzzzTLrttttcHighjRo1qracCVAcVoADAAAAAECJGzx4cBo4cGCxTwOYg+D37PYDC54V4AAAAAAAUKLGjRuXzjrrrPT888+nDh06FPt0gLkIcsfzVoJD3bMCHAAAAAAAStSbb76ZFllkkfTAAw+kzp07F/t0gBqC35MmTUojRozI28qsBIe6ZwU4AAAAAACUqO222y5/zalu3brV+NzYsWNT27Zt0+TJk2vp7IAQQe8pU6bk72Mbj1u2bFlxcXzmYP5FNoU5nVAiAA4AzLfx48enAQMGpCeeeCJNnDgxrbHGGumEE05IXbp0cXWhROyyyy7pkUceqXi88847p6FDhxb1nAAAgLo3bdq0NHLkSJcealHlz9To0aNn+zww7+1X06ZN5+hYAXAAYL716tUrffHFFzkI3rp163Tbbbel7t27p3vvvTetssoqrjAUWXWzYyMYrhYZAACUn+HDh892dXisoOvUqVOdnhOUu/hMxcrvCH536NAhNW/efJbngfnTpEmTOT5WABwAmC8fffRRevbZZ9OQIUPSRhttlPf16dMnPf300+nBBx9Mf/zjH11hKKKfSw0lCA4AAA1L9AFatGhR7NOAshLpzgu1vyP4XTn9efCZg/k3p+nPw0K18PMAgAZsySWXTNdff31ad911q9yMxNeECROKem7Q0EXa84Ljjjsud8ZHjBiRt/G4uuMAAACAnxfZFCqLoHeUA5w5+D3zccCCZwU4ADBfFltssbT11ltX2Tds2LC8Mvy0006rMeVaTcaOHZvatm2bJk+e7C8D86lyze8LL7wwp2MLsY3HV155ZcVxPnMw/2Jga25mpAMAAOXdBxD8huIQAAcAatXLL7+cTj311LTDDjukbbbZZp7eY9q0aWnkyJH+MlCLKn+moibZ7J4H0jy3X02bNnX5AACgAakpCC74DcUjAA4A1JrHH3889e7dO2244YbpkksuqfG44cOH1/hcrA6PDkKnTp38ZaAWxWcqVn5H8LtDhw65JtnMzwPzp0mTJi4hALBARSYnoPTEWFZkVovJ5dG/VvMbiksAHACoFbfffns677zz0k477ZT69+8/X0GAmDWrowDzb+edd65Ig37KKadUDJZF8DseVz7OZw7mn/TnAAAAUHwC4ADAfBsyZEg699xz04EHHphOP/10AQAoEUOHDq34PEa970LN7+qOAwAAAIByIAAOAMyXDz/8MJ1//vlp++23T0cccUT68ssvK55r1qxZatWqlSsMJViLrPLzAAAAAFAuFir2CQAA9duwYcPS9OnT02OPPZa22GKLKl+REh0ovghyR5rzyuKx4DcAAAAA5cYKcABgvhx55JH5CyhtkeZ88uTJaeTIkalTp05qfgMAAABQlqwABwAAAAAAAKAsCIADAAAAAAAAUBYEwAEAAAAAAAAoCwLgAAAAAAAAAJSFkg+AX3fddenAAw8s9mkA1WjUqFFq2bJl6tKlS97GYwAAoO789NNP6YorrkhbbrllWn/99dNhhx2WPvnkkxqPf+CBB9Iaa6wxy9eYMWP82QAAACgLJR0AHzx4cBo4cGCxTwOoRk3BbkFwAACoO1dffXUaMmRIOvfcc9Nf//rXHBA/9NBD07Rp06o9ftSoUWmTTTZJzzzzTJWv5ZZbzp8NAACAstA4laBx48als846Kz3//POpQ4cOxT4dYC6D3PH8jBkzXDcAAFiAIsh98803p969e6dtttkm77vsssvyavC///3v6de//vUsr3nnnXfyiu9lllnG3wYAAICyVJIrwN988820yCKL5NRsnTt3LvbpALMJfk+aNCmNGDEib2d3HAAAULvefvvtfB/etWvXin2LLbZYWmuttdKLL75Y4wrwjh07+lMAAABQtkpyBfh2222Xv+ZUt27danxu7NixqW3btmny5Mm1dHZAQQy2TZkyJX8f23gctcALfO5g/kU2BRNKAIDqfPbZZ3k7c/ryZZddtuK5yr799tuccS0msEba9G+++Satt9566cQTT0wrr7xyjRdZnxuKp3KfG6h9+twAUJ5KMgC+INLCjRw5stinAWWn8udq9OjRs30emPc2rGnTpi4fADCLQkCsSZMmVfbHvUMEu2f27rvvVgz2X3DBBen7779P11xzTdpvv/3Sgw8+mJZeeul5vl9x7w8LVnV9bmD+6XMDQHkqiwD48OHDZztTPTr3nTp1qtNzgoYgPlcx6BYd8Q4dOqTmzZvP8jwwf2Ye0AYAKGjWrFnF4H3h+zB16tRZ7s1Dly5d0nPPPZeWXHLJigwzV111Va4ffs8996TDDz+82ourzw3FM7s+NzD/9LkBoDyVRQD850THvkWLFsU+DSg7ke68UPs7OuKV058HnzuYf9KfAwA1KaQ+//zzz1P79u0r9sfjNdZYo9rXLLXUUlUex318u3btcmr0+blfce8PC1Z8Vn3OoPbpcwNAeVqo2CcA1C+RUaGyCHrHSpKZg98zHwcAANSuNddcMy266KLp+eefr9g3YcKE9NZbb6WNN954luPvuOOOtOmmm6bJkydX7Js4cWJeXbrqqqv68wAAAFAWBMCBufZzwW3BbwAAqJu0rQcccEC65JJLcpryt99+O/Xs2TO1bds27bDDDunHH39MX3zxRa71Hbbaaqv0008/pZNOOinXA//Pf/6TjjvuuLwqfM899/QnAwAAoCwIgAPzpKYgt+A3AJRuesfKmVuke4TycPzxx6ff/va36Ywzzkj77rtvWnjhhdNNN92UFllkkTR27Ni0xRZbpKFDh1akTB80aFBeAR7HHnzwwalVq1bp1ltvTU2bNi32rwIAAAANowb4hRdeWOxTAGoQwe4YPBs5cmTq1KmTemQAUKJqCnbHfpPXoH6LgPeJJ56Yv2YWtb1HjRpVZd/aa6+dbr755jo8QwAAAKhbVoADAEAZ+7mV3laCAwAAAFBOBMABAKBMzRzcnjRpUhoxYkTezu44AAAAAKivBMABAKABmDnVudTnAAAAAJQjAXAAAAAAAAAAyoIAOAAAAAAAAABlQQAcAAAagJnrfKv7DQAAAEA5alzsEwAAABaMqPNdOdDdsmXLGo8DAAAAgHJgBTgAAJSxnwtuC34DAAAAUE4EwAEAoMzVFOQW/AYAAACg3AiAAwBAAxDB7kmTJqURI0bkreA3AAAAAOVIABwAAAAAAACAsiAADgAAAAAAAEBZEAAHAAAAAAAAoCwIgAMAAAAAAABQFgTAAQAAAAAAACgLAuAAAAAAAAAAlAUBcAAAAAAAAADKggA4AAAAAAAAAGVBABwAAAAAAACAsiAADgAAAAAAAEBZEAAHAAAAAAAAoCwIgAMAAAAAAABQFgTAAQAAAAAAACgLJRkA/+mnn9IVV1yRttxyy7T++uunww47LH3yySfFPi0AoAbabgCoH23wN998k0444YS08cYbp0022SSdffbZacqUKXV6zgDA3NHnBoAyCIBfffXVaciQIencc89Nf/3rX3MDf+ihh6Zp06YV+9QAgGpouwGgfrTBxx9/fProo4/SoEGD0uWXX56efPLJ1Ldv3zo/bwBgzulzA0A9D4BHJ/3mm2/OnfJtttkmrbnmmumyyy5Ln332Wfr73/9e7NMDAGai7QaA+tEGv/LKK+mFF15I/fv3T2uvvXbq2rVrOuecc9L999+fxo0bV5TfAQCYPX1uACiDAPjbb7+dJk2alDviBYsttlhaa6210osvvljUcwMAZqXtBoD60QaPGDEiLbPMMqljx44V+yINeqNGjdJLL71UZ+cNAMw5fW4AmHuNU4mJmephueWWq7J/2WWXrXhuZt26davx/caOHZvatm2bJk+eXMtnCqXj1VdfTV9++eU8vz5SIE6cOHGeXvvDDz/kmoHNmzdPjRvP238piy66aFpppZXS/Fh66aVzzUMoNzNmzMiD0qVM2w0Nq92ujbZbu025qut2e27b4FjlPfOxTZo0SUsssUTuO9dEn5uGbH7b7VJou7XbUDN9big/+tz63JSvuWm3Sy4AHjf1hU54ZU2bNk3ffvvtPKeJGTlyZK2cH5SaL774Ij333HNpww03nOf3aN++fSqF/7jmx7Bhw9KECRPyihYoJ9GGRRtYyrTd0PDa7fltu7XblKu6brfntg2O42c+tnD81KlT5/k89LkpV7XRbpdK263dhurpc0N50ef+X/rclKu5abdLLgDerFmzil+i8H2IznjMdq3O8OHDZztTPW7yO3XqtADOFoov/m1HmsOGvgJ8xx13tAKcslTdIHWp0XZDw2q3a6Pt1m5Truq63Z7bNjiOiWNnFse3aNGixp+jz01DVRvtdim03dptqJk+N5QXfe7/pc9NuZqbdrvkAuCFdGyff/55lRmy8XiNNdaYp/eM5fCz68xDfbf55psX7WdHeYHIsBA3Fz5nUPtKPf150HbD3NFuQ/mq63Z7btvgKA/2+OOPV9kXAfHx48fntOnzSp+bclbMdjvoc8OCpc8N5UefG8rX3LTbC6USs+aaa+aZqc8//3zFvkhr/NZbb6WNN964qOcGAMxK2w0A9aMNjn1RGzxWoxa88MILebvRRhvV0VkDAHNDnxsA5l7jUly+fsABB6RLLrkkLbXUUmmFFVZIF198cZ6pvsMOOxT79ACAmWi7AaA02+Aff/wxff3116lVq1Y5/Xnnzp1zLeOePXumvn375pWlZ555Ztp9991TmzZt/BkBoATpcwNAGQTAw/HHH59rHJ1xxhnp+++/z7PUb7rpprTIIosU+9QAgGpouwGg9NrgMWPGpG7duqULLrgg7bnnnjld3FVXXZXOPvvsdNBBB6WmTZumnXbaKZ166qn+fABQwvS5AaAMAuALL7xwOvHEE/MXAFD6tN0AUHptcLt27dKoUaOq7GvdunW64oor6vAMAYD5pc8NAHOn5GqAAwAAAAAAAMC8EAAHAAAAAAAAoCwIgAMAAAAAAABQFgTAAQAAAAAAACgLAuAAAAAAAAAAlAUBcAAAAAAAAADKQuNU5j7//PP0448/pm7duhX7VKAszZgxI02bNi01adIkNWrUqNinA2Vn7NixaeGFF04NibYbFhztNixY2m2gtmm7YcHSdgO1SbsNpdNul/0K8KZNm6bGjcs+zg9F89lnn6Wvv/5a8BsWkGjDoi1rSLTdsOBot2HB0m4DtU3bDQuWthuoTdptKJ12u9GMmJICMI8K2RWGDx/uGgJAidNuA0D9ou0GgPpDuw2lo+xXgAMAAAAAAADQMAiAAwAAAAAAAFAWBMABAAAAAAAAKAsC4AAAAAAAAACUBQFwAAAAAAAAAMqCADgAAAAAAAAAZaHRjBkzZhT7JAAAAAAAAABgflkBDgAAAAAAAEBZEAAHAAAAAAAAoCwIgAMAAAAAAABQFgTAAQAAAAAAACgLAuAAAAAAAAAAlAUBcAAAAAAAAADKggA4AABQJ8aMGZOmTZuWv//pp59cdQCop7TjAFA+pkyZkrczZswo9qlArREABwAAFrjJkyene++9N7388sv58bhx41x1AKiHYnB8oYX+d0jx2WefrZjcBgDUP1988UUaOnRo+u6771KjRo2KfTpQaxrX3lsBlNZs9EKHHAAovsaNG+dO9f3335/WWWedvO/iiy/O+3WyAaD+9bUHDhyYBg8enO644460yiqrFPvUAIB5MGrUqHTZZZel77//Pk9UX3XVVdNuu+3mWlLviQ4BZd0hv+eee1K/fv3SbbfdlkaPHl3sUwOABrtSrEmTJumRRx5JEyZMSH//+9/T5ptvnhZZZBHBbwCoRwp97eeeey599tln6U9/+pPgNwDUY1tssUXafvvtcxD81ltvTe3bty/2KUGtsAIcKNtUbP37988B8BVWWCENGzYsvfrqq+noo49OHTt2LPZpAkCDaptjhXdhNnmkSV1++eXTTTfdlNvozTbbLC288MLFPk0AYA7b9Y8//jgdcsgh+fFGG22UNtlkk4rnZHUBgPq3iKxt27a5DW/ZsmV67bXXchB8qaWWKvYpwnyxAhwoK4XO9qBBg9KDDz6Yrr322hwEj1ls//jHP9LVV1+d3n333WKfJgA0mA51oW1u1qxZWmmllfKEtMcffzyv/j777LPT888/n3744YeKgXMAoLQU2udCgDva8xtuuCGXMYmsLu+//35+XvAbAOpnSZOnnnoqj6HvvPPOeVz9rrvuSt98801+Xj+d+koAHKj3YvA8Uq8VGuRYWfavf/0rde/ePW2wwQbp9ddfTy+++GLaYYcd0n/+858cFC900AGABZ+VZciQIenEE09MV1xxRRoxYkTeF53rSIse7Xi007FC/L333vPnAIASncw2adKkXMoktltuuWVOf/7000+n6667Ln3yySfFPlUAYA4V+uojR45M//znP9NJJ52UVlxxxXTGGWfkNv4vf/lLuvvuu9N3331nghv1lgA4UK+NGTMmp19r3bp1fhwd8x9//DF9+eWXeaVZBMajwd5pp51ySvRowIcOHZoOPfTQ9NJLLxX79AGgLFVOgXrJJZekAQMG5Lb5vvvuSxdffHGeXR7B7wiCx+qx6Gz/5je/yQPpAEDprQ67+eabU48ePdLee++dfve73+VsLltvvXUOfj/wwAO5DRcEB4D6IyaqH3zwwTn9eadOnSr2n3POOXkM/fbbb09XXnllXmR2//33F/VcYV4IgAP1Wrt27XIN0Uijeu+996bRo0en5s2bp/322y+tvfbaefV3pGvZdNNN8/FLLLFE2nDDDdM+++yT1l9//WKfPgCUpULw+5VXXsn1w2LQ/JZbbskd6agpFoPkTz75ZA6CR/sdadaigx3BcgCgNBSC3zGR7cYbb8ztdb9+/fK+vn375oB3BMGvueaa9NBDD6XzzjsvjRs3rshnDQDMyaT1jh07pmWWWSaPn//3v//N+6dPn5630Xf/5S9/mV5++eU0ZcqUtMsuu7io1DuNZkjgD5TBbPTx48fnRnnllVfOM9Ni5lo44YQTcnD8wgsvzI+PPPLItNFGG6XDDjssP47V4gsvvHARfwsAKE+xGuyJJ55I3377bR4Yj2B3iNXfUVMs0qcec8wxaauttqryuqgHHqvCAYDiiyD38ccfn7O1dO3atSJN6llnnZWWXnrpnI1ttdVWS4888ki69dZb0+DBgyv66QBA6Y2jVxaT1nv16pXatGmTrr/++rTYYotV6ZOPHTs2j7PHJHd9deobd6RAvVVotKMeSdT0/utf/5rTq0bQO9Kih1hlFvXAY9VZrAqP2WyHHHJIfi7m/wh+A8CCEWVIot73G2+8kT766KOK/RHw/sMf/pBatWqVZ5XHbPPKBL8BoHRERrXoR3fp0iVnb4lB8vj69a9/ndOhDhw4MK8Wi9XhUX4s+ukxyA4AlF7we/jw4emGG27Ik9SjXd9ggw3SpZdemgPdMUE9an5HnzwWjYXlllsuB7/jPfTVqW8EwIF6KwLY0ShfdNFFuf7YqquummeqRV3wk08+OXfSjzjiiDwb/dFHH01LLbVUDpYXGvFCelYAYP5UN9B9+OGH5wHyRRddNGdneffddyue22KLLdK+++6btttuu1yyBAAovuqSRC655JJppZVWymnQowb4qaeemtvwaPujP960adOcda0yK8ABoHQU2uUYQ48MLhEEj4xtkSk1gt9RLjQmtMWCsmOPPTZncZt50Zi2nfpICnSgXnfOI4gdK7+jlmjMXFtnnXXSe++9l7p3757at2+f+vfvn5Zffvk0YcKEvNJMuhYAWHCzySO9eawUi3Spe+yxR1phhRXSfffdl2666aa0xhpr5A52TFibmZIkAFA67Xm05VOnTs0pzqMPffTRR+dVYpFNLSabh1j1HRldYtC8Z8+eRT57AGB2hg4dmsfJL7vssrT++uunr7/+Ou+LsqER9I62/tVXX00HHHBA2nvvvXOgHOo7AXCg3gW8Z378zjvvpNNPPz3tuuuu6fe//31+LoLgsfIs6o1GHbJll1222vcAAGrHJZdckjOuRH2wL774Ineo//jHP+YOdExWi5qgnTp1yoPla665pssOACXoiiuuyGXERo0alYPb0c/+1a9+lQfDv//++1wHPFaEx+qx8ePHp3vvvVdKVAAocRH4jhXesS2YNGlSuvnmm3MJk9tuuy117Ngxj7PHVtlQyoEU6EC9UQhc33jjjXkQ/dNPP82PV1999VyPLOqXTJ48Oe+L1WVXX3113rZu3XqW9wAAas+dd96Zy4xcfvnl6fbbb88T0yItarTDkYXld7/7XU6X+swzz+SyJQBA6ZUxGTRoUBoyZEj6n//5n3Taaaelli1b5oHyaNvvuOOOtOmmm6ZXXnklt+Urrrhiuueee6rUCQUASrO8ybhx43Jq88ptdrTzm2yySe67x6S2wjh7BL+17ZSDxsU+AYCfU3nVdqwme//999ODDz6Y07SstdZa6aSTTsorv2OGWgTGDz300PyaWF121VVX5ddJrQoAC85HH32UU55HPe+HHnoop0s788wz0xJLLJHOOOOMXFdsv/32S8sss0yu+w0AlIZC2vPXXnstjRkzJmdv2XPPPfO+rbbaKgfEIwC+7rrr5vY9UqNH/7xZs2b5mB9++MEKcAAowZImoTCmHmVDzzvvvPTCCy/kbC4Fiy++eFpttdXSoosuWuV9rACnHFgBDpR8o11oqKOjHQPpF1xwQbrrrrvSFltskWeeR+c8ZqrHcaNHj87byg190GgDwIIRk87eeuutNG3atFwzrE+fPql379454B2D44899lh67rnn8rHbb7+92eQAUEIrwmKyeKQ732effXKgO9KhFrRp0yaXMmnatGnO4hL97ObNm1cEv+M9YgU4AFB80S4XxsRj8dj111+fzj333Nxfj/Hz3XbbLfXo0SP9/e9/z2Pon332Wbr44otz8DuC4FBu3KUC9WLGWgS4//3vf+c0qqecckpab7310hprrJG6d++e/vSnP+U0LtEhD9tuu2365S9/WeSzB4CGISaeRW3QyLoStb779u2bfvvb3+bnIo1a1Alt165dldeYmAYAxVWYaB4B8OhbX3nllem4447LK8Ej89pSSy2Vn4/sLVHS5Msvv6zxPQCA0smgeuGFF6b7778/t+8R6I6A9+67754OPPDAtMgii6QTTjghtWjRIk90a9KkSa4BHmPwM68eh/pOABwoWYUGt3///nnFdwS2oybJYYcdlq699tq0wQYb5Ea6Z8+eedXZlltumV588cV8HABQdzp37pwD3dGJjpVh4dNPP03XXXdd7lR36NDBnwMASszf/va3vOr7tttuy1laomRJDIqvssoqucxY69at05QpU/IKsShzAgCUpkLwOyasvf7667kvHmnPY3w9Up8PHz48T27r169fbvO///773H/ffPPN8wR1JU0oR41mFHIeAZSge++9N1122WU5ZUvU9I70LSeeeGKuTxIrzTbeeONqX6fRBoC69fLLL+dOdmyjk7300kvnYHjMJo9Z5maTA0DpiOHAmGge2daizY4V4IsttlheMXbyySen9ddfP09u++abb3IAPI6NCegAQGn685//nG699dZcQvTqq6/Ok9ELTj311Fz/+9FHH83988oiG4wsbZQjAXCgpEXKluiYRyP9n//8J89YizSrr7zySk6JHunPo0ZJ1CoBABZsKrWfEwPkY8eOTW+//XZOe242OQCUhuomosXE8aFDh6Ybb7wxTzKP/nUEwR955JGcaW355ZfPK8EPPvjgfPz06dNnGTQHAIrfV492/rnnnss1v2MV+MMPP5wD4FOnTk1NmzZN//3vf9NOO+2Ubr755tSlSxd/MhoECf2BkhazzT///PNcQ/Tuu+9Om2yySdpjjz1yje+oS7bvvvumYcOGFfs0AaDsfPTRR3kbHeoY8J6TxFFt27bNJUqifY7SJDGLPGaTN26s8hIAFFMh+B3B7WjXQ7TPu+yyS+revXv69ttv0zHHHJPLju28885p4MCBebD8gw8+qKj/LfgNAKUhAt6VJ6rH97/4xS9yADxSm5911ll5fwS/Q7TzMUk9yptAQ2EFOFDSPvnkkzR58uTcqF9wwQW5Q77pppumf/zjH+mxxx5L6667bvqf//kfA+sAUMui3V155ZXT7373u9wWRyd6XlaYSacGAKVh5MiROdjdqVOndO2111YEtKdNm5ZTn/fv3z9ttNFGeRvpUyNNau/evdMOO+yQS5Ett9xyxf4VAKDBq9znjpJjL774Yu539+rVK5cviVTnxx9/fOrcuXPO4hLtfZQXjUlugwcPniUjDJQr/9KBkrbiiiumNdZYIz399NNpzJgxOfgd/vrXv+ZVZfvtt18OfkfqNgCgdkTHODKwROc4JppFexuiUz07sUq80JkeMWJE3qolBgDFGyCvLCa2RWrzcePGpWOPPbZiJXjU9t5xxx3Tsssum9vvSy+9NLfpkSr1/PPPz/1x7TkAlIZCn/uiiy7K5UuaNWuW1lxzzdyOh8igesUVV6R33nknHXLIIbkueJQ6iRrh8dqZ7w+gXFkBDtQLMfN8wIABuXZJdNKnTJmSU6JLqQoAC0bU845VYpEKPWaNxwqwmmqIzlx/LCaq9evXL/3tb3/Lq8wAgLpVub1+7733cjaXSH0aNb7vvffeXAO0ffv26brrrsvHTJgwIfXt2zf99re/TZtttll+baFtnzhxYlp00UX9CQGgRDz55JPp7LPPziVL1ltvvTR27Njc3hcypu699955JXifPn3S0ksvndv7aMtjXF1JExoKxfiAemGbbbbJjXjMVI9G+rTTTqtY+S0IDgC1ozDQHduoEdaqVavUtWvXvPIr0p7uv//+FTPGKwfBZw5+X3LJJXn1mOA3ANS9yhlZLrvssvT444/nCW1nnnlmzuyy66675nY70qDH43322Sfdd999eV8h+F25tmjLli39GQGghHz11Vdp1VVXzcHvZ599Nq/yjhXfEeS+8847c1u+11575ZrgkRo9vmJxmQltNCRWgAMlr6aVZoLfALBg2tuoBRrpUMPo0aPTlVdemTvT++67b0U69JqC3xdffHFOlxqpVAGA4on2+/bbb8+rw2Lld9u2bVPTpk1zRrVlllkmrxKLIHis8I7V4YW64DX1wQGAulddu/zcc8/l9OZdunTJ5Ut22WWX9Mtf/jJtu+226cgjj8z7jzvuuNxfj+fj2HguUqMX+u9Q7qwAB+pc5YHyOUmlVmjgo+5o5bpjOuQAUHsK7er111+fO8jRXp911lmpQ4cO6Ygjjsgp0+6444583O9+97v06aefphVWWEHwGwBKUGRPi/Y8gt+RzeX9999Pd911Vy4lFm35nnvumQ4//PCcbS2OLbTpJpoDQGkGv9944428jVrf0bbHiu5Ic37ooYfm9rxg0qRJaYkllsjfR9sewfCo/926dWvBbxoUK8CBogXAoyO++OKL5xloc/qaMHTo0LT22munlVZaqQ7OFgAajghy33TTTbnz/Nprr+WO8w033JBTmccK8Hj+5ZdfTl9//XXuRN944425fY4Ua/3797fyGwBKREw2j/TmW2yxRVpnnXXyavCllloqt+kxufzVV1/NbX4MohdY+Q0ApSnKjP3tb3/LwfAoTXLNNdek1VZbLT/3ySefpA8++CDvjwntn332WbrnnnuUDaXBk88IqBPHHntsXjVWCGZHatUnn3wyLb300hX75iT4He9x0kknpTFjxvjLAcB8ioHuyr777rtcK/Siiy5Kt9xyS64pFrPJR44cmVZfffV09NFH59VikQY90qRG+3z//ffnmqIXXnihtOcAUCKilMmvfvWrNHz48HTaaaelHXbYIZ1++umpb9++acstt8yD5M2bN6/yGlnWAKA0VB4rj8Vg9957bw6Cn3zyyal9+/Zpn332yZPUw4svvpjH3vv165cnuUW2l8aNG+fvoSGTAh1Y4L755pvcsY40qrHdbbfdcgP87bff5kB4iAH06mabV1dXNNK7/OIXv/CXA4D5EG1sod2NlKjvvfdergW64YYb5n3LL798Ovfcc1OfPn3SYYcdVrESvGPHjlXeZ+ONN84rw7feemt/DwAooQD4gQcemPbee+/cp46a3yH64NHux+OfK0cGABRHYTz8H//4R3rppZdyWbKYwBbWXHPNPGl93333zdnYoqzJWmutldv16MdHP19JE0hWgAML3pJLLplOOOGEdMABB+TV2/fdd18OhLdt2zanVo3UbGHm4HcEyWcOfp9//vl55joAMO8qTzCLWeQxUzw61VHX+5lnnskp08KKK66Yg+BrrLFG2mOPPdJHH300S1sdHWzBbwAoPa1atcopzqdMmZLOO++8dNRRR6Xu3bunsWPH5onlhYnoAEDpiRXekZktMqJWHjePAHiMsXfu3DkHwd966628r127dvm4aNtjBTg0dGqAAwtU5VXd0cmOOiR/+ctfcp3Qhx9+OKdoifSqhVpkMYAeg+lRV7SgcvB7xx139BcDgFry+uuv5w71IYccktZbb710+eWX57piv/3tb9Pvfve7PFktjB49Og0ePDidcsopaeGFF3b9AaCEJrP9nHHjxqUHHngglzTp0KFDLmkSA+NWhwFA6Zg5O2o8fvTRR3O975jMNmTIkDyxrWDUqFG5jx6Lz26++ea5ujeAhkAAHKizRjsC29FYx0zzCGpHoxyz1GJ1WdQD//LLL3P61U033TQNGjQoN9hxXBwfq88EvwGg9vzzn//MbWwEtKPdXWKJJfL+2HfPPffkIHi0023atKnyumjPBcEBoDgiG8tKK62Uv58+fXoOZM/JYPfMg+LacwAozXH0t99+O09SW2eddfLj4cOHpyuuuCI1bdo0/elPf6ooaxI+/vjjipXfQFXyIAALvNGOQfVYYfbuu+/mOuC///3vU4sWLfLMtJh9Ho/jKzrg0cCvvfbauWP+/PPPp759++bVaILfADB/Zh74jrZ6ueWWS08//XQeTC8EwHv16pWPi5IlUaYkVolFppYCwW8AKJ5Y/bXyyivnTC0RAF9kkUXm6HXR345gudVhAFC64+gDBw7MWVs+//zznCk1+ufdunXLx8RK8GOPPTZdddVVFUHw9u3bz/IewP8SAAdqVWEWeaHBveyyy9Jdd92V/ud//ievIIuaopHePOqBT506Nac1X2yxxdLuu++eXxfpVwtiJXisQFtrrbX8lQBgPlTuDE+aNCm1bNkyd6Jbt26ds7P06NEjt9nrr79+PqZnz545+B01wSOdGgBQfN99910eEP/Xv/6V+8rTpk3LE9Z+bjV3BL0LtUBfeuml3Cc3oQ0ASkOhrx7Z2KLed9T3jnH0Y445JjVr1iwHvbfffvs8Uf3aa6/NmdpivL0wib3yewD/nwA4UKsqd6KjvtiwYcPyCu7KNb3DV199lfbaa688IB+1SmIAfsstt6x4vtCBF/wGgNoLfkcd7+eeey4tuuii6dBDD80B7wh2Rxq1E088MV188cUVQfA+ffpUrBKzWgwAiq9Vq1bp5JNPTt27d09vvfVWOvjgg/P+6DvXtPKrchseJcb69euX/va3v6VOnTrV+fkDANV77bXXcr3vCHBvsMEGOUtqiLH1b775Jp155pnpl7/8ZZ78Flnc4p4AmD3TQoBacfjhh6czzjijyr5okGP1WPPmzSv2RYq2MWPG5BXgEyZMyDPZogPftWvXKq81Gx0AakdhMLx///7p0ksvzXXDnnzyyRzwfvHFF9OGG26Y2+OoJxptcuwrEPwGgOKLIHZh++233+ZB7+hDxwB4TG4rtPcRBJ9d8PuSSy7J9wKC3wBQXDO32ePHj8/j4WuuuWZ65513cir0yJwa6dBfeOGFvMDskUceSbvssku64IIL8rGxgAyomQA4UCtiBnqsFKssgt8R5I6v8MMPP+T6ZO3atUsrrLBCnskWNUUPOeSQnI4tngcAat+dd96ZHnrooVw3NAa+zzrrrJypJTrOL7/8ckUQPFKj33777VVeW7luOABQ9wPkhbY4JpSvscYaOZh9+umnp1VXXTV/H+17qLwCfObgd2R5Oe+889KOO+7oTwgARRRtdOXyoVHWZOmll85pz2McPVZ9L7/88jkYHvviuWeffTZncytMigsWkMHsCYAD8+XPf/5zDmRHve5YUXbzzTenPfbYIz/3i1/8Im2xxRapV69eafTo0RU1xyIwHoHwmWuKFp4H4P+xdx9gUpVX48APqIAgdhE7iEGxF7B9dqIxauzGGKPGaESNFXuw94oaWzQWYtfYWyRKqsaGipqI2LCD2BWQovJ/zvt9s/9dmpRlZ3f5/Z5nn7tz587s3VmGM/c973tOQL0aMmRI/PjHPy4X0Jnwvuaaa+LUU0+NMWPGxGmnnVZWfa+22molOZ4X4ABA41AZIL/qqqtKD9Bf//rXpapap06dolevXtG1a9fSLzST3On9998v24mT37mKTPIbAKqr9gS1f//736UtSSa4V1pppTJBPau8PPLII6WdaJcuXWL06NGx8sorl4puJ598ck2VNuD7SYADMywH0DMwX3fddWUVWerYsWO5GK/0IstV4XlhvuOOO0a/fv3KqrJMiGewzpItAMCslRVWcrJazg4fNWpUKaGWE9d++tOfxmGHHVZieLYxufPOO6Nz586TLaEKAFTPlVdeGVdffXXMP//88c4778TPfvazEr8z+Z1J8FwJnsfkZLbsEVoZGM8KMJLfAFB9OUEt24VWkt8Zt3Ny23bbbRcbbbRR2bfYYovF8OHD480334w2bdqURWR5rZ7tTzbeeOOaa3VV2mDaSIADMyzLpfbt2zeefPLJsvL7jTfeKEntnJGWF+O/+tWvSuDO+7bddtsyoy3Lr2Z51ZyhrlcJAMx6WWElV3lvscUWJT5nP7Gs0pLygnr99deP7bffvkxWq6hdQhUAaFgTT0T76quvSoWWc889t0xAz4T3vvvuW5MEP/DAA2O//faLn//85/H73/++DIzfe++9JRl+9tlnW/kNAFWUE9HvvvvuePHFF8vtjz/+uLQFzTH1xx57rCS9Kzp06BA9e/YssX2nnXaKESNGlLH1SvLbtTpMuxYT1EsAZsC3335b02ckk9p5UZ2ryTI4Z3mWRx99tPQk69atW1n5nTJgzzfffNGqVatyQZ4r0pQ9B4CGk5PUstz5HXfcUS6eM25nL9HDDz98kvgOAFS3NGrG69dff72UQs3r680226zsf/fdd0u1tbzvD3/4Q7nuntgHH3wQr732WlkxBgBUT7Ye23rrrcuY+Iorrlj2ZfuxXCyW8XyfffaJAw44IOaZZ56aOD906NAyYT3bl+Q1unF0mH4S4MB0m9xss7/97W8lYE+cBM99OSM9e4VP6aIeAGgYDz74YBxzzDHxwx/+sMwyz35id911V5mQJjYDQHXVjsXnn39+aSH2gx/8IF566aWyujtXeWfbscrgePYCffzxx6N///6xzDLL1DyPCW0A0Phie/b1ztXgWaFt5513Lvsy1p9++ullPD2rqVaS4LWJ6zBj5pzBxwGzqdrJ7z//+c9lxnkOmu+9995xyimnxEknnVSCes5ay8H1/P43v/lNCeTZs6RC8hsAGt7qq68eBx98cDz//PNlglqWRs04bjY5AFRf5To5S6Rmr9Drr78+Vl111bj44ovLKrF555239P/OJPhSSy1VJpzfdNNNseSSS9Z5HtVcAKDxxPbs/Z2VWcaOHVtieFZLzdjdo0eP+MUvflGOO/PMM8uxOcY+cRJcXIcZYwU4MEOy91iuIuvcuXO0b9++zFrL0mr3339/Ka9aeyX4wIEDY4011hCsAaARkvwGgMYjq6v17du3XD/nAPn8889f9ue+rNqS19677bZbLLroonUeZ3UYADQNlbLmOSE9V4XnpPSc0JYrw0899dT46U9/Wu1ThGZBAhyYbn//+9/LTPPLLruszEb/8ssvy0z0ykX3c889F0cccUSssMIKZUX4EkssUXOfGWsAUD9mtGS5hDcANN54PmDAgLjtttviX//6V9x6662x2mqr1dx34YUXxr333luqreWE8wUXXLBKZw0ATG+sz5Xg2Qc8W5HtuOOOJfGdSfCM9Z988km8/fbbZVV47gdmXt0mvgDTIHuNLb300iX5nSrJ72effTa22267WGWVVaJ3794l2b3YYovVPE7yGwDqryVJZbA8L6Lzgnpa5HGVi+nsGfrpp5/6kwBAI4jn2RM09ezZsyS3c0XYYYcdFoMGDao5/vDDDy/3Z3n0BRZYwN8NAJqASqzP5HdOSG/btm2p6jJ+/Pg45phjYtttt40LLrgg1ltvvZoWZcDMkwAHpluu5H7jjTdixIgRNRftKYN27hs6dGhsv/32ccUVV5R+4ZX7AYCZl3E142vK0qi/+c1v4le/+lW89tpr07zCLFeU7bPPPmVSGwBQ3XieZU9zAPzYY4+N119/PVZfffWS7F522WXjqKOOqpMEz2psl19+eYnp0zoBDgCY9aYlLlcS3JkEv/vuu8vEtkx8Z0vR2scAM08CHJhuK6+8culDdv3118eHH35Yc9Geq8Kz3Hllllol6FfuBwBmXiWunnvuufH73/8+1lxzzVhrrbVqqq5U4m9OWJtS8jtnl1988cV1yqoCAA0fz3PAO+Ny69at4x//+EdJeD/zzDMlvuckt2WWWaYkx3NfRSX5PSOtUACA+pWly1PG5Vwg9n2J8NpJ8D59+sTJJ59s5TfMAqaSANMtS7Ftvvnm0b9//9L/O8u0zDPPPOWiPQP3SiutVI5zMQ4A9af2QPcTTzwRf/3rX+Paa6+NFVdcsVRgeeqpp0rf0JykdvDBB8fcc8892eT3eeedF2eeeWb86Ec/8ucBgCq6/fbb44EHHoibb745VlhhhXj44YdL2fOzzjorjj/++Jok+GmnnRY33nhj6Qta4XobABqHjOOdO3eOn/3sZyUBPtdcc33vYzIJnpPWa7cMFduhfkmAAzNUpu2II46Idu3axb/+9a/4xS9+Ed26dSsD7X/84x9ryp5b+Q0A9WNycTVvd+nSJR577LH4wx/+EB988EG0adMmRo8eXS6me/fuXeeCWvIbABqXIUOGxI9//OOS/H7uuefimmuuiVNPPbW0OMmk929/+9tS5SUnm+dKcACgcfnqq6/KhPR///vfpa/3uHHj4p577pkkuT2xnKheuX/gwIFlwdnUjgemn7rEwPT9p9GyZU1J1f3337+UXr3jjjvi/PPPLzPSc4ZblnCR/AaA+k9+Z7zNVWE5CS3j7TbbbBP77rtvdOzYsfQNvf/++0tSvNKOpHIBnTPSrfwGgMYjY/Urr7xSYvWoUaPivvvui3XWWSd++tOfllXggwcPLqvA77zzzrKqrDLRHABoPNq3b19alWSMfvnll2ODDTYo+zO+TyluT1yl7Ze//GWJ+0D9sgIcmG4ZwCuBOoN89gSvyOR4rjoDAOpHJfmdJc6zN2gmspdeeuk45ZRT4oUXXojVV1+9DJhXLqC//vrr0pKkIleIX3rppXHGGWcoew4AjUReN+cq7y+++KIMer/66qulhUkaOXJkrL/++qXk+Y477ljzGBPNAaBxqIyN5zZjeY6Rr7feeqVa6mKLLRa77777ZKukTpz8zknuWeklq6sC9avFhHzHAdRSOxB/H6XOAWDWy5XdeVG86qqrlm3tnmJZbi17fy+55JKlZGrevvvuu2smpA0bNiw+/PDDkigHABqfc845J5555plSXS2vsQ888MBYfvnl4/DDDy/3f18ZVQCg4dQeD8+S561atSrfv/XWW3HJJZeUSW277bZb/PznP6/zuImT36q0waxlmSYwSRJ7WpPfGbQrj8sVaQsttFCd1eAAwMyrtBaZZ555YtCgQWWFdybA80I792fP0CxxnpZaaqnSdyyT3/m4HCzP2ef5BQA0TnkdfcMNN5TS58OHD4/Ro0eX6i0T9wgFAKqvMh5+1VVXlf7dGatPOumk6NSpU/Tq1SuuvPLKuO2228pxP/vZz+L999+PJZZYQvIbGpgV4DCbq538/stf/hJvvPFGWSm28cYbx6abbjrFEmu1Z6zloHvObrvssstizTXXbNDzB4DmZnLVVcaPHx+PP/546QWaSe5bbrml5r5MhH/22Wfl+w4dOpT4nMlvLUkAoGnIgfEHHnggnn/++RLLTzzxxJrJbOI5ADQ+meS+5pprYpNNNimtyUaNGhV/+MMfSinzXAGe9+dk9U8//TS6d+8eV199dblWv/3220vllzPPPFOLMpjFJMCB4txzz43+/ftH165dY95554177703DjrooNhnn31i7rnnrvMqTa5XSfYu+/GPf+zVBIB6Sn7/+9//LpPSxo4dWy6i11hjjVJx5be//W0su+yyZaXY5Mqiak8CAE2f5DcANB4TX2fneHj2/P6f//mf+OCDD8p1+muvvVYS3Xn9novMnn766XjnnXeid+/epYpbjrcfc8wxZSHZ5ptvXtXfB2YHEuBA/PnPf44zzjijrOBebbXV4u9//3vsv//+ZaZaJsSzbGol6a1XCQDMenkx/dBDD5UyaWPGjIkhQ4aUC+Xdd989/vrXv5aVYZkEv/766/05AKARqX3NPD0kvAGg8cf2O+64I15//fV45JFHok+fPrHZZpuV/e+++26ccMIJ5b7KSvCJZaI8k+RZeRWY9SZf2xho9jPWassAnbPVMvmdq8APP/zwOOWUU2KFFVaIo48+Ol588UXJbwCYhXLQu+LOO++Me+65J84777yyynvHHXcssXvRRRct5dPyAjsrr+Rs8lNPPdXfBQAaiYzXlQHybFGSA+bTIo+rlDrPlicZ7wGAxpX8zonqp59+ejz77LOlfcljjz0Ww4cPL/dlq7K8Tl9++eVjhx12iLfffrvO82TltsUXX1zyGxqQBDjMhirlWj788MOy/eqrr0qfklxpduyxx5ak96677hqjR48uPUveeuutclwl2N90003Rt29fvUoAYCZlPE056J0D5Wnw4MHxwx/+MNZaa634y1/+UhLhJ510UnTq1Kn0CstZ4zlx7cYbbywzzgGAxlUatV+/fvGb3/wmfvWrX5WVXlMzcZW1bEOWk9QBgOqrxOhcIJZJ76zC9qc//SkOOOCAcr2esbt2EjxXge+xxx6x5JJL1nme2m3LgIYhAQ6zqUx2Z8/uTHznyu/nnnsujjvuuDjssMNit912K8e0adMmFlpooVh44YVrHpfHZbn0XCH+ox/9qIq/AQA0bf/5z3/immuuqYm7rVq1KrPCP/nkkzIz/Iknnihlz3Ni2i677BKfffZZ3H///aWHWB7bvXv3chGdjwEAqquS/D733HPj97//fay55pplMlu2FEuV1eC14/bEye8LLrggLr744nKNDgA0Dn/729/K5POhQ4fG0ksvXfYdeuihpVpblkTPGF5ZaJYT1/NY1+pQff9bXwmY7XTp0qUMrg8YMCC23XbbMmPtgQceKPdln9EM0rnKbN5554111lmn5nEZxO+6665SHh0AmHE/+MEP4vLLLy+ruzPBnbPIM/527dq1rAzPVeFnnXVW/OQnPynHt2/fvsTv+eabr87zmEkOANVTO4mdk9f++te/xrXXXhsrrrhijBgxIp566qly3T3//PPHwQcfHHPPPfckj8uB86z4cuaZZ5poDgBVVjtGV6q85IS2f/3rX6W0ecb01Lt373JctjAbOXJkHHjggbHgggvWPM61OlSXBDjMBsaPHx9zzTVXnX2ZyF5iiSXi7rvvLgnwnKWeM9GznGoOtnfr1q2sAM/eo5UZa7nNIF47kAMAM9bzu3Xr1qX/V1ZgOfHEE0vJ01wRnqXUsgVJDqBnrM6Z5HlRnavCMvmdPcUAgMZV9rwib+eEtewL+oc//KG0Lslr62wxlpPbcrC8cn2dJL8BoHHG9qyc2q5du+jZs2epkvr111+X6qkXXnhhrL766uWYww8/vCS/szz6AgssUOWzB2prMaFSgwlodm677bbSy7viv//9b6y00ko1t3NwPcuu/va3v42ddtqp7HvllVfKLPVMcueM9Qz4OUifF+oAQP3OJr/sssvi+eefL9VXPvroo1hjjTXilltuKRfPp556ajz++OMlJmfiOwfPb7755jKpbXID7gBAw6kdi88///wy8XzrrbeOI488ssT67OO93XbbxRZbbFEGzvfbb79YbrnlSmuTiozrOcHNym8AaFyx/aabbiqVXeaZZ57Yd999SwzP1qB5DZ9tybJySyUJXvs6f+LV40D1SIBDM05+//nPfy4ryXJmeX5/8sknx7LLLlsuyJdccslYdNFFy8V3lmDLJHiuRJuYAXYAmDWuv/76uOSSS+J3v/tdSXC/9tprpe9nhw4dymqw9PDDD8eYMWNKS5JcLZ4x3cQ0AGg8ssT56aefXgbCsy/oCy+8UL5yUDzbiVUGwffYY49y+6CDDiq3c4V4Xo9nFZgtt9yyyr8FAFCRbUFzbH3TTTeNf//739GxY8cydt6jR4+SBM9WZjnRLeN/7quQ/IbGRQIcmqlPPvmk9CPJgfIXX3wxVl555fjb3/5WZq+9+eabpQR6llr99NNP45RTTonbb7+9zGQTqAFg1ph4UlkOeueFdJZCTVkO9aWXXopDDz20DKBnG5KJ1S6ZCgBU1/33319WcK+66qplW7v1WFZWy97fOfm8X79+5Xa2IKtUVxs2bFhpc1J79RgAUF05Rp4T1bONyQorrFAmpWfZ86yUevzxx8eaa65ZqriddtppsdRSS5VJ7EDjpG4iNFPZlyQHyHM2epZBz5lpWXbt2muvLQPumezOHqPPPvtsWVl29dVXl60SLQBQ/3KCWSX5PWjQoFImNUueDx48uOaYjNs5CJ5tSZ555pnYaqutJnkeyW8AaByyIkvG9iyNmrE9+4KmcePGlftyhViWOD/33HNLtbW77rqrJL/zvvxcsNhii0l+A0Ajk+3JfvzjH5fkd8byrK6a7cly3DyT3nmtvtpqq5WJb9kLHGi8JMChmckL6dpyJlr2KfnTn/5U+pKlHFDPGWt5Md6+fftYYIEFykrw7C0KANR/bK5MMMty53nxnOXSNtpoo7Ly6y9/+csksXvDDTcs1VtyxTcA0DgqudSWyezs750txvK+Xr16lf2tWrUq92222WZlonl+Zb/QXB1eaWNi4jkAND4Zp1955ZUy8XzUqFFx3333lfYlP/3pT8sq8JzAnmPqd955Z3Tu3LlMhJv48wHQePxv3SWg2ZVWHT58eLmozj7fe++9d9mfM85zWym1mmXacnD9wAMPrEl+K4EOAPWrMsj96KOPlp6gWYll2WWXLQPhDzzwQCl1nhfX2267bXz22Wfx5z//uVxMZ4+xpOw5ADSea+3sBZrly8eOHRvdunWLTTbZJM4444wSt7PPd6WFSQ6e5/V47eeolD8HABqfjNO5yvuLL74oye5XX301Dj744HLfyJEjY/311y89v3fccceax9RucwY0LnqAQzNRO3F96aWXxl//+teyuuycc84pM88zIX7LLbeUGWo777xzmbWWKjPQkwF2AJg1suXIySefHB9//HHceOON0aVLl7L/tddei9NPP73E7Lygzp7gGc/vuOOOkiA3MQ0AGo+sqvbQQw/FEkssUUqhZpnUY445JnbfffdyDX7iiSeWSW7XX399tU8VAJgJOaae5c7z2jwnseUCsuWXXz4OP/zwcr9xdGj8TD2FZqKS/O7bt2/cdtttZTA9B82zl2gmuRdccMHS8zvlSvAcZM+SLbVnoOsrCgD1v1IsLb300vGjH/0orrvuurjiiitq2pL84Ac/KLH7gw8+iJdffrkkwDfYYIMSk2tPUgMAGl7tWJyTye+55564+OKLY6211ioTzHPld67yzpZiOfE8r8vzujvbnWQyHABomrJqalZ1yUVkubBs9OjRZdFZyjF34+jQ+FkBDs3Im2++WcqqnnDCCbHaaquV1WSPPfZYSXhnifO8EF9zzTXLoPv7778fl19+ud5jADALk9/Z3/udd94ps8MXWmihcuF87733liT3SSedNMXnMJscAKonJ6dVWoeNGzeu9PXOSeaZEM+KLhnfjz322DjuuONijTXWiD/84Q9x6KGHxsILLxwvvvhi2WdgHACarhw7z5Zlzz//fHTo0KFMbMtJcSaqQ9MhAQ7NyNtvvx2/+MUvyoV469at45JLLikJ7iWXXLL0Fs3Zaf369SvlV3MQPu9TWhUAZo1zzz037r777rLK+4033oj55puvrBLLVWNZPjX7h2U1liThDQCNw3/+85/YddddY9VVVy2rvCtx+sgjjyw9v1dZZZVSBjVLn//sZz8r5VH32muvuPbaa2PdddeteR6xHQCaF8lvaFr+f11GoMmtLqstE9nZh2zttdeO0047LQ466KDo3r17SYZneZa8EM9eoilnpUt+A8Cskwnu/v37lxVh2Qf0b3/7W2y33XbxxRdfxKuvvhpbb7112Zcrx5JVYgDQOOTEtayWNmzYsNhll11q4nTXrl3LyvBf//rXpcR5Jr9T+/bto0uXLmWiW21iOwA0DjluPqMJ79q0KIOmRVNBaOKlVR988MGyqixv9+rVq5Rpy1XgefG97LLL1hz/9NNPl1Vnk+sbDgDUr9dffz2WX375slIsL5qzdGoOlGeP0IEDB8a+++5beogNHTp0kn7hAEB1ZMzOamobb7xxmaSW5U732WefuOaaa0pLsZzE9te//rVMPv/www/LNfUFF1xQrr8z7gMAjUvt6+1sa5ILxKZlTDyT5pWE9+OPP16u7RdccMFZfr5A/ZEAhyaoErTPOeeckgBffPHFY5111in78kI8v7Ic+nnnnVcC+n//+99S9vz3v/99OUbZcwCYNSoxNhPgmeCurP4aP358GRzfeeed449//GM5LgfS27VrV46XBAeA6qo90H3ZZZeVnp85gS0HvXfbbbdSDj3LoGd833PPPcsgeMb2Nm3axM0331yu08VzAGg8asflbAuaMT0nu/32t78tFV+mpPbY+a233honn3xy3HbbbRLg0MRIgEMTdeedd8b9998fV199daywwgoxYsSIMtj+xBNPxKabblpms+Uqs/fee68E9CzBmhfzepUAwKxTuUjecsst44gjjoj77rsvtt1225o2JJkIz5nj88wzT/mqXFxbAQ4AjSOGZ+uSHCT/3e9+VxLcr732Wlx88cWlkksOgl955ZXx8MMPx5gxY2Leeectq8VzwptrbQBoXCrX2eeee27cddddsddee8W3334biy22WJ1Ed+6rTF6fOPmdlV7yc8Bqq61Wxd8EmBEtJsxoAwSgqrKvd848P/roo+O5554rAbkyiy2/MjmeK8NrB20X5ADQMEaNGhWnn356PPLII3HMMcdEz549a/Zl/M5V4JLeAFB9E6/azmvsjh07lvZiKQfFX3rppTj00ENj6aWXjhtuuGGS56g9cA4AVFft8fBcLHbKKadE3759Y8UVVyyLyDKuDxgwIOaff/44+OCDY+65557kcTnWntVVzzzzzPjRj35U1d8HmDFWgEMTMLmS5bmC7Nprr42vvvoq7r777thoo43ikEMOibXXXjv23nvveOqpp2KHHXaoeVztcm4AwKyVpc1zBXheSJ900klx/vnnxwILLFBWit10003KpAJAI1C7CsugQYNipZVWio8++ig+++yzmmMysb366qvHTjvtFJdffnlstdVW8dBDD9V5HslvAGgcJteOJG936dIlHnvssVIl9YMPPigtTHJyeo6X56S32pPZJL+heZANgyYUtHOGWia0F1lkkTj88MNj5MiR8cYbb5RZbDkTLUupZkI8Z6/lIHttEyfQAYBZa+GFFy69xXbZZZcYOnRo6RfWo0cPZVIBoJFNNM9y53//+9/LhLWcXJ6TzP/yl7/EFltsUXP8UkstFRtuuGG51rbiGwAan9rj6BnTcwHZ1ltvXaqibrPNNvHuu+/GdtttF3vuuWep0rbffvuV+1Il+X3zzTeXsudWfkPTJwEOTSRo50zzBx98sNxeZ5114vjjj48TTjihXLRnr+9Mhn/yySdx1llnlYCdF+YAQHXlbPLs+Z1fFTlorioLAFRXJfn96KOPxgsvvFBKny+77LIx11xzxQMPPFBKnWf7km233basCP/zn/8cnTt3LpPbkiQ4ADQulXH0rIz6j3/8o5Qwz/YluXgsY31WdMlx9cpngK+//jratm1b8/hcIZ5tR8844wxlz6EZ0AMcmoBzzz037rjjjth3331Lsvuee+4pZddOPPHEMpMtZ6tnOfTllluuBO3rr7++XLS7IAcAAIDJe/bZZ+Pkk0+Ojz/+OG688cZSHjW99tprcfrpp5eVYjnZPHuC52B5Xpfntfbk2pQBANV3//33lxXcq666atlm3K7I6qrZ+3vJJZeMfv36ldtZ9aUyQX3YsGHx4YcflkQ50PRZAQ6NXM5WyxnpV199dQnc+X2WYunfv3+MHTu2zEg77LDDYsUVV4xFF100VlttNaVVAQAA4Hv6guaqsGwndt1118UVV1xRyqWmH/zgB9G3b9/SI/Tll18uCfANNtjAtTYANGJZzjzjfLYJHTRoUFnhnQnwcePGlf3PPfdcGVevtDa56667SvI7H5cVVRdbbLHyBTQPVoBDI5ez0bLU2m233RaDBw8uq8HzwjuDds5i+/nPfx5HHHFEtG7duuYxVn4DAADA5JPf2d/7nXfeKdfOCy20UAwfPjzuvffecq190kknTfFlc60NAI13YlvKaqmPP/54aR+aSe5bbrml5r5MhGdbk9ShQ4dSzSWT31qUQfMkAQ6NyOTKqGXiO8uyHX744aUkWwblXPH9/vvvx/bbb19u77DDDqX3NwAAADBlOak8y53mKu833ngj5ptvvlJNba211oqHHnoo1l9//TJoniS8AaDxJ7///e9/l/LlWS21W7duscYaa5Sqqr/97W9j2WWXjRtuuGGycX1yCXSg+ZAAh0aidsAdM2ZMSWxnuZbRo0eXAJ7B+eCDD47evXvHpptuGv/5z3/i4osvjgMOOKCm7DkAAAAweZngzkpqeS298sorl5VgWf48W4xlP9Dll1++lENde+21TTIHgCYg25dkfF9iiSXKmPqQIUPimGOOid133z3++te/xoknnliS4Ndff321TxVoYKa3QCNZ+V1Jfl955ZVx6KGHxk9+8pNSei17k3Tp0iXefffdGDlyZAnmOVst+5O1adOmzGjL5HfuAwAAACbv9ddfL0nuXB2Wk85btWoVP/vZz6JHjx6lytqGG24YW265ZXzxxRdlkjoA0Lhk/K64884745577onzzjuvrPLecccdS/zOyi6ffvppbLbZZnHaaafF008/HaeeempVzxtoeHNW4WcCU1j5/fvf/77MPv/1r38dnTp1ihdffLH0LMlV3+uss0588sknZRV4yp7fGeSzZHo+hxXgAAAAMOV2Y5kAzyprlevn7BOaJdB33nnn+OMf/1iOyypr7dq1q7nWVhoVAKqvb9++ZYw8+3VnBZecxDZ48OD44Q9/WNqY/OUvfymJ8FxQluPq55xzTllk9j//8z+lrWguIgNmL1aAQ5VVLqbffPPN0n8sg/S+++4bxx13XPTp0yfWXHPNsto7j8uZbHlhvttuu5WybHPNNVeZ9eaCHAAAACYvk9kpV3c/9dRTcd9995XbeU1dSYTnqvBsQ5ZfeXztSm0AQPVkK9BrrrmmjImnTH5nNdRcLLb44ovHE088UcqeH3300bHLLrvEZ599Fvfff3+888475dju3buroAqzISvAoRHIYLzVVluVi+8szVKRPckysB922GHx2GOPlbLo2e+7IgN9znoDAAAApm7jjTeO7bffvpRBHTt2bPTs2TNGjRpVeoJn4rtz586TJM0BgOr6wQ9+EJdffnlZOJYJ7j/96U8lod21a9eyMjzHx88666wydp7at29fWopmlZfaVFCF2YuprNAILL300tGvX78y6/yVV16Jr7/+uua+LM+ywAILlFJtExO0AQAAYNpkafMjjjgitt122zKI/uMf/7i0IMuVYtdee21Z8a33NwA0Hln9NFuB5iS2rJiaC8n22Wefcl+2LclYnmPkSyyxRHz44YcxYsSIuOCCC0rye/nll6/26QNV1GJC1nQCGoXs992rV684++yzY/PNNy/BfeTIkbHnnnvG7rvvHjvttFO1TxEAAACa/GD6a6+9FkOHDo0FF1wwevToUQbPc78qawDQOGTqqlKR5bLLLovnn38+hgwZEh999FFZNHbLLbfE+++/Xyq75Lh6xvRMfLdp0yZuvvnmUm01J7ZpaQKzJwlwaGT++c9/ltlrWRJ9qaWWiv/+97/xwQcf1PT8BgAAAOpXthhTZQ0AGp/rr78+Lrnkkvjd735XEtw5iS3bl3To0CFuvfXWcszDDz8cY8aMiXnnnbesFjexDZAAh0bo3//+d/zqV7+KlVZaKTbddNM46KCDyn6z0QEAAAAAaK4mXrV99NFHR8eOHaN37941k9ZeeumlOPTQQ0tr0RtuuGGS5zCxDdADHBqh9ddfP6677rpS0mWeeeYpvcGTUmwAAAAAADTXsueV5PegQYPKuHiWPB88eHDNMbm6e/XVVy/tQp955plSSXViqroAEuDQSK233npxxRVXRN++feOaa66Jr776qtqnBAAAAAAAs7Tnd5Y7z97e7777bmy00Ubx4Ycfxl/+8pc6x2f70A033DBWXnnlsuIboDYJcGjEMoBfdNFF0a9fP0EcAAAAAIBmqZL8fvTRR+OFF14opc+XXXbZ+OEPfxhzzTVXKXV+9913l3Hyjz/+OP785z9H586d49xzzy0rviXBgdr0AIcmYPTo0dG2bdtqnwYAAAAAAMwSzz77bJx88sklwX3jjTdGly5dyv7XXnstTj/99LIifOTIkaUneCbM77jjjpIcr716HCBJgAMAAAAAANCgvvvuu5qe3yn7fd92221x3XXXxaabbhrnn39+zX2ffPJJfPDBB/Hyyy+XBPgGG2xQVn5/8803Meecc/rLAXVIgAMAAAAAAFCV5Hf2937nnXdKGfOFFloohg8fHvfee29Jcp900klTfI48PpPgABOTAAcAAAAAAKDBZQ/v7O39gx/8IN54442Yb775YtFFF4211lorHnrooVh//fXj+OOPL8dKeAPTSl0IAAAAAAAAGlQmuPv37x9/+MMfYuWVV45x48aV8ue579VXX42tt9467rrrrhg1alScddZZVnsD00wCHAAAAAAAgAb1+uuvx/LLLx/dunUrvbxbtWoVP/vZz+LTTz+NgQMHxr777hujR4+OoUOHTtIvHGBqJMABAAAAAABoEBMmTIgWLVqUBHgmuCt9vMePH19KoO+8887xxz/+sRx3wAEHRLt27crxkuDAtDJdBgAAAAAAgAaRyey05ZZbxlNPPRX33XdfuT3XXHPVJMJzVfg888xTvvL4TIZbAQ5MKyvAAQAAAAAAaFAbb7xxbL/99nHqqafG2LFjo2fPnqXf98UXX1wS3507d54kaQ4wLVpMyGkzAAAAAAAA0IA+/vjjuPzyy+PWW2+N9u3bxwILLBDzzjtv3HTTTWVFuLLnwIyQAAcAAAAAAKAqvvnmm3jttddi6NChseCCC0aPHj1KX/DcP+ecChkD008CHAAAAAAAgEbj22+/LUlwgBkhAQ4AAAAAAABAs9Cy2icAAAAAAAAAAPVBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHKgXEyZM8EoCwGyi2nG/2j8fAJoqMRQAgNmBBDjMApdcckksv/zys81r+6c//SnOOeecen/ezTbbLI499thoTBrjOQFQXeL+93vvvffKZ6O77rprpl/v1157LXbbbbfpfpwYDsDExPCGM7u91gAAVNecVf75QDNwxRVXxNprrx2zg0svvTTmmWeeap8GAMy2cf/hhx+O559/vmo/HwCaqmrG8F122SU23HDDqvxsAABmP1aAA0yHFVdcMZZeemmvGQAAAEyjjh07xuqrr+71AqDJGTNmTFxwwQWxxRZbxMorrxxrrrlm7L333jF48OCaY+6+++7YaqutYpVVVoltt902nnjiiTKOXLsK2gcffBC9e/cuk9FWW2212GuvveLll1+u0m8FzZ8EOPyfb7/9Nm666ab4yU9+Equuumpssskmcf7558fYsWPL/Vn2OoPSSSedVIJcBrR8TN5/1llnxf/8z//EGmusEccdd1zNY2obOHBg/OIXvyjBLYPcMcccE59++mnN/RkMMyhmOfF8rjzm9ddfj3feeSf233//WGeddcpjd9111/jHP/4x3X+3V155JQ466KBYd911Y6WVViozr08//fQSwCuyHNktt9xSfte11lqrnEPlmCxxno/N8+jTp0/N75jlRN9///0S5PPxWeJ0Wj3wwAPlA0G+3vncRx55ZHz44Yd1jhk/fnyce+655TXJi+Vf/epX8fbbb9c55vHHH4+f//zn5Zzz/I444ogYNmxYndc2z+2FF16IHXbYofy8/DvnCrKJS7M++OCD5fXO1zr/DVx22WXx3XffTbZ8auUxf/7zn+OQQw4pf/98zY4//vgYPXp0nd8h/y1ttNFG5Wfvs88+cc8990z36wVA/RH3Gz7up48++qhOzDzhhBNi1KhR0/x3yfKpWY0l5c/P2ylj9VVXXRWbb755GZD40Y9+FDfccEM9/osBoLEQwxs+huexRx99dGywwQZlPGG99dYrtz/77LNyf8bzvGbPv01tZ5xxRjmPvCaeuAR6Hpuxe5tttikxP6/3f/azn8WTTz5Zb/9WAKA+ZMy78847Y7/99otrr722jP9na64cg54wYUIZ582YnDmDyy+/vFyPHnjggXXiYuYBMs7997//LXEzE+p5Hbv77rvHG2+84Q8Fs4AS6PB/TjzxxLj33nvj17/+dXTv3r3MvsrkZ87kuvrqq2uS2K1bty77M8E5xxxzxOGHHx7/+te/ynaZZZaJ2267Le6///46r+szzzxTZoXlRehFF10UX3zxRVx88cWx5557xh133BFt2rQpx2VQzCCaF4l5Idm5c+dyMdihQ4eSBJ5zzjnj+uuvjwMOOKAkXfPnTYsRI0aUYJoXlGeffXa0atUq/vnPf8Z1111XnjuDd8V5551XfmYOLv/tb3+LP/7xj/HYY4/FCiusUAagBw0aVC5c89z23Xffclw+PpP3Gdjz+abFs88+Wz485GN69OgRw4cPLz87PzjceOONNcc99NBD5SI7z/vjjz8ukw3yta7MnssPGDmZIM+5V69e5XX73e9+VyYK5IX9QgstVPNceX9OQsjH5+t+2GGHxZVXXhkbb7xxzTEnn3xyuZ2/Y55j/n75tz7qqKOm+LvkpIiddtqpfMB58cUX48ILL4wFFlig/C6Vf1uZ7D/44IOjW7du5fv8oANA9Yj7DRv3K/Lzzx577FFi5nPPPVdidrYWyVg+LX+XLJ+anxkyjudnrlxNVonf+dkgY30m1/Oz15lnnhlffvll/OY3v6n3fz8AVI8Y3rAx/Ouvvy5jF3mNm9e+7du3L61I8vlyLOPUU0+N7bbbLm6//fZ46qmnYv311y+Py0H9HLfYeuutY6655prkefMcM4mf182ZGM/J8BnzDz300Pj73/8ec889d73+uwGAGTFu3LgyaTsXPOWCuJQTz0aOHFkzXp3XuZtuummZjJZy4VnGvkxyV2Sc/vzzz0vsW2KJJcq+XCyVz5mPz2tjoJ5NACa89tprE7p27TrhyiuvrPNq3HPPPWX/3//+9wnHHHNM+X7YsGE197/66qtl380331yz79tvv52w1VZblf0Vu+6664RtttlmwjfffFOz780335zQrVu3CTfeeGO5feedd5bH5M+sGDFiRNl333331ez78ssvJ5x55pnlZ0+rf/3rXxN23333CV999VWd/XlOv/rVr2pu58/aZZddam7n+a6++uoTNttsswnjx4+v87gDDjig5vamm25aXp/pka/1GmusMWHs2LE1+/J1vuSSSyZ89913Nc+78cYbTxg3blzNMRdeeGE5z/xd8rX+n//5nzq/Q3r77bcnrLTSShPOOeecOq/tpZdeWnNM/oztttuu5vd99913yzF77bVXnec6/fTTy3NVXrvav2vlMUceeWSdx+yxxx7lNaqcy/LLLz/h2muvrXNMnnM+Np8DgIYl7jd83K/EzMMOO6zO/t12223C9ttvP81/l/S73/2uzues/EyVsXbix+VnhlVWWWXCp59+OsPnDUDjIoY3fAx/+eWXS7x+55136uzv1avXhB/96Ec119f53Mcdd1zN/f/+97/LeQ4aNGiy8bt3794T+vXrV+c5+/fvX455/vnnp+scAaAhDB8+fMITTzwx4ZZbbinjvxmznnrqqbK9++676xz73nvvlf05Lp0ybv/0pz8tcbr21ymnnDJhrbXW8geEWUAJdIiIp59+urwOOTO5trydq7xzFnOaf/75a1YaVVaEV0qJVbRs2bKUOak9WzpLb+eq4iyJ8s0335SvpZZaKrp06VLKd9eWK4QrFl544VhuueXKauFcGZUry3MWdZZZ+cEPfjDNf7tcQZ2rqnP1epZVHzBgQFxxxRWl9ErOYqstV01V5O+es7yzxFmuPq/I1+Grr76aqX87ueo7X5ucsZ6z4fK1zPPMMu0tWrSoOS5LodWeLb7kkkuWba7oGjp0aCmlms9RW/bozt+j8netyPLnFfkzskxqrtiuXQZ+++23r/OY/Ftmubac4T4lE/cxy38jlRLo+W8n/+5bbrllnWMmPmcAGo643/BxvyJXddeWcT1j+vT8XSaWpVIz1ubnscrnrPzK21n2NSu6ANA8iOENH8NzjOLmm28uq9Xeeuut0pLtmmuuiTfffLNmPCGvr7O92aOPPlqzL9uLderUqbQXm5wcB8g2czkukeMBWVr2vvvuK/dNPE4BANWU1V9//OMflxXbWUUl41VWWE2VcevaVUgr4/q15ervrM6Ssbr2V7YAy1id4+RA/VICHSJKSfK0yCKL1H2DzDlnuYisXDC2a9duso/LY2qr/Tw5qJtJ6z/84Q/la2KZlK6tbdu2Nd/nRWSWRM9k9SOPPFLKfWdQ/eEPfxinnHJKzDfffNP098uf37dv3xJQMzG72GKLlcTyxD87ZRnSidU+p/qSF+vZ76tfv36lFHt+nx8Msv92lkad0s/OCQaV3yk/OEzuA0VlX5ZNrW3iEm/5wSQHzCsD72nRRRetc8yCCy5Y5289OROXZstzzOdNlT7vE38Imvg2AA1H3G/4uD8tMXNa/y4Tq3wemDhxXpElVQFoHsTw6sTwvGb//e9/X2JuXmuvvPLKJabXjs1ZBj3HLjJJkKVf//KXv5QE95S89NJLZVwjt/lcOfl/8cUXL/dVPhsAQLW98847pa1WjsdnK81c1JZj9jnOnjGv0uf7k08+qfO4iW9nC5EsnZ4tQSenklAH6o8EOETUJJJzNXGlB0fKlb/ZUzoHXbOP9sQqie/s9VG5UKs9EFtJmmdQ/OUvfznZgdnv62uVCdnsa5m9tl555ZV4+OGHSyK90n9rWlQSzXlxucUWW5SAm3beeeeq/v3zoji/coZbrt7K/ubZKyVniGeC/vvkbPbK6z+x/FtOPDGhcrFekY/LmfL5PJW/b/69J/dhZUYT1pWE+sT/RiqJcQAanrjfdP8ukzPvvPPW9FSbeLJiqh1/AWjaxPCGl5XossfpUUcdFTvuuGPNJPHs1Z3J64rsNZ7X8dn3Oye45UTzXBU+Odk3NfuSZ+/vXCm+7LLLlsfk6vL+/fs32O8GAN/nP//5T6kstt9++5WqoxWZ/K4suMr9uXitdmXRnAhWWya/M6ZmvKw9iS3HwvOaN8ftgfqlBDr8XwBKeeFVW97OWVxrrbXWZF+nddddt2wzKV3b3/72t5rvM6CtuOKKpTzYKqusUvOVJcwvueSSKZbzTFl2e/311y9lujOJnqXHDj/88OjatWt88MEH0/y3y9KfOZt6p512qkl+52qoV199tayknlmVVdnT45xzzinnkzO7cxLApptuWsq8p2n93fIDQ64Se+CBB+rsf/fdd0tJmTXXXLPO/izHVpE/Nz+I5N+29gy72sekvPjO85tS2bbvk8+fSfb8EFTbxB+CAGg44n7Dx/36/LtM/PMrZdUzSV77s1ZONrv44ovrTEwEoGkTwxs+hud4Qk42y4R1Jfk9atSosn/i8YRcBZ4JgYzdeT2eq+QmJ8dHMj7vueeeZayicl7//Oc/y7Y+xikAoD5U2oucd955pZVpjvsffPDB8fe//73cnwu7DjnkkDKmnIvVHnvssbj66qvLtWiqxLhcHJfxLbcPPfRQPPHEE6Xt6Q033FDGuIH6ZwU4RJQLruwP/bvf/a4ErexPPXjw4Lj00ktjnXXWKauUcxbzxJZZZpnYdddd48ILLyy9JjNBfe+998aQIUPqHNe7d+8yS+yII44oM6BzEDdLm2dv8OwbMiWZOG/Tpk0pjZKBNVcv//vf/y7nlheK0ypnYV9++eVlJXj2q3777bdLyZbsq1Uf/UXyYjjLjWc/tvxZec7fJycPZBm1Y489trwmOdMtPxzkauzKxILvkx8g8rXNnuiV1zYHv/PvlisD9t577zrHn3vuuWXGXn6o+NOf/hRvvPFGWS1WW/6dc7V39mzP3yfL2eSkgxktJZcX/JnozxL0+TuusMIKJRlemSQxq5IIAEyZuN/wcb++/i6Vn59yAlxOUMvVY/kZIAcP3n///VKWdejQoeXzWfYYz/6jADQPYnjDx/A87pZbbimrwHPielZPyx7gWeVs4rZsW221VTkuB/anVrGusvoty6pnUiG/cvL5HXfcUe7XBxWAxiLH/y+44IJyXXrAAQeU2Jfj65m4zjaeAwcOjN133720Hc34eOedd5aFb3369ClflTHlrBJ66623lufKaq85Rp3XqmeccUbVq7RCcyUBDv8ng00GtAxSWWI8y5dkkjkT1FNLUuZFXSamb7zxxtKPLAdns4/1RRddVHPMBhtsUAJgBsqcEZZ9vHP2WCaAM2BOSfbozkR5BsY8vywhloHx1FNPLaXHplWvXr1KYjhLjF922WWlB3jOzM5V5ZkIz+etDCbPiF/96ldx5plnxj777FN+p8pKrKnJBPP5559ffr+DDjqonEuu7MpzrJQ2nxb5OmS50/w9sh9LXkTn3yAT4xP3EM0PF3lcrhDPyQX5syc+1yzjloMBt912W3mdTjzxxNhtt91iZuSAfH7YyZ+Xpd7WW2+98oEp/xazss8qAFMm7jds3K/Pv0u2c8kJhzmJLgcKMr6fddZZJcbngMLw4cPLZLYchD/ssMNKJRYAmg8xvGFjeE5Oe++990psvvnmm8sAfl7P//znPy/XujmxvEuXLuXYXCGe4x+5Qm7LLbec4nNmZbqcpJ+T1PMaPK/pc0FBjqv8+te/LsmEzTbbbIZ/TwCoTxnTJhfXsl1pZXJ2TuDOhXIVlRXitcum5/eVleHArNdiQtYBBmjG7rrrrrJKfMCAAWUl2OTkBX3Pnj3LAPr0TC74PlnWLcu4ZVK+du/SLAGf5zW1EvgAAAAAADReWfk1J4TlBOxcUJXVV7OyWSa8c6U4UB1WgEMTlqXUv28OS66sbsiVT43xnKop+4fnCoWczb7XXnuVFd/ZnzxntufKfABoyjG2MZ4TADQ2jTFeNsZzAoCmKBc6ZQXX7BP+6aeflmqxuWI8K8EC1SMBDk3Y5ptvXnpdTs3aa6/doDPNfvnLX5YS4lOzxBJLxF//+teYHWQZ+379+pWS+FmqNXuZ5ey/Y445pvSHAYBpJe4DQNMkhgNA85VVP08//fRqnwYwESXQoQkbMmRIjBs3bqrHZC+tZZddtsHO6c0334xRo0ZN9ZhWrVrF8ssv32DnBADNgbgPAE2TGA4AAA1LAhwAAAAAAACAZqFltU8AAAAAAAAAAOqDBDgAAAAAAAAAzcKc0cx179699EheZJFFqn0qADDdPvroo2jVqlUMHDhwtnn1xG4AmipxGwCaFrEbAJpn3G72CfCxY8fGt99+W+3TgGZrwoQJZZJJ/qfTokWLap8ONDvffPNNeZ/NTsRumHXEbZi1xG2gvondMGuJ3UB9Ereh8cTtZp8A79ChQ9kOGDCg2qcCzdLo0aNj8ODB0a1bt2jbtm21TweanZ49e8bsRuyGWUfchllL3Abqm9gNs5bYDdQncRsaT9zWAxwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAqOOTTz6Jo446KtZdd91YY401Yr/99os33nhjiq/SZ599FkcccUT06NEj1l577TjllFPi66+/9qoCQCN2zz33xFZbbRWrrLJKbL311vHnP/+52qcEALOlb775Ji6++OLYdNNNyzX47rvvHoMGDaq5f/DgwfGLX/wiVl999dhss83i+uuvr+r5AkBTIAEOzLBx48bFpZdeGuecc07Z5m2g6fvNb34Tb7/9dlx11VVxxx13RJs2beKXv/zlFJPahxxySDm+X79+5aL9H//4R5x88skNft7A1OV7+PDDDy/v8dyaqAKzr3vvvTf69OlTBtgffPDB2GabbaJ3797x/PPPV/vUgFq+/fbb+Oc//xkPP/xw2eZtoPm54oor4k9/+lOcdtppZYJa586dY999940RI0aUCed77713LL300nHnnXeWz/Lnn39++R5oXF566aWYZ555onv37mWbt4HqkQAHZsjRRx8d7dq1i2OOOaZ8SM9t3s79QNP1xRdfxBJLLBGnn356rLrqqtGlS5c48MADy4X3a6+9NsnxOVD+9NNPl4kwK620Uqy33npx6qmnloH1Dz/8sCq/AzCp7bffPtq2bVsmtjz11FNlm7dzPzB7mTBhQpmwtueee5YEeA6oH3DAAbH++uuXmA40DnfddVcst9xy8eMf/ziOP/74ss3buR9oXh599NEyGW2DDTaIZZZZJo499tj46quvyirw22+/Peaaa65ynZ3X5zvttFOZoJ6f54HGo0WLFmUcLT9rp9zm7dwPVIcEODDdMsl93nnnxUILLRSXXXZZmY2e27yd+yXBoemab7754oILLoiuXbuW259++mlZ2d2xY8cy4DaxgQMHxiKLLFIuxCuyDHp+wH/22Wcb9NyBycskd05KadWqVRx55JFx9913l23ezv2S4DB7GTp0aLz//vvxk5/8pM7+a665Jnr16lW18wL+v0xy77zzzqVFwd/+9rey+ju3eTv3S4JD85Ljafkef++990qlh9tuu618Vl9hhRXKNXdeY88555w1x2e7srfeeis+/vjjqp438L9qJ7nnmGOO2GOPPcq2QhIcqkMCHJguWeb8wgsvjEUXXbR8MM9ZpwsvvHDZ5u3cn/crhw5N3wknnFBWdGdp1DPOOKOsFp1YrvJebLHF6uzLC/X5558/hg0b1oBnC0xOljmvJL9zFckpp5wSSy21VNnm7UoSXDl0mL0S4Gn06NGxzz77lFi/yy67xF//+tdqnxrwf2XPjzjiiLIaNEshZ+IrP4fnNm/n/pzIphw6NB/ZliRXeffs2bNMdMlxtd/97nelSsvw4cPLhPTaOnToULauuaH6apc5z/aAX375ZRx66KFlm7cndxzQMP7/1DGAaXD55ZfHN998U8oj5+zT2onuvJ0lmXLlSB532GGHeU2hCdtrr71i1113jZtuuqn0Gbv55ptLmfPaMmmWCbSJtW7dOsaOHTvF584L+ynJi/i8wM+BeWDmZK/vdMghh5T4XUl053buueeOgw46KPr27Vtidg60ATMnSx029hUeI0eOLNtsYZT/B2QirX///qXlyXXXXVcS4hMTt6Hh5GrvXNmZ78cxY8bUid2V2L7ZZpvFI488EhtttJE/DTSD2P36669H+/btS3XFXFiSrQYzPt94443l/4GJr7nzeju55obqW2211co2V3z/8Y9/jBNPPLHmvhwnz/05aS2Pq3wOBxombkuAA9PljTfeKNucdT45lf2V44Cmq1LyPFd/v/DCC+Xi+6yzzqpzTJs2bSZb8SEvxCe3Ynxa5XMOHjx4hh8P/K9876b/+Z//qfOeyoH1yv5MgOdx3nMw8zJ+VQalG6tcYZZy9fcOO+xQvu/WrVu8/PLLU0yAfx9xG+pPpY1QDphPLnZXSqrmcdmKCGjasTsngGfVh2w91r1797IvV4FnUvySSy6Z7DV3JfHtmhuqr9LzO5PctZPfqfbtPM41NzRs3JYAB6ZLpc/vAw88EPvuu+8k9+f+2scBTUv2/H7iiSfiRz/6UU2PsZYtW5Zk+IgRIyY5PldqP/roo5N8EPn8889ryrJNzoABA6Z4X64yywuDHIwHZk7OMn/qqafi8ccfL2XPc/VYDqB36tSprADPyg6V47znYOZNripKY5Mry1LXrl3r7M9Y//e//32yjxG3oeF89NFHNQPpGZsnjt0Z19Naa60ldkMziN05EXX8+PEl6V1bfj7PihCLL774JNfilduVmD45Yjc0jFyJWkmCV8w333zxxRdfTHKca25o2LgtAQ5MlyyNeNRRR8Xxxx9f+n7XlqVVc2ZbJs3yOKDp+fjjj6N3795x9dVXx4Ybblj25cV4rgrLUosT69GjR5x//vmlr9EyyyxT9j399NM1g3IzKi8MZmY2O/C/LrroorjqqqtKD8Gs5pAD5ym3Ga8vvfTSmuMq9wEzrtolVKdFtjNp165dGXCvrDRLr776auk1OiPEbag/m2++eUl2Z4WW7PldkXE6V4Jmy5LOnTuX4yqrwYGmG7sr/b2HDBkSq666ap24nP8XZCL81ltvLZNiKu/5J598svw/sNBCC83wzxW7oX4ccMABpRVoyqqJ2X4sV3pnsjuvw4877ria44xzQcPG7Zb18POA2WyGTfYc+/DDD2PJJZeMa6+9tsxQz23ezv15f7Vn0AIzJleDZS/B008/PZ555ply0X3sscfGl19+WSa95EV3vuezD1nKi/E111yzvO9ffPHFciGeE2G23377qc5GBxpGDpZvt912pTJD9hU84YQTyoSV3Obt3J/3S37D7CMTaFnJKfuMZvWmd955J6644opSKWLvvfeu9unBbC8TXBdccEF5f+Zn6lzxPWrUqLLN27k/J6BKfkPzkEnvnDx+zDHHlOvprPiQk1OzMtt+++0XO+20U+kb3KdPn1IW/a677irl0nv16lXtUwciapLfKZPdOdE0J5nmtpL8nvg4oGFYAQ5Mt3PPPbdsc+b5wQcf/P//Q5lzzrI6vHI/0DTlapMcdMuk9ldffVU+uN90002l9Np7771XSpTnrNYdd9yxzLrLFaRZWnmvvfYqPVi23HLLOh/ygerK1WM5YH7vvfeW93d+VWTyu/bqMmD2kNWacuJLfp7PCazZvij7jK6zzjrVPjUgonzOvuOOO0pf4NpVmHLFZ+7P+4HmIVuO5US0THrndXSWTc6J6ZnkzgnnKSu0ZTWnHXbYIRZZZJE4+uijy/cAwJS1mDBxg4JmJgfpv6/vCTBjctVYfkAfOHBgSZAddthhVn5DPZsd49js+DtDQ8geohmrs+xxDqYpew71b3aMYbPj7wwNJasvPfLII/Hss8+WFaLKnkP9mx3j2Oz4O0NjKMfczFNx0OhimBXgwAzLMucHHXRQTV8TZc8BoPGqrPasxG1lzwGgccsy59meKFd8ZuxW9hwAGpdsU3DnnXeW77OVQbYFrFxzn3rqqXHOOefUHAc0LAlwAAAAAAAAmA6V5HfKZHd+zTPPPDFy5MgpHgc0jJYN9HMAAAAAAACg2Zo4+Q1UhwQ4AAAAAAAAAM2CBDgAAAAAAABMh7vuuqtejwPqjwQ4AAAAAAAATIfLLrtskn0rrbTSNB0HzFoS4AAAAAAAADAdBgwYMMm+//73v9N0HDBrSYADAAAAAAAA0CxIgAMAAAAAAMBMaNu2bRx88MFlC1SXBDgAAAAAAABMh3XWWafm+9133z0++uij2Guvvco2b0/uOKBhzNlAPwcAAAAAAACaheeee67m+5tuuql8fd9xQMOwAhwAAAAAAACmw/jx4+v1OKD+SIADAAAAAADAdJhrrrnq9Tig/kiAAwAAAAAAwHTo3r17zfd77LFHjBo1KgYOHFi2eXtyxwGzSQL8yiuvrPMfQRo8eHD84he/iNVXXz0222yzuP7666t2fgAAAAAAAFDbE088UfP9DTfcEIssskhcc801ZZu3J3ccMBskwG+66aa46KKL6uz77LPPYu+9946ll1467rzzzvjNb34T559/fvkeAAAAAAAAGpvRo0fHFVdcUbZAdc1ZjR/64YcfxkknnRRPPfVUdOrUqc59t99+e+mHcOqpp8acc84ZXbp0ibfffjuuuuqq2GmnnapxugAAAAAAAAA0AVVZAf7f//63JLnvu+++WG211ercl/0R1l577ZL8rlh33XXjrbfeio8//rgKZwsAAAAAAAD/3+abb16vxwFNfAV49vXOr8kZPnx4dO3atc6+Dh06lO2wYcNi4YUXnuQxPXv2nOLPysd07NhRyQmYRb7++us6W6B+TZgwIVq0aOFlBQAAAIBGJBd71udxQBNPgE/NmDFjolWrVnX2tW7dumzHjh07Q885bty4GDx4cL2cHzB5WaUBqH8ZwypxEAAAAABoHD744IN6PQ5oxgnwNm3alMH+2iqJ77Zt2072MQMGDJji8+Xq8Fw9161bt3o+U6Cy8juT3506dYq5557biwL1bOJJYQAAAAAAQBNKgGe58hEjRtTZV7m96KKLztBzZunYKSXPgfqRyW/vM6h/yp8DAAAAAMC0axmNTI8ePeLZZ5+Nb7/9tmbfk08+GZ07d46FFlqoqucGAAAAAAAAExs1alQMHDiwbIHqanQJ8J122ilGjhwZffr0iddffz3uuuuu6NevX/Tq1avapwYAAAAAAACTaNeuXXTv3r1sgepqdAnwXOV99dVXx9ChQ2OHHXaISy+9NI4++ujyPQAAAAAAAAA02h7gZ5999iT7Vl111bjtttuqcj4AAAAAAAAANE2NbgU4AAAAAAAANCV6gEPjUfUV4AAAAAAAANCU6f0NjYcV4AAAAAAAAAA0CxLgAAAAAAAAADQLEuAAAAAAAAAwHZZYYol6PQ6oP3qAAwAAAABAA3vqqadizz33nOx9Sy65ZAwYMCDee++9OO200+KZZ56Jtm3bxs477xwHH3xwzDHHHP5eUGXvv/9+vR4H1B8JcAAAAAAAaGBrrLFGPPbYY3X2DRo0qCS4DzzwwBg/fnzss88+0alTp7j11lvjnXfeiT59+kTLli3jkEMO8fcCgCmQAAcAAAAAgAbWqlWrWGSRRWpujx49Os4666zYYYcdYqeddooHHnggPvjgg7j99ttjvvnmi65du8Ynn3wS5557buy///7l8QDApPQABwAAAACAKvv9738fX3/9dRxzzDHl9sCBA2OllVYqye+KddddN0aOHBmDBw+u4pkCQOMmAQ4A1PH555/HiSeeGBtttFGsueaasdtuu5WL7im54oorYvnll5/kCwBonD788MPJxu677rqr2qcGALOtTz/9NPr161dWds8///xl3/Dhw6Njx451juvQoUPZDhs2rCrnCUzZqFGjyhhaboHqUgIdAKijd+/e8dFHH0Xfvn1joYUWihtuuKH0HLv77rtj2WWXneTVGjJkSGy33XZx1FFHeSUBoAl45ZVXonXr1vHoo49GixYtava3b9++qucFALOzm2++ucTiXXfdtWbfmDFjYt55561zXMbwNHbs2Ck+V8+ePad4XybOM6me5daB+tWuXbsp3uc9BzNvwoQJda5hp0YCHACo8fbbb8fjjz9eLrzXWmutsu+EE06If/3rX3H//ffHoYceOsmr9eqrr8ZPf/rTOn3LAIDGK2N3p06dalaQAQDVd88998T2228fbdq0qdmX348bN67OcZXEd9u2bWf4Z+VzKqEODct7DmZexq/KRLDvIwEOANRYYIEF4qqrropVVlmlZl/OqsuvL7/8crIfOt56663JrgwHABqnrN7SpUuXap8GAFCrOsu7774bP/nJT+q8JrlSOyeu1TZixIiyXXTRRaf4+g0YMGCqq8NzBV23bt28/tCAvOdg5rVq1Wqaj5UABwBqZGm1jTfeuM4r0r9//7Iy/Le//e0kr9Trr78e3377bTnmjDPOKDPRe/ToUcqhW1UGAI1TDqTnpLfdd989hg4dGssss0wccMABsdFGG1X71ABgtpQ9g7MF2QorrFBnf15f58rwkSNHxjzzzFP2Pfnkk6XM8sTHTo+c5D4zK8iBycve37nSO5PdE5dD956DmTet5c+TBDgAMEXPPfdcHHfccbHFFlvEJptsMsn9lZnoc889d1x88cXxySeflN7he+65Z7lIr126rTb9yKA6vv766zpboHr9yKrlm2++iTfffDOWW265OPbYY8tg+oMPPhj77bdfXHfddbHeeutN8hhxG6pH7IbZI3a//PLLsfzyy0+y/4c//GFcdNFFcdhhh8WRRx4Z7733Xrnm/tWvfjVdq+CA6vcABxqWBDgAMFmPPvpoucBec8014/zzz5/sMdmfLFeLLbjggjX7fvCDH5R9f/3rX2OrrbaaoVdXPzKYtbJ1AVDdfmTVMuecc8ZTTz0Vc8wxR81EtZVXXjlee+21uOaaayabAP8+4jbMemI3NO/Y/dFHH8X8888/yf48t6uvvjpOOeWU+OlPfxrzzTdf/PznP48DDzywKucJAE2FBDgAMIkbb7yxlDTfcsst45xzzpnqzPLaye+Upc/zwn348OFTfIx+ZFC9VWQ5gN6pU6dSuQGoX01lJdbkVqbkBLbHHntssseL21A9YjfMHrH7D3/4wxTvy1Yl1157bYOeDwA0dRLgAEAdN998c5x22mmxxx57RJ8+faZaDu7CCy+Mhx9+uHxVjsuSbJ999lkprTqj9CODWSuT3/qPQf1rDCVUv0+u9N51113jiiuuiHXWWadm/3/+858Zjt3iNsx6YjfMvrEbaNz/h2QrhWk5DmhYLRv45wEAjdjQoUPjzDPPjM033zx69eoVH3/8cSnFll9fffVVKQ+X3+c25XHvv/9+nHzyyeWxzzzzTBx88MGlbPqGG25Y7V8HAJhIly5dYtlll41TTz01Bg4cGG+88UacddZZMWjQoDjggAO8XgAAMI2mJfk9PccB9ccKcACgRv/+/WP8+PHxyCOPlK/adthhh/K15557xvXXX19WjWXP0CzVdvHFF8eOO+5Yysf17NkzjjnmGLNbAaARatmyZfz+97+PCy64IA477LD48ssvY8UVV4zrrrsuunbtWu3TAwAAgJkmAQ4A1Nh///3L19QMGTKkzu311luvfAEATcPCCy9cVn0DAABAc6QEOgAAAAAAAADNggQ4AAAAAAAAzIRRo0bFwIEDyxaoLiXQAQAAAAAAYCa0a9fO6weNhBXgAAAAAAAAADQLEuAAAAAAAAAANAsS4AAAAAAAADAT9ACHxkMPcAAAAAAAAGZ7b7/9dnz55ZfT9Dq8+OKLseqqq35vD/A87qWXXprm13beeeeNZZZZZrb/W8DMkAAHAAAAAABgtvbpp5/GBhtsEN999900P2bxxRePDz74YKr3b7nlltN1HnPMMUcMGjQoFlxwwel6HPD/SYADAAAAAAAwW8uE82OPPTbNK8Brq70SvPbK7xmRK8Alv2HmSIADAAAAAAAw25vR0uMTJkyI//znP3HcccfFWWedFSuvvPJs/1pCNbWs6k8HAAAAAAAAgHoiAQ4AAAAAAABAsyABDgAAAAAAAECzIAEOAAAAAAAAQLMgAQ4AAAAAAABAsyABDgAAAAAAAECzIAEOAAAAAAAAQLMgAQ4AAAAAAABAs9AoE+DffPNNXHzxxbHpppvGGmusEbvvvnsMGjSo2qcFAAAAAAAAQCPWKBPgV1xxRfzpT3+K0047Le65557o3Llz7LvvvjFixIhqnxoAAAAAAAAAjVSjTIA/+uijsc0228QGG2wQyyyzTBx77LHx1VdfWQUOAAAAAAAAQNNKgC+00ELxt7/9Ld5777349ttv47bbbotWrVrFCiusUO1TAwAAAAAAAKCRmjMaoT59+sShhx4aPXv2jDnmmCNatmwZl1xySSy99NKTPT6Pm5Jhw4ZFx44dY/To0bPwjGH29fXXX9fZAvVrwoQJ0aJFCy8rAAAAAAA01QT466+/Hu3bt4/LLrssFl100dIP/Mgjj4wbb7wxunXrNt3PN27cuBg8ePAsOVfgf7311lteCpgFMoa1bt3aawsAAAAAAE0xAZ4rto844ojo169fdO/evexbZZVVSlI8V4FffvnlkzxmwIABU3y+XB2eq+dmJHEOfL9c+Z3J706dOsXcc8/tJYN6li1AAAAAAACAJpoAf+GFF2L8+PEl6V3baqutFv/85z9n6DmzdGzbtm3r6QyBycnkt/cZ1D/lzwEAAAAAYNq1jEYm+3WnIUOG1Nn/6quvlhWmAAAAAAAAANAkEuCrrrpqrLXWWnHMMcfEk08+WUorX3TRRfHEE0/EfvvtV+3TAwAAAAAAAKCRanQJ8JYtW8YVV1wR6667bhx33HGx4447lkR49gTPMugAAAAAANBc3HPPPbHVVluVtqBbb711/PnPf66577333otevXrFmmuuGRtssEFZLPbtt99W9XwBoLFrdD3A03zzzRcnnXRS+QIAAAAAgObo3nvvjT59+sRvf/vb2HDDDePBBx+M3r17l1ahK6+8cuyzzz6lNeitt94a77zzTjk2F5Edcsgh1T51AGi0GmUCHAAAAAAAmrMJEybExRdfHHvuuWfsvvvuZd8BBxwQAwcOjKeffjref//9+OCDD+L2228vi8a6du0an3zySZx77rmx//77R6tWrar9KwBAo9ToSqADAAAAAEBzN3To0JLk/slPflJn/zXXXFPKnmcifKWVVirJ74psHTpy5MgYPHhwFc4YAJoGK8ABAAAAAKAKCfA0evToUur85ZdfjiWXXLKsAt9ss81i+PDhpRR6bR06dCjbYcOGxWqrrTbZ5+3Zs+cUf2Y+Lp8zfyZQv8aOHVuz9R6DWVM5pUWLFtN0rAQ4AAAAAAA0sFzJnY455pg46KCD4sgjj4z+/fvHgQceGNddd12MGTMm5p133jqPad26dZ1E24wYN26cFeQwC2TLgtpboH5l/KrEwe8jAQ4AAAAAAA1srrnmKttc/b3DDjuU77t161ZWgmcCvE2bNmWwv7ZK4rtt27ZTfN4BAwZM8b5cHZ4r6PLnALPG4osv7j0Gs0CrVq2m+VgJcACgjs8//zz69u0bf//738ts9OWXXz6OOOKI6N69+2Rfqffeey9OO+20eOaZZ8oF+M477xwHH3xwzDHHHF5ZaETuuOOO2GWXXWpu/+lPfyrvV2D2lqVXd9xxxzjhhBPKFmg88rP4brvtVlZpZqLqlltuiXnmmafapwXUo0UXXbRsu3btWmf/csstV67J11577Xj11Vfr3DdixIg6j50RWT52agl0YMZUVqbm1nsM6t+0lj9PEuAAQB29e/eOjz76qCTBF1poobjhhhvKbPS77747ll122TrHjh8/vtzXqVOnuPXWW+Odd96JPn36RMuWLeOQQw7xykIjvkCoJMNz9Qcwe8o4nqVW9SeExieTXjnBtOKNN96I9u3bR48ePeLpp5+u6rkB9WellVaKdu3axQsvvFBn0nkmvZdeeunynr/nnnvKhJjKBJgnn3yyPGaFFVbwpwCAKWg5pTsAgNnP22+/HY8//nicfPLJ5eK7c+fOZUVYhw4d4v7775/k+OxNln2Nzj333DJj/Yc//GFJoP/xj3+cpEwb0DiS36ussspU7wdmH5dcconVpNCIk98Zo3/+85/HzTffXLZ5O/fn/UDzkCXO991337jsssvigQceKJPKr7jiinJdvvfee5dr7EUWWSQOO+yweOWVV+LRRx8tk9V/9atfTVcZWACY3UiAAwA1FlhggbjqqqvqJMhyoC2/vvzyy0leqYEDB5YZ6/PNN1/NvnXXXbfMTs9SjUD1y55XPPHEEzFq1KjSSzC3eXtyxwGzh0yi3XbbbXH22WdX+1SAWvJzdCX5ndUZ/vCHP5SJprnN25UkeB4HNA8HHnhgaSN24YUXxlZbbRUPP/xwmaS2zjrrlDLKV199dXz33Xfx05/+NE455ZQyISYfAwBMmRLoAECNeeedNzbeeONJVnnnyvDf/va3k7xSw4cPj44dO9bZl6vF07Bhw2K11Vab7Kvbs2fPKb7q+bh8TuVYYebV7vm96qqrxtdff12+z23ern1cJsWBmZMtBZpCVYWc1Hb00UfH8ccfH4stttj3Hi9uQ8PJnt+VbSa8asfuueeeO3bdddfSeijvz0ksQPOI3bnaO78mZ5lllolrr722wc8JAJoyCXAAYIqee+65OO6442KLLbaITTbZZJL7x4wZU5LmteUM9TR27NgZfmWzfLoV5FB/sqpD7ffUW2+9VbbZNzBLKSbvOZh5Gb8qcbAxy1Yna6yxRvzkJz+pl+cTt6H+VOLxNttsM9nYnfszAZ73id0w+8RuAGD6SIADAJOVvcWOPPLIWHPNNeP888+fYr+yiXt9VxLfbdu2neIrO2DAgKmuMstZ+N26dfOXgXry0ksvlfdUrh7LAfROnTqVVWSV5HfynoOZ1xR6cd5zzz2lhcn9998/zY8Rt6HhZDx+4403Si/gLHs+ceyufC7P48RumD1iNwAw/STAAYBJ3HjjjXHGGWfElltuGeecc84UBwWyVPmrr75aZ9+IESPKdtFFF53hVzZL0E0tgQ5Mmz/96U81ZdBffPHFmrLnOYCet2sf5z0HM68xlFD9PnfeeWd88sknk1R2Oemkk+Khhx4qfUanl7gN9eeWW26J9u3bl+0111xTYnbKbcuWLWvKnuf9YjfMHrEbAJh+EuAAQB0333xznHbaabHHHntEnz59pjog0KNHj7KSbOTIkTHPPPOUfU8++WS0a9eulFYGqmvnnXeu+X699dabpOz55I4DmrdcPZotTGrLVieHHHJIbLvttlU7L+B/5Wfq/Iz9zDPPlAR39vzOsuf53s3kd1ZKyvsrn70BAIBJSYADADWGDh0aZ555Zmy++ebRq1ev+Pjjj+uUO8/eaF988UXMN998ZVX4D3/4w7jooovisMMOK+XS33vvvejbt2/86le/UkoOGokcKK89kWXi5HfeD8w+plShZaGFFpqp6i1A/Xn66adj7bXXLknw7PedXxWZ/M77AQCAKWs5lfsAgNlM//79Y/z48fHII4/EBhtsUOcrS6I///zz5fvcpkyIZ6nU7777Ln7605/GKaecEj//+c/jwAMPrPavAkyU5M4y57XlbclvAGicMsn91VdfldXfXbp0Kdu8LfkNAADfzwpwAKDG/vvvX76mZsiQIXVuL7PMMnHttdd6FaGRyzLno0aNisGDB0e3bt30DQWmGNuBxiHLnGfZc7EbAACmjxXgAAAAAAAAADQLEuAAAAAAAAAANAsS4AAAAAAAAAA0CxLgAAAAAAAAADQLEuAAAAAAAAAANAsS4AAAAAAAAAA0CxLgAAAAAAAAADQLEuAAAAAAAAAANAsS4AAAAAAAAAA0CxLgAAAAAAAAADQLEuAAAAAAAAAANAsS4AAAAAAAAAA0CxLgAAAAAAAAADQLEuAAAAAAAAAANAsS4AAAAAAAAAA0CxLgAAAAAAAAADQLEuAAAAAAAAAANAsS4AAAAAAAAAA0CxLgAAAAAAAAADQLEuAAAAAAAAAANAsS4AAAAAAAAAA0CxLgAAAAAAAAADQLjTYBfs8998RWW20Vq6yySmy99dbx5z//udqnBEzk22+/jX/+85/x8MMPl23eBgAAAAAAgGqZMxqhe++9N/r06RO//e1vY8MNN4wHH3wwevfuHR07dow11lij2qcHRMRdd90VRxxxRLz11ls1r0enTp3iggsuiB133NFrBAAAAAAAQINrdCvAJ0yYEBdffHHsueeesfvuu8fSSy8dBxxwQKy//vrx9NNPV/v0gP9Lfu+8886lQsPf/va3svo7t3k79+f9AAAAAMDUffjhh7H88stP8lUZXxs8eHD84he/iNVXXz0222yzuP76672kANDUVoAPHTo03n///fjJT35SZ/8111xTtXMC/r8sc54rv7fZZpvSqmDMmDHlg3i3bt3K7e233z6OPPLI2G677WKOOebw0gEAAADAFLzyyivRunXrePTRR6NFixY1+9u3bx+fffZZ7L333iXxfcopp8SgQYPKtl27drHTTjt5TQGgKSXA0+jRo2OfffaJl19+OZZccsmyCjwD/eT07Nlzis83bNiwUjo9nw+YebnaO8ueX3fddSX5/fXXX5f9le3hhx9e3quPPPJIbLTRRl5yqIfKKLUvgAEAAIDm49VXXy1tBTt06DDJfX/84x9jrrnmilNPPTXmnHPO6NKlS7z99ttx1VVXSYADQFNKgI8cObJsjznmmDjooIPKStL+/fvHgQceWBJu66233nQ/57hx48oKVWDmPfvss2Wbq7trv68qvcArq77zuEUWWcRLDjMpY1jOBAcAAACanyFDhpTE9uQMHDgw1l577ZL8rlh33XXjyiuvjI8//jgWXnjhBjxTAGg6Gl0CPGe0pVz9vcMOO5Tvs7RyrgSfUgJ8wIABU3y+XB2eq+fyOYCZ99FHH9WUQs/3Va78zuR3zlSde+6546mnnir3r7XWWt53UA9atWrldQQAAIBmvAJ8gQUWiN13371UR11mmWVKNdSsrDh8+PDo2rVrneMrK8Wz8umUEuAqpkJ1jB07tmarKjFUt1pqo0uAL7roomU7cWBfbrnl4u9///sMPWe+GG3btq2X84PZ3eabb16S3X379i09vysy+d2mTZu48MILo3PnzuU4PcBh5il/DgAAAM3TN998E2+++WYZ+z722GNjnnnmiQcffDD222+/mvaDE0+Mr1SJqyTaZoSKqTBrfPDBB3W2QPWqpTa6BPhKK60U7dq1ixdeeCG6d+9eZybc0ksvXdVzA/63xPkFF1wQO++8c2y//fal53fuy5Xfmfx+4IEH4o477pD8BgAAAICpyNLmOaaWY2u5sCStvPLK8dprr8U111xT9uVgf22VxPfUFnypmArVtfjii6uOClWultroEuAZ1Pfdd9+47LLLymrwVVddtcx6e/zxx6Nfv37VPj0gInbccceS5D7iiCNis802q3lNcuV37s/7AQAAAICpy8VgE/vBD34Qjz32WHTs2DFGjBhR577K7Uol1RmhYirMGpWVqblVlRiqWy210SXA04EHHljKKedq0g8//DC6dOkSl1xySayzzjrVPjXg/2SSe7vttotHHnkknn322dLzW9lzAAAAAJg2udJ71113jSuuuKLO2Pd//vOfUha9W7duceutt8a3335bU23xySefLItQFlpoIS8zADSlBHjae++9yxfQeOUH74022igWWWSR8oFcz28AAAAAmDa58GvZZZeNU089NU455ZRYYIEF4vbbb49BgwbFnXfeWZLcV199dfTp06dUTX3xxRdLldQ8FgBogglwAAAAAABorlq2bBm///3v44ILLojDDjssvvzyy1hxxRXjuuuui65du5ZjMgF+xhlnxA477FAWoRx99NHlewBgyiTAAYApuvLKK0vfsRtuuGGKx9x3331x1FFHTbJ/wIABseSSS3p1AaCR+eSTT+Lss8+Of/3rXzF27Njo0aNHHHPMMWUVGtB4vPzyy7HKKqvEd999V5JkL730UkmMAc3LwgsvHGedddYU71911VXjtttua9BzAoCmTgIcAJism266KS666KLo3r37VF+hIUOGxNprrx19+/ats3/BBRf0ygJAI/Sb3/ymJNSuuuqqaNeuXVx88cXxy1/+Mv7yl7/E3HPPXe3TAyKiRYsWdV6HfM+utNJK5fsJEyZ4jQAAYCokwAGAOj788MM46aST4qmnnopOnTp976vz6quvxvLLL19KsQEAjdsXX3wRSyyxRPTq1aumtOqBBx4Y2223Xbz22mtllRnQeJLfc801V+yxxx6lItP48eNr7pcEB4DJ++CDD2L06NFVeXnef//9mm2bNm2iWtq2bRuLL7541X4+NAYS4ABAHf/973/LQFuWNr/ssstqPrxPbQX4Zptt5lUEgCZgvvnmK31GKz799NPo169fdOzYMZZbbrmqnhvwv2XPK959991SVWnw4MFxySWXlPfrUkstVXOccugAMGnyOyd6Vtull17aKNoaSoIzO5MABwDqyGT2tCa0cxVZrhgfOHBg3HzzzfHZZ5+VlWPZE7xz585TfFzPnj2neN+wYcPKIHy1ZutCc/b111/X2QL1K1dkTly2uDE74YQT4vbbb49WrVrFFVdcUVaKTI64DQ0ne36nnJCaye/asTtv5/5cCZ7HffXVV/40MJvFbmDqKmNJRxxxRCy55JIN/nKNGTOmTFzr1q1b1VaAv/fee2XCq3E1ZncS4ADADMtSqZVBg7POOqt80M8B9J///Odx//33x8ILLzxDzztu3LhywQDMGm+99ZaXFmaBjF+tW7duMq/tXnvtFbvuumvcdNNNpS94Tmar9BieHuI21J/s9Z2y7Hntz8OV2P2zn/2slEPP43xehtkvdgPTJpPf1ahulEnnsWPHxrLLLjvFyaVAw5AABwBmWPfu3eOJJ56IBRZYoGbWfJZ52mSTTeKuu+6K/fbbb7KPGzBgwBSfM1eZZUI9Z8sC9StXj+UAeqdOnWLuuef28kI9y5XUTUllUPCMM86IF154IW688cYyoW1i4jY0nJYtW5bkdia5s+z5xLH71ltvrTnO52WY/WI3ADBtJMABgJmSpRhry4G5nGmbpdFnVCbTzZSFWSffp95jUP+aQgnV7CGck9d+9KMfxZxzzlmTSMtk+IgRI2boOcVtqD8vvfRSqcSQZc7z/Vr5rJ2xO2/n/spxYjnMHrEbAJh+LWfgMQAAxW233RbrrLNOnb5CI0eOLKtUqlFqCgCYuo8//jh69+5dkuAVmVB7+eWXo0uXLl4+qLIVV1yx5vullloq5p9//rj44ovLNm9P7jgAAKAuCXAAYJp9++238dFHH5Ve32mjjTYqJRqPPvro0g88V6IcfPDBZaXKjjvu6JUFgEama9euJX6ffvrp8cwzz8Srr74axx57bHz55Zfxy1/+stqnB0SUdkC1J6hkOfTKyu+J7wcAACYlAQ4ATLNhw4bFBhtsEA899FC5vdhii0W/fv3KCvDddtutDJy3b98+rr/++mjdurVXFgAaob59+8Z6660Xhx9+eOyyyy7x+eefx0033RSLL754tU8NqJXk/u9//1taFKTc5m3JbwAA+H56gAMAU3T22WfXuZ29vYcMGVJnX/YovPbaa72KANBE5GS1k08+uXwBjVeWOf/qq69i8ODB0a1bNz2/AQBgGlkBDgAAAAAAAECzYAU4MMO+/vrrUjbxhRdeiNVWWy0uuuiimHvuub2iAAAAAAAAVIUV4MAM2X777Uv5tauuuiqeeuqpss3buR8AAAAAAACqQQIcmG6Z5L733nujVatWceSRR8bdd99dtnk790uCAwAAAAAAUA0S4MB0lz2vJL+/+uqrOOWUU2KppZYq27xdSYLncQAAAAAAANCQJMCB6XLUUUeVbe/evUuyu7a8fdhhh9U5DgAAAAAAABqKBDgwXV577bWy3XfffSd7/z777FPnOAAAAAAAAGgoEuDAdPnBD35QtldfffVk77/mmmvqHAcAAAAAAAANRQIcmC7nnXde2fbt2zfGjRtX5768fdFFF9U5DgAAAAAAABqKBDgwXeaee+7YbrvtSrK7ffv2ccIJJ8Tbb79dtnk79+f9eRwAAAAAAAA0pDkb9KcBzcI999wT22+/fdx7771lJXh+VWTyO+8HAAAAAACAhiYBDsyQTHJ//fXXcdhhh8ULL7wQq622Wil/buU3AAAAAAAA1SIBDsywTHZfeOGFMXjw4OjWrZvkNwAAAAAAAFWlBzgAAAAAAAAAzYIEOAAAAAAAAADNggQ4AAAAAAAAAM2CBDgAAAAAAAAAzYIEOAAAAAAAAADNggQ4AAAAAAAAAM2CBDgAAAAAAAAAzcKc1T4BAAAAAACY3Q0dOjR23HHHOOGEE8o2DR48OM4444z4z3/+EwsuuGD88pe/jD333LPapwqN1txzzx1ff/11fP755w3+s8eMGRPjxo2LL7/8smyrIX/3fA1gdicBDgAAAAAAVTR+/Pg48sgjY/To0TX7Pvvss9h7771js802i1NOOSUGDRpUtu3atYuddtrJ3wsmo1u3bvHmm2+Wr2oZMWJEVPs1gNmdBDgAAAAAAFTRJZdcEvPMM0+dfbfffnvMNddcceqpp8acc84ZXbp0ibfffjuuuuoqCXCYgqyasPPOO8dSSy1VlRXgWcmhc+fO0aZNm6iGd999N2666aaq/GxoTCTAAQAAAACgSp555pm47bbb4p577olNNtmkZv/AgQNj7bXXLsnvinXXXTeuvPLK+Pjjj2PhhReu0hlD41UpAT7//PM3+M/OCg6tWrWKeeedN9q2bRvVkP835GsAszsJcAAAAAAAqILsFXz00UfH8ccfH4sttlid+4YPHx5du3ats69Dhw5lO2zYsCkmwHv27DnFn5eP69ixY51S69Bc5ArsyrYa/8YriedqJqCr/RrArDRhwoRo0aLFNB0rAQ4AAAAAAFVw8sknxxprrBE/+clPJrkvE1i5mrS21q1bl+3YsWNn+GeOGzeulImG5uaDDz4o2yxDPjPvkZn11ltvxez+GsCskPGrEgebfAI836Q77rhjnHDCCWULNB4jR46M3XbbrXxg7tatW9xyyy2T9CoCAAAAACaVJc+zzPn9998/2ZcnewjnYH9tlYTW1MorDxgwYIr35erwXEGXY3nQ3FQSY9mDe9lll23wn58rvzP53alTp1KGfXZ8DWBWmnhSWJNNgI8fPz6OPPJIZRqgEcr+Q9mfqOKNN96I9u3bR48ePeLpp5+u6rkBAAAAQGN35513xieffFKn73c66aST4qGHHiqlykeMGFHnvsrtRRdddIZ/bpaPrVZ/YpiVctJIZVvNf+OZ/K7Wz28srwHMCtNa/rzRJ8AvueQSq0mhESe/8z+bXAG+zTbbxAMPPFBWgOf+vF8SHAAAAACm7Pzzz6/p11uxxRZbxCGHHBLbbrtt3HvvvXHrrbfGt99+G3PMMUe5/8knnywrOxdaaCEvLQBMQctopDKJdtttt8XZZ59d7VMBJip7Xkl+jx49Ov7whz9E165dyzZv5/68P48DAAAAACYvV3Evs8wydb5SJrfzvp122qmMsfXp0ydef/31uOuuu6Jfv37Rq1cvLykANLUV4F9++WUcffTRcfzxx8diiy32vcdn35IpGTZsWCkVk4k5YObliu/K9rvvvit9TVJus7TLrrvuWmam5v05iQWYOdmXa3pKuwAAAADNQybCr7766jjjjDNihx12iEUWWaSMm+f3AEATS4CffPLJscYaa8RPfvKTenm+cePGxeDBg+vluWB2V3kvZdnz2u+rt956q2Z/JsDzPu87qJ8Y1rp1ay8lAAAAzAaGDBlS5/aqq65qkQkANPUE+D333BMDBw6M+++/f5ofM2DAgKmuDs/Vc926daunM4TZW76X3njjjdLzO8ue58rvTH536tSprADP3kWV47zvYOa1atXKywgAAAAAAE01AX7nnXfGJ598Eptsskmd/SeddFI89NBDpeTL9MrSsW3btq3Hs4TZ1y233BLt27cv22uuuaYkvVNuW7ZsWTMjNe/3voOZp/w5AAAAAAA04QR4rh4dM2ZMnX1bbLFFHHLIIbHttttW7byA/zXPPPNEjx494plnnikJ7uz5nWXP872bye+suJD353FA03fllVfGY489FjfccMMUj/nss8/i9NNPj3/+858lYb/11luXnmSVCTIAQOPy+eefR9++fePvf/97jBw5MpZffvk44ogjonv37tU+NQAAAGh+CfBFF110svsXWmihKd4HNKynn3461l577ZIEz37f+VWRye+8H2j6brrpprjooou+dzA8J6llO4R+/frFl19+GX369InRo0fHOeec02DnCsxYRYmcuAbMfnr37h0fffRRSYLntXZOdNtnn33i7rvvjmWXXbbapwf8n9VXXz1eeOGFmtdjtdVWi0GDBnl9AADge7T8vgMAJieT3F999VVZ/d2lS5eyzduS39D0ffjhh7H//vuXyg6dOnWa6rHPP/98ed9nsnullVaK9dZbL0499dS49957y/MAjbudgjYLMPt5++234/HHH4+TTz65THLr3LlznHDCCdGhQ4e4//77q316QK0YXTv5nfK22A0AAE1wBfjkDBkypNqnAExGljnPsueDBw+Obt266fkNzcR///vfmGuuueK+++6Lyy67LN5///0pHjtw4MBYZJFFykSYiqwQkQNzzz77bGy11VYNdNbAlHzfQHnebyU4zD4WWGCBuOqqq2KVVVap8/9AfmUlF6D6xG4AAJg5VoADAHVsttlmcckll8RSSy31va9MrvJebLHF6uxr1apVzD///DFs2DCvLDSyAfRRo0aViSu5ndpxQPM177zzxsYbb1zidUX//v3LyvANN9ywqucG/G/Z84qddtqpTuzO25M7DgAAaIIrwAGAxil7f9ceQK9o3bp1jB07doqP69mz5xTvy8R5x44dSx9xoP7kwHm+Z1Nu83a7du1q7veeg5mX1RSa2oSS5557Lo477rjYYostYpNNNpnsMeI2NJzaZc+vv/76OrE7b9955501x4ndMHvGbgDg+0mAAwAzrE2bNjFu3LhJ9mfyu23btjP8vPmc2V4BqD+131NvvfXWVO8HZjx+5SSwpuLRRx+NI488MtZcc804//zzZ/h5xG2YNcRumPWaWuwGAKaNBDgAMMNypXYOnk88gPD5559Hhw4dpvi4AQMGTPG+XGWWs/C7devmLwP1KN9TuXosk9+dOnWKueeee5L7gZkzuaoojdWNN94YZ5xxRmy55ZZxzjnnTPXcxW2oDrEbZr2mFLsBgGknAQ4AzLAePXqUFWPZN3SZZZYp+55++umyXWuttWb4ebME3cysIAcmleXOK72/M/ldu/x58p6DmddUSqjefPPNcdppp8Uee+wRffr0menzFreh/qy22mo1ZdD33HPPUva8Ervzdu3jxG6YfWI3MH3eeOONqrxkY8aMiTfffLNUlsiqidXw3nvvVeXnQmMjAQ4ATLNvv/02Pv3002jfvn35IJ8Db1k29fDDD4+TTz659CE88cQTY/vtt49FF13UKwuNrKfhxEnv2scBs4ehQ4fGmWeeGZtvvnn06tUrPv7445r7MrZnjAeqZ9CgQTWxO/t9V3p+T+44AKCu7777rmwvvfTS2f6lMVGO2Z0EOAAwzYYNG1ZKlJ911lmx4447lsG5vKg45ZRTYq+99iozXLOU6nHHHedVhUaaBJ/c/cDso3///jF+/Ph45JFHyldtO+ywQ5x99tlVOzfgf4ndADBjunbtGhdccEG0bNmyaivPc5zsoIMOii5dukQ1k9+LL7541X4+NAYS4ADAFE08CL7kkkvGkCFD6uxbaKGF4ne/+51XEZrgQLrkN8x+9t9///IFNG4Zo1dfffWacugpqy9Z+Q0A358Er5YsgZ6WWGKJWG655ap2HkBEdabBAAAADT6Qnj3ABw4cWLaS3wDQuGWyu3bslvwGAIBpIwEOAAAAAAAAQLMgAQ4AAAAAAABAsyABDgAAAAAAAECzIAEOAAAAAAAAQLMgAQ4AAAAAAABAsyABDsywQYMGRbt27aJ79+5lm7cBAAAAAACgWuas2k8GmrQWLVpMsm+NNdYo2wkTJlThjAAAAAAAAJjdWQEOzFTyu2XLlvGzn/2sbCd3PwAAAAAAADQUCXBgutQucz506ND46quv4sgjjyzbvD254wAAAAAAAKAhSIAD06VS5jxXfHfq1KnOfXm7shK8chwAAAAAAAA0FAlwYIYceuihk93fq1cvrygAAAAAAABVIQEOzJCLL754svuvvPJKrygAAAAAAABVIQEOTJfnn3++bL/77rt466236tyXt3N/7eMAAAAAAACgoczZYD8JaBZWX331mu87d+5cen7vsMMOcffdd9ckvyc+DgAAAAAAABqCBDgw3SZMmBAtWrQo32fS+84775zkfgAAAAAAAGhoSqADMyST3BOXOc/bkt8AAAAAAABUiwQ4MMOyzPmoUaNi4MCBZavsOQAAAABMu08++SSOOuqoWHfddWONNdaI/fbbL954442a+wcPHhy/+MUvyrjbZpttFtdff72XFwC+hwQ4AAAAAABUwW9+85t4++2346qrroo77rgj2rRpE7/85S/j66+/js8++yz23nvvWHrppUsLwjz2/PPPn6QdIQBQlx7gAAAAAADQwL744otYYoklolevXtG1a9ey78ADD4ztttsuXnvttXjiiSdirrnmilNPPTXmnHPO6NKlS02yfKeddvL3AoApsAIcAAAAAAAa2HzzzRcXXHBBTfL7008/jX79+kXHjh1jueWWK20H11577ZL8rshS6W+99VZ8/PHH/l4AMAVWgAMAAAAAQBWdcMIJcfvtt0erVq3iiiuuiLZt28bw4cNrkuMVHTp0KNthw4bFwgsvXKWzBYDGTQIcAAAAAACqaK+99opdd901brrpptLr++abb44xY8aUhHhtrVu3LtuxY8dO8bl69uw5xfsycZ4rzEePHl2PZw/Ufl/m1nsM6t+ECROiRYsW03SsBDgAAAAAAFRRljxPZ5xxRrzwwgtx4403Rps2bWLcuHGTTbDlCvEZlc85ePDgmTxjYGIffPBBnS1QvzJ+VSaCfR8JcAAAAAAAaGDZ8/uJJ56IH/3oRzV9vlu2bFmS4SNGjCgrtXNbW+X2oosuOsXnHTBgwFRXh+cKum7dutXb7wHUtfjii3uPwSwwcVWUqZEABwAAAACABvbxxx9H79694+qrr44NN9yw7Bs/fny8/PLLsdlmm5Ue37feemt8++23Mcccc5T7n3zyyejcuXMstNBCM/xzs3zszKwgByavsjI1t95jUP+mtfx5ajkLfj4AAAAAADAVXbt2jY022ihOP/30eOaZZ+LVV1+NY489Nr788sv45S9/GTvttFOMHDky+vTpE6+//nrcdddd0a9fv+jVq5fXFQCmQgIcAAAAAACqoG/fvrHeeuvF4YcfHrvsskt8/vnncdNNN5USyrnKO1eHDx06NHbYYYe49NJL4+ijjy7fAwBTpgQ6AAAAAABUQfv27ePkk08uX5Oz6qqrxm233dbg5wUATZkV4AAAAAAAAAA0CxLgAAAAAAAAADQLjTIBnn1OTjzxxNhoo41izTXXjN122y0GDhxY7dMCJrLFFltEu3btonv37mWbtwEAAAAAAKBaGmUP8N69e8dHH30Uffv2jYUWWihuuOGG2GeffeLuu++OZZddttqnB0REixYtJnkdHnnkkbJ/woQJXiMAAAAAAAAaXKNbAf7222/H448/HieffHJZVdq5c+c44YQTokOHDnH//fdX+/SAKSS/p+d+AAAAAAAAmC0S4AsssEBcddVVscoqq9RJpuXXl19+WdVzA/637HnFAQccEKNGjSotCnKbtyuUQwcAAAAAACBm9xLo8847b2y88cZ19vXv37+sDP/tb3872cf07Nlzis83bNiw6NixY4wePbrezxVmR1nmvOL888+Pr7/+unyf27x9xRVX1BznfQczL1sKNHRVhe+++y4uvfTS+NOf/hRfffVV9OjRI0488cRYaqmlJnv8fffdF0cdddQk+wcMGBBLLrlkA5wxADCjrrzyynjsscdK6zGgcZncdYCWYwAA0AQT4BN77rnn4rjjjiurSTfZZJMZeo5x48bF4MGD6/3cYHZX+3311ltvTfV+IGY4hrVu3bpBX77LL788br755jj77LPLJLLzzjsv9t1339KKpFWrVpMcP2TIkFh77bWjb9++dfYvuOCCDXjWAMD0uummm+Kiiy4q7ceAxmVKk2BzvyQ4AAA04QT4o48+GkceeWSsueaaZWXplOQKsynJ1eF5YdCtW7dZdJYw+8r3Va78zuR3p06dYu65557kfmDmTC7hPKsT7tdee22Jv5WJZxdeeGFsuOGG8Ze//CW22WabSR7z6quvxvLLLx+LLLJIg54rADBjPvzwwzjppJPiqaeeKp/jgcbl+ypASYIDAEATTYDfeOONccYZZ8SWW24Z55xzzkwlAPLCoG3btvV6fjC72nzzzWvKoGeCrDI5JZPfebv2cd53MPMauvz5K6+8EqNGjYr11luvTnuSFVdcMZ555pnJJsBzBfhmm23WoOcJAMy4//73vzHXXHOVNiaXXXZZvP/++15OaKSf//OzeVZXywnm7dq1q3OcleAAANCEEuBZdvW0006LPfbYI/r06dPgg//AlOUK0Mp7Mvt9V3p+T+44oOkZPnx42S622GJ19nfo0KHmvtq++OKLsops4MCBJX5/9tlnseqqq5ae4J07d55qhZYpGTZsWCm9Pnr06Jn6XYBJZeWW2lugfmUyqilcv+bEtemZvCZuQ3Vk8rt27M7btZPgPi/D7BO7AYAmngAfOnRonHnmmWX1aK9eveLjjz+uua9NmzbRvn37qp4f8P0XB2ahQ9NVGWCbuPJK9iHPZPfEXnvttZr3/VlnnRVjxowpE2N+/vOfl57hCy+88AyXYs+VLsCske1LgPqX8Stj5uxG3IZZo/bn4cnFbp+XYebNrrEbAJq7RpcA79+/f4wfP76UWK6UWa7YYYcd4uyzz67auQH/Xya7tthiizrv05y4YuU3NG052awyCFD5Po0dO7a0OphY9+7d44knnogFFligZmLMpZdeWvqH33XXXbHffvtN9ucMGDBgqqvM8v+YLPMI1P8klxxAz56/k3tPAzNnZlp3NWbiNlRHfh6eWuz2eRlmXnON3QAwu2t0CfD999+/fAGNXya7s+RapR+Znt/Q9FVKn48YMSKWXnrpmv15e/nll5/sYxZccME6t3Ngbskllyyl0WdUJtP9nwKzTr5Pvceg/s2uJVTFbZg1stx5lj2vxO7a5c+TWA4zb3aN3QDQ3LWs9gkAAI3HCiusEPPMM0889dRTNfu+/PLLePnll6NHjx6THH/bbbfFOuusU6f/4MiRI8sqleWWW67BzhsAAJqDiVuKZdI7qy5NnPzWegwAAKZMAhwAqFP+7Re/+EWcf/75pdzpK6+8Eocffnh07NixtD349ttv46OPPiq9vtNGG20U3333XRx99NGlH/hLL70UBx98cFkVvuOOO3plAQBgOn1fclvyGwAApk4CHACo45BDDomdd945jj/++Nhtt91ijjnmiGuuuSbmmmuuGDZsWGywwQbx0EMP1ZRM79evX1kBnsf+8pe/jPbt28f1118frVu39soCAMAMmFKSW/IbAACaYA9wAKC6MuF91FFHla+JZW/vIUOG1Nm30korxbXXXtuAZwgA1Jezzz7biwmNVCa7c6Lp4MGDo1u3bnp+AwDANLICHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmQQIcAAAAAAAAgGZBAhwAAAAAAACAZkECHAAAAAAAAIBmYc5qnwDQdLVo0WKSfRMmTKjKuQAAAAAAAIAV4EC9Jb+nth8AAAChxLjOAAA+CUlEQVQAAABmNQlwYLp9X5JbEhwAAAAAAIBqkAAHpsvEye1Ro0bFwIEDy3ZqxwEAAAAAdX3++edx4oknxkYbbRRrrrlm7LbbbmWsreKJJ56IHXfcMVZbbbXYcsst48EHH/QSAsD3kAAHZtjE/b71/wYAAACAade7d+94/vnno2/fvnHnnXdGt27dYp999ok333wz3njjjejVq1dsuOGGcdddd8Uuu+wSRx99dEmKAwBTNudU7gMAAAAAAGaBt99+Ox5//PG4+eabY6211ir7TjjhhPjXv/4V999/f3zyySex/PLLx+GHH17u69KlS7z88stx9dVXx3rrredvAgBTYAU4AAAAAAA0sAUWWCCuuuqqWGWVVeq0FcyvL7/8spRCnzjRve6668azzz6rEiMATIUEODDDJu7zre83AAAAAEybeeedNzbeeONo1apVzb7+/fuXleFZ9nz48OHRsWPHOo/p0KFDfP311/HZZ595mQFgCpRAB6ZL9vmunehu167dFI8DAAAAAKbNc889F8cdd1xsscUWsckmm8SYMWPqJMdT5fa4ceOm+Dw9e/ac4n3Dhg0rSfXRo0f7s0A9Gzt2bM3WewxmfX5qaiTAgXr/T0byGwAAAACm3aOPPhpHHnlkrLnmmnH++eeXfa1bt54k0V25Pffcc8/wy5vPMXjwYH8eqGcffPBBnS1QvzJ+ZWycFhLgQL0mwSW/AQAAAGDa3XjjjXHGGWfElltuGeecc07NKu/FFlssRowYUefYvN22bdto3779FJ9vwIABU10dnuN33bp18yeCWWTxxRf3HoNZYOKqKFMjAQ7MsPywnKVccsZofmjOD98AAAAAwLS5+eab47TTTos99tgj+vTpU2fBSffu3ePpp5+uc/yTTz5ZVom3bNlyhl/i/BnG8aD+VVam5tZ7DOrftJY/TxLgAAAAAADQwIYOHRpnnnlmbL755tGrV6/4+OOPa+5r06ZNSYrvsMMOpSR6bv/xj3/Eww8/HFdffbW/FQBMhQQ4AAAAAAA0sP79+8f48ePjkUceKV+1ZcL77LPPjssvvzzOO++8+OMf/xhLLrlk+X699dbztwKAqZAABwAAAACABrb//vuXr6nZaKONyhcAMO1mvFEIAAAAAAAAADQiVoADAAAAAAAw23v77bfjyy+/nKHX4fXXX4/Ro0fHa6+9FhMmTJjh13LeeeeNZZZZZrb/W8DMkAAHAAAAAABgtvbpp5/GBhtsEN999910P/aDDz6o+f6vf/1r2S6++OIzdB5zzDFHDBo0KBZccMEZejwgAQ4AAAAAAMBsLhPOjz322HSvAF911VWnmBR/8cUXZ2gFuOQ3zBwrwAEAAAAAAJjtTW/p8RYtWnxvcnxmyqEDM6blDD4OAAAAAAAAZktrr712zfe77bZbjBo1KgYOHFi2eXtyxwENwwpwAAAAAAAAmA7PPPNMzfdvvfVWtGvXrub2euutN9njgIZhBTgAAAAAAADMoCeeeGKqt4GGJQEOAAAAAAAAQLMgAQ4AAAAAAAAzoXYPcKC6GmUC/Lvvvovf/e53seGGG8bqq68ev/71r+Pdd9+t9mkBwGxheuPwZ599FkcccUT06NEj1l577TjllFPi66+/btBzBgCmnWtuAACof9kDvHv37nV6gQPV0SgT4JdffnncfPPNcdppp8Wtt95aLs733XffGDduXLVPDQCavemNw4cccki8/fbb0a9fv7j44ovjH//4R5x88skNft4AwLRxzQ0AAEBz1ugS4Dm4fu2115bB9E022SRWWGGFuPDCC2P48OHxl7/8pdqnBwDN2vTG4eeffz6efvrpOOecc2KllVaK9dZbL0499dS4995748MPP6zK7wAATJlrbgAAAJq7RpcAf+WVV0p/hBxAr5h33nljxRVXjGeeeaaq5wYAzd30xuHsa7TIIotEly5davZlGfQWLVrEs88+22DnDQBMG9fcAABQPzp16lTz/Q9/+MM6PcDz9uSOAxrGnNHI5AqztNhii9XZ36FDh5r7JtazZ88pPt+wYcOiY8eOMXr06Ho+U2g8Bg0aFB9//PEMPz5LF48cOXKGHvvNN9+UXr9zzz13zDnnjP2XMs8888QyyywTM2PhhRcuvYqhuZkwYUJJJjfWOJyrvCc+tlWrVjH//POXGDwlYjezs6Yet+sjdovbNFcNHbdnhGtuaNi43Rhit7gNTTt2A43XW2+9VfP9o48+OsXe37WPA2bTBHh+qK8MntfWunXr+OKLL2a4xNvgwYPr5fygsfnoo4/iiSeeiDXXXHOGn2PppZeOxnDBMTP69+8fX375ZVmJCs1JxrCMgY01DufxEx9bOX7s2LEzfB5iN81Vc4nbMxu7xW2aq4aO2zPCNTc0bNxuLLFb3IamG7sBgGaQAG/Tpk3Nh4/K9ykH0XO26+QMGDBgqivM8kN+t27dZsHZQvXlv+0sTzy7rwD/0Y9+ZAU4zdLkksuNKQ7nMXnsxPL4tm3bTvHniN3MrppD3K6P2C1u01w1dNyeEa65oWHjdmOI3eI2NO3YDTQN2U4wJ85N6TYwmyfAK2VUR4wYUWeGbN5efvnlZ+g5s4zN1Abhoalbf/31q/azs71AVljIgQHvM6h/DV2KbXrjcLYZyRJPtWVC/PPPPy9l02eU2E1zJm5D89UUSqi65oamE7eTa26YtZpC7AYarwceeCC22Wab8v2ll14aK6ywQs1Y+SuvvBJrrbVWzXFAw2oZjUz+B5EzU5966qmafVnW+OWXX44ePXpU9dwAoLmb3jic+7KXaK5qqXj66afLtvIhHwBoPFxzAwBA/dh6661rvs9xsOwB/utf/7psa4+L1T4OmE1XgGfZmV/84hdx/vnnx4ILLhhLLLFEnHfeeWWF2RZbbFHt0wOAZu374vC3334bn376abRv376UUF1ttdVKT8TDDz88Tj755LJC5cQTT4ztt98+Fl100Wr/OgDARFxzAwBA/ckWvLWrSTz//POT3A80vEaXAE+HHHJI6XF0/PHHx5gxY8rqsmuuuSbmmmuuap8aADR7U4vD7733XvTs2TPOOuus2HHHHcsH/CzxdMopp8Ree+0VrVu3ji233DKOO+64av8aAMAUuOYGAID6k0nuBx98sKYceqXsuZXfUD2NMgE+xxxzxFFHHVW+AIDGE4eXXHLJGDJkSJ19Cy20UPzud79rwDMEAGaGa24AAKhfmeweNWpUTQ/wtm3beomhihpdD3AAAAAAAAAAmBES4AAAAAAAAAA0CxLgAAAAAAAAADQLEuAAAAAAAAAANAsS4AAAAAAAAAA0CxLgAAAAAAAAADQLc0YzN2LEiPj222+jZ8+e1T4VaJYmTJgQ48aNi1atWkWLFi2qfTrQ7AwbNizmmGOOmJ2I3TDriNswa4nbQH0Tu2HWEruB+iRuQ+OJ281+BXjr1q1jzjmbfZ4fqmb48OHx6aefSn7DLJIxLGPZ7ETshllH3IZZS9wG6pvYDbOW2A3UJ3EbGk/cbjEhp6QAzKBKdYUBAwZ4DQGgkRO3AaBpEbsBoOkQt6HxaPYrwAEAAAAAAACYPUiAAwAAAAAAANAsSIADAAAAAAAA0CxIgAMAAAAAAADQLEiAAwAAAAAAANAsSIADAAAAAAAA0Cy0mDBhwoRqnwQAAADA/2vvPqCrrrK3j2+U0DtI7y2ACEgZpImKgAJKlaGoIE0BkaL0FnoLYGiCkRoIvTMofRCBgdBBEILSpHeB0OVde/v+7v8mgiJJbtr3sxYryb03WTFZMyfn7LOfLQAAAAAAhBMd4AAAAAAAAAAAAACAWIECOAAAAAAAAAAAAAAgVqAADgAAAAAAAAAAAACIFSiAAwAAAAAAAAAAAABiBQrgAAAAAKLUo0eP+A0AAAAAAAAgQlAABwAAABBlbt++LfHixZPff/+d3wIAAAAAAADCjQI4AAAAgCgxdOhQad++vdy4cUOee+45iuAAAAAAAAAINwrgAOKksFGrdJ0BAOBZuvYmTJhQLl68KAMGDKAIDgAAAAAAgAhBARxAnCx+a9SqWrhwoR2803UGAIBn12Jde9u1ayfVqlWTw4cPS//+/SmCAwAQDT3pwnjYi+UAAODJo78AeFa8R/y1CiCObdz1wF3pYXuHDh0kbdq0MnbsWEmdOnWo5wEAQOSvyQ8ePJApU6bIf/7zH8mfP7/06dNHkidPzpoMAEA04L5HXr9+vVy9elWyZMkiJUuWlPjx44e6YA4AAEKbPn26HDp0SLZv3y5VqlSx9fPNN9/kxwR4AAVwAHGG+8ZcC976h8fJkyfl/Pnz8vLLL8u4ceOsGE4RHACAyPO4dfb+/ft2MLB06VIpUKAARXAAAKLZHnr48OGyePFiu7iWLl06qVWrljRr1ky8vLwoggMA8Bi+vr6yZMkS+eijj2z8l7+/vyRKlEgCAgIkffr0/MyASEabI4A4w9m46wG7/qHRsmVL+eabb2zu6PPPPy+tW7eWK1euEIcOAIAHit9BQUGydu1aO0y/du2atGjRQurWrUscOgAA0WwPPWHCBFuvv/zyS/n++++tAD5v3jxLcNFLbPo6AiYBAPg/e/bskVWrVlnDVfPmzeXFF1+0fW+XLl3kwoUL8ssvv/DjAiIZBXAAcYZuyO/duye7du2SDz/8UF599VXJly+f1KtXT9q2bWs32T/77DP7Y4SZ4AAARDyn+D1y5Ejp1q2bTJo0yd5v1KiRdX/r+vzOO+/IkSNHZODAgXL9+nVGkwAA4EFa6L57965rD33u3DlZt26dDBo0SEqXLi3Hjx+XU6dOSaZMmayrbcaMGRTBAQAIQ8+gkyZNKsWKFZOVK1daakrnzp2lQoUKMmrUKNm0aRM/MyCSUQAHEGforfQECRLYzLLTp0+HerxMmTK2md+xY4cVwZ1OcG6xAwAQsWbNmiULFy60Tf/8+fNt3T179qxFwGkXmd6O1yL45s2bLbEFAAB4hh7QT5s2zWZ7O3tlTW/RS+Ia2aqFb41v1bV65syZ9rqpU6dKu3btrGjOLHAAAP6g58+6z9WLZX369JEvvvhC3n//fTubvnXrlhw7dowfFRDJKIADiLV0ox72/YcPH0qePHnk0KFDcvTo0VCvyZUrl80C18f0djsbeAAAwufXX3+1m+/OGqx++uknS18pWrSoHbQPGzZMevfuLYkTJ5ahQ4faBbQmTZrY7XgdTwIAADyjWrVqsmjRIhsRppfD79y5I8mTJ5fXX3/dLqrp5TQ9uNduNqV76yxZslgkulM0BwAgrpo7d67Ur1/f3q9ataqdNXfv3t32tY0bN7bHtfitF791DQUQuSiAA4j1M0aXLVtmXWbabaaP6e107fD28fGR/fv3S0hIiP3xoXNItQBeuXJlOXDggFy6dCmq/zMAAIixdH3V2+46ekTp7XenAJ4hQwZba3v27Gk34f/973/bKJLZs2fL7t27xcvLS2rWrGkH8E7hHAAARB7ncriuvXphXLvUdFSJFsC7du0qefPmlRUrVlj0+UsvvWTrtq71eqltwIAB9nnuF8wBAIhL1qxZY2NC9u3bJ+3bt7fHOnToIN7e3jJv3jy7/L1gwQLp2LGj7XEbNmwY1d8yEOtxPRNArOQUv7WrbM6cOXbj7ptvvpGNGzda4Vvj2lq0aCFdunSxTbpu6nXz/vXXX0twcLAEBgayeQcAIBy0E0w3+Trbu3DhwjZWxM/PT1577TUZPXq0dZUNHjxY3n33XXu93oLXw3UtjrvTA3UAAOCZPbTO+y5SpIjtlfUiuV5Ka9q0qa3j169ftwttW7ZskcmTJ9vHderUsehzfd75GgAAxCXDhw+3S2LaVFW2bFn5/vvv5eOPP7aLZAMHDpSxY8dKr169JEeOHJItWzYrhOt+WQvh7HeByEMBHECsorfQneg1jTjftGmTFbsLFiwo27dvl2bNmtnmvH///nYgr5t73cCnSpVKateubZ+nneKpU6eWlClTRvF/DQAAMZMegmtE6rfffiv/+te/ZPXq1dK3b1977o033pBt27bZ+pszZ057TJNZpk+fbsXvjBkzRvF3DwBA3Fy7tfP7s88+s+K27p31srivr6+9/fTTT6Vt27bSrVs32bt3r6RJk8aSW5y0Fg7wAQBxkSae6cXvkSNHSqlSpWxN1DNoTU/55JNPZOLEidZwdeLECRsnkihRIjubdj/DBhA5+F8YgFhBC9qff/65JE2a1D7WG3YaO6OF70KFCtljr7zyinWBa+e3bu41drVGjRr2nG7gp0yZIqdOnbLD+oCAAEmRIkWU/jcBABBT6YZeO7wvXLhgM8AzZ85s62z27NmlTJky0rx5c5k2bZo0atTIntPusoQJE9rMNO0ecx9lAgAAPLN26965QoUKMmbMGClevLjtnbWwrclqekivB/klS5aUGzduWBebrtUc4AMA4jLd8+o5s0adK103da3s06ePXR7TOHRNQtN1U4vjut7qfpfiNxD5OFUCEOP98MMPcvnyZes0c+gfEjp39Mcff7TnnD8uNIZGD+A3bNgg3bt3t+4z3bD/97//tW5x3cjrLXYtnAMAgH/Gffan3mzXgveePXtk7dq1tsHX2Dft/q5YsaIdpo8YMUIaNGggbdq0kfnz51shXNdlit8AAESusPO6df1V7733nty6dUt2795tH3/00UfW9T1u3DiLeNX0NB0x5lxY4wAfABAX6YVvlS5dOlsL9+/f73pO97U6Bixt2rSyatUqu0CmnLQU9ruAZ8R7pNdTACAWbNz1j4clS5bYbFHdlGshu1+/fjZzpVWrVtYdrv+Xp8VwnQXu7+9vcav6x4fOHdU/TrRLzb2QDgAAnn49djbyus5qEouuu3ny5LFuMl1j69atawcFAwYMkKJFi9oltaxZs7q+BhGqAAB41qJFiyyyVSPNdc+s63TDhg0ld+7cFufqGD9+vF0+DwwMtD01AABx1bx58yQoKMjSzDRxVJNJtZlKz58LFChgr7l48aL06NHD9sI6nlNT0P79739H9bcOxCkUwAHEaE5BWx05csT+0NDZoTpbRSPMp06dah1mGjmjM8ySJEnyp1hVp/gd9usBAIB/TrvDli9fLi+88IIlq5w+fdpmhuo/LYLXrl1bfvvtN0mcOLFFrX755ZesvwAARIFffvnFYs6vX78ulStXlrfeessulP/vf/+zy+Ta+a2pLQ5nv8y+GQAQV+k5s47u0phzvRj2zjvvWDKKnkWXLl3aLpXlz5/fxnDqGfTYsWNtrS1Xrpx06NAhqr99IE5hBjiAGCvspltvqHfs2NGK3hqlqjfUNa5NX+fr62uvbdq0qWtOuMMpfiuK3wAAPLtly5bJihUrrKj90ksvyaVLl2wkiW76df3VdVg/HjVqlEWt6sE66y8AAJ4R9jK47qHXr19vnWk7duywfXStWrUkZ86cluBy7NgxK4A7n0fxGwAQl82aNcv2u/pWO761EN63b19LOtNZ39u3b5eAgAC77J0pUyYrimvSqMaka1qp4hIZ4Dl0gAOI8Rv3K1eu2IyybNmy2cerV68WPz8/SZ06tRXBU6ZMKdOmTZOhQ4fKoEGD7I8SAAAQ8XSt1S6yIUOGuB7Tbm9dj7/77juZMmWKHai700I480MBAPDcHlpjzw8fPiwJEyaUTp062WMafb5z5047uNf3tQtcD+3XrFkjGTJk4NcDAIjzunfvLunTp7cGrF27dsnAgQOlWrVqNmZTO7zr169vs7/v3r1rIze16K2Xv+fPn2/F8uzZs8f5nyHgSXSAA4iRnI27Fro1biY4ONhmib7++uvWXabPa/eZRp/robs+plGsVatWjepvHQCAWElvsp87d85izt3pSJKyZcvKnDlz7CAgLIrfAABE/hrt7KE1ulVnl2o866FDh2yUmM761qQWPbx/8cUXbYTJhAkT5Nq1a9a1BgBAXKeXww4cOCBvv/223Lx5U5YsWSLly5e3ePPkyZNbJ/jRo0elZcuWkiVLFhk3bpxcuHBBQkJCZPLkyRS/gShAARxAjL21Pn36dDtM79q1q0Wxff/99zJjxgy5fPmyfP7559ZRNnHiRGnYsKFt8KtXr26fR6cZAADh8/DhQ7vR7r4261qcN29em3W2b98+KVKkiOv1msqind+JEiXiRw8AgIc5o740GU3HlWjkuUa3Tpo0SUaPHi1ffPGFjQ3TIrh2q+k/TXNxYlrd130AAOIi3csOGDDA9r979+6V48ePS9u2bV3FcZ39XaJECZsJrhfIdKSIJqnovjhz5sxR/e0DcRIFcAAxilP81mi2M2fOWIe3/kGh9Lb67NmzbUNfsmRJqVKlisWuaiSN+4E7nWYAADwb5wDcOQTXC2baOaaH4xoDpwcAukbr/DMdO5IjRw7b9Gtiix6m60xRAADgeffv35c9e/bYWq3Fbz28X7lypbRu3VoWLlxoF8u16K1FcGff7cz8pvgNAIBY+qiujb1797bz5dKlS1tBfMuWLVKhQgXr/la693333Xf5kQFR7I+/aAEghtDNt96wa9y4sXWAa4HbodFs77//vhW7dV6Zbtp13rfOI9UNux7aAwCAZ9O5c2dp3ry5Jak4Eaq6xuoYEk1kadKkiRw7dkz69etnsap6oK4z0DQS7urVq9ZlpmuzHhAAAADP0vX74MGDtofWzjSdRVq5cmVbr2vXri1r16619DQtkj+uexwAgLjOWRO9vb0lKCjIZoB/8MEHcvbsWWnWrJk9z34XiD4ogAOIEUVv563+IaHdY/7+/nbTTjfnFy9eDBWxqofuuqFX7jfVubUOAMCzr8WVKlWyWaFdunSx2Wa6BmvhWyPPtYPs+vXr1j2mF8602K1Rqlo0b9euncyfP1+8vLzs8N3pKgMAAJ6TOHFi8fHxkVdffdW6v3XPXKZMGUtqSZIkiVStWlWKFStm3W0AAODJqlWrZk1YmoaWLVs2S1LRc2rdC7PfBaKPeI+cyhIARPOZ31ro1gK4dngnS5bMZn63atXKOs60Iy19+vQ2c0U/1tgZjUcHAAARtybr2qtF7UyZMknKlCll/PjxkiJFCnv+1KlTth7rGq3zRDX+3B3zQwEAiFr37t2zgreOLdGLa1OmTLFLbprWonvopk2b2utYswEAeLrxInrRW+llb8ZuAtELBXAAMcLYsWMtkk0jVPXmeqdOneyG+qZNm2y+SqFChawz/ObNm3L+/HnrNNONPQAAiPgiuM731ktnK1assEK4k9KiRXC9nKbPBQQESNasWfnxAwAQzYwZM0bWr18v5cuXlx9//NGK4fPmzePgHgCAZ+DshwFEL+QPAoiW3MMpNEZG531rV1mHDh0skk3f6m11vaWuMas6y2znzp22gV+6dKkVv/UWHgAAiDiaylKuXDnp1auX3L17V3r37m3rrW72de3W+LeJEydahKp2iQMAAM/4JwGPuo/WNVv30MmTJ7d54E50KwAA+GcofgPREx3gAKK1devWycaNGyVv3rzy4Ycfuh4fMWKETJ061Tq9X3zxRVcneM2aNa07PEOGDFH6fQMAENs7wXV91nngZcuWtXnfGv0W9uY7EaoAAESuEydOuMaO6KU0LWQ/zUF8SEiIvVbXb3090a0AAACITegABxBtHTp0SL766isrcj///POumWVK548WKVJEZs6caYfreoNdO85WrlwpAwYMkNOnT0fxdw8AQOzuBK9YsaIMHz5ctm7dKl27drU1OuyBu7N+AwCAyBEYGChz5syx951UlqehqWn6z3k93WsAAACITSiAA4i2kW25c+eWBg0a2PzQ5cuX2zxR3aDrzXTtPEuTJo0kTJjQDtf1c1977TUZNWqUBAUFMbsMAIAIWo//rgiuqSx6AU0vrQEAAM+5ceOGXLhwQWbNmiX169eXRo0a2eN/F2Wua712f6sdO3bYWy6tAQAAIDahAA4gWtCCtnPjXKPYdBOvxe169epJx44drfjds2fPUBv13377TdKlS2fv6+P6NSpXriwbNmwgAh0AgGeIUFW6HmsH2dMUwrUIriks2n3Wtm1bfuYAAHiQzu/WFBbdCx88eFDKly/vKmbrY4/jPq5EO8ebNm1q6WsAAABAbPJHFQkAopBuwPUAXU2aNEm2bdsm+/fvt4jzN954Qxo3bmyb9wkTJsjbb78tBQoUsBvtWiT/5JNP7POcz1eJEyeOsv8WAABiKi1i58qVy9JXtACuM0Gfhq7BxYsXd33M3G8AACKXU8TWt9evX7dCeJkyZWTTpk2SKVMm20Pr+qz7aPe9ctjit6+vr4wcOVIKFizIrwwAAACxSrxHT5txCACRbOzYsRbdpkVt7fLevHmz/Pjjjxbl9umnn8p//vMfGTdunFy7ds1uudeqVcs+j4N2AADCH6Hap08fOXr0qF0k03neS5Ys+ds11v1gXSNUS5Ysya8CAIBI5L726nqtY8LU8ePHbU995MgRadiwoSsO/UnFbx1hMnjwYKlatSq/LwAAAMQ6RKADiBZ++eUXWb9+vYwePdoi2N5//33x8fGR2rVry6JFi2Tjxo22MW/RooXdaF+2bNkTI90AAIBnIlSdA3giVAEA8Axn7f3666/tonjLli3l119/lZw5c8rHH38s+fPnl7lz59rarE6fPm1vKX4DAAAgLqEADiBa0BnfFy9elFSpUtnHetieIUMGK4RrBOvWrVutK/ydd96RDz74QC5fvmyd4fp5f9WZBgAAnswJg3pchKqmsignQjXs5xGhCgBA1NDRYd98843tn0+ePGnjS3SOtxa/tQieN29ee03RokUt4cVZ7+fNm0fnNwAAAOIEZoAD8Liwc8jUgwcPrKh9/vx5mz+mkau6SX/hhRdsHumtW7fsdRrvVqNGDbl7965Fs165ckUyZ87MbxEAgHCsxzrz29vb27rFnAhVfV+L3Bqh+lfzQ4lQBQDAs3toHV2i6WnlypWTM2fOSI8ePSwtTYviup9u06aNbN++3YrjnTp1snV76dKlVgzXNb5y5cr8ygAAABCrMQMcgEdp4TphwoSu2HPdiGfMmNHmjbZv39426XpTvUiRIvaa27dvWyS6xp83a9bMtfHXg3rt/tZONQAA8Ow0QlXnd2thu2/fvpI1a1abH6rrsc4E1zmi2lmmEapZsmRxfR7FbwAAIp/7xbMFCxbY2rxmzRrp2bOnvPHGG/b4qVOnpHfv3vacv7+/FcHD0kJ5cHCwVKxYkV8bAAAAYj0K4AA8YuLEiVbA1g5upbfVFy5caJt5PUyfMmWKXL161W6uHzhwQFq1amXR5v/73/8sGn3x4sUWgR72AAAAADw7LXJPnjxZXnvtNdm7d68lrjgH504RfNeuXZa4UrJkSess0zVYI1SHDRsmgwcPtktqAAAg4rnvfX19fWXmzJmSL18+2b9/vyW06L5ZL5Q7RXAfHx/ZvHmzrFq1SnLkyOH6OpqwxugwAAAAxCUUwAFEui1btkiHDh2kePHiVghfuXKl9O/f3zbnZ8+eteK2doYvWrTIOr61E+3bb7+V7NmzW3F80KBBNgecTTsAABEboaqH6Trz2z1CVbvDnAjVn3/+OVSEqq7HGqHatWtXIlQBAPCQffv2ydSpU+Wjjz6ytDQ/Pz+ZP3++1KtXz1JanCK4jjGZNWuWdOvWjYI3AAAA4jQK4AAinUaVL1++3DbsOq9bZ3rroXqdOnXseY1d7devn9y7d88i3TTW/NKlS5IuXbpQM8KdDnAAAPDPEaEKAEDMs2HDBhk1apQVtKdNmyapUqWyx/UxvUSuRXAdV5IhQ4ZQn8cFcgAAAMRl/9f+AQCR1GmWKFEiqVmzpjRp0sQiVPVGuj7m0M5wnTmqj9WuXdte41781gN7it8AAERchOrAgQNl586dNtf7hx9+kHPnztlz2bJlkwEDBoi3t7etySdOnPjTYbpeZmN+KAAAkbdmh91TZ8qUSQ4fPhxqXdZklrp168qSJUtsfInuo90ReQ4AAIC4jAI4gEiPWdUNvM7+1iK4zinT4rYWwe/fv//H/xE995yUKFHCiuAaha7R6O6Y9w0AQPg4a6lGqGrRe8aMGRad2rp1a1m9erXMmTMnVBG8d+/e8sEHH0jWrFlDfR0O0wEAiNw9tLNm37p1y95WqlRJ2rRpIyVLlrTRYnv27HG9vmPHjva8ru2pU6fmVwMAAAD8f0SgA4j0GaNHjx6VkJAQO0RPkSKF64Z6zpw5Zdy4cTZPVGmh/MiRI5I3b14O2AEAiGBEqAIAEDP20HphfOvWrZIsWTJp0aKF7ZF37dol48ePl5MnT8qIESOkWLFif0p6cU98AQAAAOIyOsABRDjddDsb99GjR0v79u2t83vt2rUWZV6jRg1p2bKlHD9+XNq1a+fqBNeNukauaneZRqwCAIDwrcfuiFAFACD6cvbQw4YNk5EjR0rChAll48aN0rlzZwkKCrLRYW3btpUcOXJI165d7TEHxW8AAAAgNDrAAUSasWPHysyZM+XLL7+0zu+MGTPaJv727dvywgsvyNKlS2XixIn2XGBgIF3fAABEQheZRqgmTZrU3tfYVD1U//XXX+2Smnv3mM7+PnPmjEyYMIHuMQAAosC8efNsH62JaQUKFJDvvvvOYs8LFSokvXr1siL47t27bc3WkSV+fn78ngAAAIDHoAAOIFKcP39eunTpIp988omUKVNGfv75Z+sAX7hwoR3I16lTR1q1aiUBAQF2GK8Rbs5BPQAAeHZEqAIAEDNpYVsT0Xr06GGR50OGDJH33ntPpk2bZpfJ9fESJUrIiRMnrBOcPTQAAADweFSbAEQK7TS7ePGizRtdtmyZFcLXr18vZcuWlVKlStljN2/elPr164uvr69t3PXAHgAAhA8RqgAAxDwPHjyQn376yQrgmt6ie+bSpUvbnlm7wA8dOmRd4HqpPFeuXOyhAQAAgL9AARxApEiQIIFUr15d1q1bZ7fUq1SpIj179hQfHx+pUKGCJEuWzOZ86y12Z14Zt9cBAIi4CNUVK1bYiBGNPO/bt68dnGsnmXaUOXNE9cKajitxp+syAADwrPjx41sHuO6ddc0+cuSIlCtXzp7Ty+N6mbxWrVqWpuZgDw0AAAA8HhHoACLNb7/9Jnfu3LGDdJ35re7duyeffvqpFb7HjBnDITsAAJGACFUAAGKuYcOGSVBQkCxYsMCS0tq0aSPe3t7SsWNHe14vk2unOAAAAIDHi/+ExwEg3JInTy4pUqSQkydPyqBBg+TXX3+1m+vXrl2TRYsWWfHbfU4pAACIuAjVIkWK/ClCNVWqVPLZZ59ZhGqLFi1srqhiPQYAIPooXLiwBAQEWPT5uXPnJCQkRMaNG2fPaXoaxW8AAADgr1F1AvBMdNP9d5wIVe32Tp8+vSROnNjmfy9evFi8vLzsgJ7iNwAAEYsIVQAAYrZixYpJu3btLFEtf/78doFc13fdQzOqBAAAAPh7RKAD+EdOnDghOXLksPfv379vm/Cn2YBrwdz9dUS2AQAQ+YhQBQAgdtDit+6/AQAAAPw9OsAB/COBgYEyZ84cVwH8aW+fa8H7aTvHAQBAxEWoahy6Rqg2atRIzpw5Yx1lzppMhCoAAJHrWffAWvB2R/EbAAAAeHoUwAE8tRs3bsiFCxdk1qxZNkdUD9Ldi9t/teF3Nus7d+60txy4AwAQ+YhQBQAg6vz++++uS+P37t176mK4+x568+bNcuXKlUj9PgEAAIDYhgh0AP/IuXPnpHnz5haF3rRpU/niiy9cG/vHzfN2jz7XzvGBAwfK/PnzpWDBgvzkAQCIAkSoAgAQ+dz3yNOmTbNCtq7BPXr0kHz58j3x88LuoX18fGTu3LlStGhRfm0AAADAU6IDHMDfcm6p69vr169L8uTJpUyZMrJp0ybrBrf/M3nuOdvg/9XG3dfXV0aOHEnxGwCAZ0CEKgAAMYdT/B4+fLhMnDhRihcvLiVKlJBMmTKFWtfdE9XC7qF1/+zn50fxGwAAAPiH6AAH8NS31jWyLUGCBPb+8ePHZezYsXLkyBFp2LChKw79SRv3ESNGyODBg6Vq1ar8xAEACOd67OXl5Vpn/4r7eqydZ5rAkiZNGn7+AABEEve1d+vWrdKvXz8ZNWqUFCpUyEaK7d+/X9atWyepUqWSdu3aSeLEif/0eeyhAQAAgPD5Y6AQADyBc9j+9ddfy44dO2xT3rdvX8mZM6d8/PHHMmnSJItj09c1aNBATp8+LVmyZGHjDgBANI1QpQAOAEDkeNxoMP04T5488sMPP4i/v7+cOXNGEiVKJCEhITbnu1OnTtYF/vzzz7vWbC6QAwAAAOFDBDqAv6VF7m+++cZuqJ88edIK3YcOHZL8+fNbETxv3rz2Gp1J1qdPH1eU27x589i4AwAQ3j/YiVAFACBGFb91/NeQIUMkadKkdmmtRo0a0qJFC8mYMaN069ZNli9fbkVxfU45xe/AwED20AAAAEAEoAMcwN/eWr9x44aMHj1aypUrZ7fVteNMN+9aFNco1TZt2sj27dutOK6317XbbOnSpVYM15j0ypUr81MGACCcEarr16+XKVOmuCJUt23bRoQqAADRhLOH1vV548aNVsjOnj27RaDv3btXihUrJqVLl3at7bdv35YkSZK4Pl87xMeNGyeDBg1idBgAAAAQTswAB/DEw/YFCxbI0aNHZc2aNdKzZ09544037PFTp05J79697TmNcNMieFhaKA8ODpaKFSvyEwYAIJyX0bQAPmDAAFm8eLEEBQX9KUK1evXqRKgCABDFtLN75MiRUqRIEXvr5eXlek4vr+ns76xZs9pIE/1Y13WNQVdnz56V8+fPW6EcAAAAQPjQAQ7gscVvjWybOXOmzRbVud56G107zjSyLVu2bHYIr7NEa9euLatWrZIcOXK4vo7OL8ucObP9AwAA4YtQvX//vhW4nQhVvYhWs2ZN+fDDD6VSpUrSqlWrx0ao6sH74MGD6SIDAMADdC3W9TtZsmSyZ88e6/DWAvi9e/fs8V27dtn6rHRPvWjRIit+6+fp+p0pUyb7BwAAACD8KIADcHGK3/v27bOi94wZM+zmup+fn8yfP19SpEhh87+dIrh2gc+aNctusLtzDt8BAMA/R4QqAAAxL61Fi9lVqlSxud+9evWSjz/+WGbPni0JEiSw5zVR7eWXX7b306dPb/tvLX47HeAAAAAAIg4R6ABC2bBhg4waNcqK2BrLlipVKntcH9Mb6vXq1ZOGDRtKhgwZQn2edn1T+AYAIGIQoQoAQMwofm/ZssXiy+/evWvjwbTIrTPAe/ToIblz55aAgIDH7pnDFtABAAAARByumQJxnHvsubMJ19i1TZs2yYkTJ1wF8E6dOtnrlixZIjdv3pQ2bdpImjRpXJ9H8RsAgIhBhCoAANGb+6iSlStXSpYsWeTOnTsydOhQ6dq1qzRu3NjGhvXp08dGlmi6Wtg9M8VvAAAAIPJQAAfiMPcb57du3bKoNp0lmjZtWptX1qFDBxk9erQUK1bMXtOxY0crfms8eurUqaP4uwcAIHYgQhUAgJjBPbJ84cKFdkFcR4aVKFHC4s4HDRpkaWlXrlyxyHO9RN66dWvp37+/FcMBAAAAeAYR6EAc5X7YrnO8t27dKsmSJZMWLVpI3rx5ZdeuXTJ+/Hg5efKkjBgxwlUEd+8aD9s9DgAAnn09JkIVAIDoSUeCaSqaunfvns31HjhwoBXEfXx8ZPXq1dKtWzfp3r27RaD7+/tL+/btJV26dLJv3z57jNQ0AAAAwHMYNgTEUc5h+7Bhw2TkyJGSMGFCm1PWuXNnCQoKkuLFi0vbtm0lR44cFuGmjzkofgMAEPERqr169bJOssWLF0uTJk3sglrFihUtQvXYsWMWoaqIUAUAwHMOHDggkydPloYNG9rHWvzWed6XL1+WzJkz22Vy3TN36dJF3nvvPbl69aosX77cLpPra0uWLGlrt34OAAAAAM+gAA7EYfPmzZMVK1ZIYGCgFcH79u0rhw4dkiFDhlgHuFME12j0mTNnhvpcOr8BAHh22jHmcCJUNXElICBA6tSpY53h7hGqWgTfvn27RagCAADPyZcvn0yYMEHOnj1rBW6lBe38+fNbZ3jLli1tfW7QoIE9lzx5csmTJ4+kTJky1NehAxwAAADwHArgQBx2+PBhefvtt6VAgQJW8NZb7bpxv3Pnjh20a9d30aJFrTius8ABAED46EG50vmhGqGq9PLZm2++afNDNUJVC+F6KS1nzpyW1HLmzBkpV66cXUbr2bMnvwIAADx4YU3T0jSRRePNtau7efPm9pzO9tb9tBa2s2TJIufPn5cLFy7Y/lmL397e3vyeAAAAgChCARyIwxv5n376yTbrt27dkmXLlknp0qWlfv360qFDBzuM1yhW7UrLlSuXRbRqNxoAAHg2RKgCABBzPHr0yC6sqfHjx8v8+fMt0nzz5s2uOPQvvvhCXnnlFRtTot3hWhy/du2aTJ06lT00AAAAEIX++EseQJyjG3nt8r5+/boVu48cOSLt2rWz527evClly5aVUqVKWQxr2DmlAADg2SNUtbtbD8n1IN09QlXXZh1D8s4779jriVAFACDqOGO/ZsyYIdOmTZMxY8ZYZ3dwcLD4+flZ5PmcOXNk0qRJ8t1331mSWooUKaxbXNd3vXTuFNABAAAAeFa8R3qlFUCcpvGqGne+YMEC6/Ju06aNxbV17NjRnn/48CHzygAACAf3Q/BVq1ZJnz59pHDhwjZ+ROmau379eusY0xhVPXTXuPPbt2/bwTuX0AAA8AzdE7uvu126dJGMGTNKp06dXPvj/fv3S/v27SV79uwSEBDwp6/BHhoAAACIWlxFBWAH8Lpp1+jzc+fOSUhIiIwbN85+MnpHRm+vAwCAiIlQ3b17d6gI1dmzZ1uEqq6/GqGaJk0a6zBLlCiRBAYGuiJUKYIDABD5a7az3u7Zs0defPFFuXjxoly9etX1Gt0fFytWTOrWrWvJLtWqVZOVK1eG+jrsoQEAAICoRQc4ADl9+rSsWLHCDuTTp09vXWl6UE9kGwAAEUc7uceOHfunCFVdezVCVRGhCgBA1BW/ndhzXav/+9//iq+vr2zcuFEWL14sn376qVSpUsX1en1MC9+pU6e2ESYUvQEAAIDogwI4gMei+A0AQPgQoQoAQMyzdu1aS2dp2bKlvPLKK3Lq1ClLS0uSJInUqVNH3n33XesI79Gjh+TMmdPeKmLPAQAAgOjj/4YaAYg1t9afteDtzolqBQAA4Y9QvX//vkWoHjp06LERqkFBQRahGhbdZAAAeM7OnTstneXgwYPywgsv2GPZsmWToUOH2rquSS5lypSRZs2ayfnz56Vz5872GkaHAQAAANELBXAglnWaOZFt9+7de+piuPtsUp1HeuXKlUj9PgEAiEsRqv3797fusVdffdUOy1evXh3q9XqwXqFCBSlcuLB1jwEAAM/tod1lz55dqlatavvpr776yvV4vnz5ZNSoUVYc//zzz+3fokWLxMvLyy6TO+s+AAAAgOiBCHQgFsasTps2zQrZuhHXODbdrD/NIb3OH/Xx8ZG5c+dK0aJFPfa9AwAQGxGhCgBAzNhD6+W0kydP2kW0tGnTyrlz52Tp0qVSvnx56du37xO/BrHnAAAAQPREARyIZYYPH2430Zs0aWKb8aZNm0qyZMlchW73DXrY4vfIkSNl4MCBduMdAACEL0JVL5VdunRJZs6cKXny5LHHg4ODba3VjvCbN29KxowZbS1esGCBdZG5r80AAMAze+jFixfbxfGff/5ZUqZMKRkyZJASJUrIypUrpWzZstKrVy97LQVvAAAAIGagAA7EcO4H5Vu3bpV+/fpZNFuhQoXkwoULsn//flm3bp2kSpVK2rVrJ4kTJ35s8XvEiBEyePBgit8AAISzi0zpvG9NVJk6daq8/vrr4uvr63ru8uXLcubMGZsvqgVw7S7Ty2ma3OKMJAEAAJFPC9x6EVyjzXUUiUaf69q9atUqyZo1q3h7e9sF83/9618yZMgQfiUAAABADMEJGxCLDtuVfqxdZj/88IP4+/vbAXuiRIkkJCTEDtU7deoU6tY6xW8AACInQlWL2x999JFFqOoFNSdCVaNV9d9LL73k+hr6eorfAAB41tGjR63IXbBgQbuIliBBAmnQoIFcuXJFduzYIS1atLC99LFjxx67/wYAAAAQPVEAB2Io9823dpXdv39fqlevbpv2GjVqWLRqzZo15cMPP5RKlSpJq1at7DnlFL8DAwPttjud3wAAPDtnPX5ShKqux9phptHnT4pQdX8fAABELicRTQvgWuB21mHdV+v6Xa9ePZk+fbq9rnXr1pI0aVJ7PUVwAAAAIGagAA7E8MP2bdu2ycaNGy3CPHv27NZhtnfvXilWrJiULl3aFXN++/ZtSZIkievztUN83LhxMmjQIGLPAQAIJy1wa1yqpq+EjVA9cuSIXVLTCNVbt25ZhCoFbwAAoo6zT37rrbfk888/l2XLlsm7774rXl5erkK4doUnS5bM/ikthtMBDgAAAMQMFMCBGGz58uXWwV2kSBGLPdfNepkyZeyfzv/WeHOdWzZt2jS5du2afPLJJ67P1ddPmDDBCuUAACB8iFAFACDmqVixotSqVUv69+8vd+/etfQ0vaymM8G18J0rV64/Fc0BAAAARH8UwIEYSuPM9fa5bsr37NljHd5aANeOM318165dFnGusmXLZl1nOltUP0+7zjJlymT/AADAsyNCFQCAmEujzbUDPHHixNK3b18bL5Y6dWpJkSKFzJo1y/bWxJ4DAAAAMU+8R3pqByDae9ymW2PZNm/ebPNEtcg9e/Zs13NaCL969aq9nz59erutrsVvLYIDAICIj0DXA/Rhw4ZZhKrj4MGD0rNnTztQ1/QV96I5AACIHnSvHBwcLMeOHZM0adJIqVKl7OI4e2gAAAAgZqIADsSw4veWLVvk7NmzFs+mM8lefvllmwHeo0cPyZ07twQEBNjrHj58GGq+KLfWAQCIPBqXOnDgQFmzZo107drVFaGqj4WEhMj06dOZGwoAQAwSdk8NAAAAIOagAA7EINo9ph1mWbJkkTt37sjhw4ftkL1x48ayfv166dOnjxXBZ8yYEdXfKgAAcc6lS5dkwoQJMmfOHEmePHmoCFUdU8JlNAAAAAAAACDyUQAHojH3uLWFCxfK6NGjxc/PT0qUKGFx54MGDZIvv/xSihcvbjFtGzZskNatW0ujRo2sGA4AADy/dhOhCgAAAAAAAEQdCuBANDRq1Cjp1KmTa5Z3ggQJLEJVD9V9fHxk9erV0q1bN+nevbtFoPv7+0v79u0lXbp0sm/fPnuMqDYAAKIHIlQBAAAAAAAAz/ljqDCAaOPAgQMyefJkadiwoX2sxW89OL98+bJkzpxZtm7darHnXbp0kffee0+uXr0qy5cvl5MnT9prS5YsacVv/RwAABD1uJQGAAAAAAAAeA4FcCCayZcvn80PPXv2rBW4nYPz/PnzW2d4y5YtpX///tKgQQN7TmeM5smTR1KmTBnq63DYDgAAAAAAAAAAgLiGAjgQjWjEecKECaVixYoWb65d3c2bN7fndLb322+/bYXtLFmyyPnz5+XChQsycuRIK357e3tH9bcPAAAAAAAAAAAARClmgAPRxKNHjyRevHj2/vjx42X37t1y+PBhuXjxos30nj17tpw+fdq6vzdv3ixp0qSxwneiRIkkMDBQvLy85Pfff5fnnuNeCwAAAAAAAAAAAOImCuBANDNjxgwZO3asjBkzxgrcwcHB4ufnJ+nTp5c5c+bYa7777ju5c+eOpEiRwrrFtStcu8fjx48f1d8+AAAAAAAAAAAAEGUogANRLGzXdpcuXSRjxozSqVMn+/jhw4eyf/9+ad++vWTPnl0CAgL+9DX0Ncz8BgAAAAAAAAAAQFxHVjIQxbHnTvF7z549cv/+fYs8P3TokOs1WtguVqyY1K1bV4KCgqRatWp/+joUvwEAAAAAAAAAAAAK4EC0mPmtcec62/vUqVPy6quvyvnz52X16tWhXp8tWzapUKGCFC5c2Dq+AQAAAAAAAAAAAIRGBzgQRZzi99q1a2Xv3r0WfZ47d2558803xcvLy6LOFy9ebMXuS5cuybfffiu5cuWS4cOHW8c3RXAAAAAAAAAAAAAgNGaAA1Fo586d4uPjYwXumTNnSp48eezx4OBgGThwoHWE37x502aCa8F8wYIFVhx37x4HAAAAAAAAAAAA8AcK4IAH/f77766Z30rnfc+dO1emTp0qr7/+uvj6+rqeu3z5spw5c0YOHjxoBfDy5ctb5/eDBw8kfvz4/N4AAAAAAAAAAACAMCiAA1FQ/Nb53idPnrQY87Rp08q5c+dk6dKlVuTu27fvE7+Gvl6L4AAAAAAAAAAAAAD+jAI44GE6w1tne+fLl09+/vlnSZkypWTIkEFKlCghK1eulLJly0qvXr3stRS8AQAAAAAAAAAAgKdHjjLgQVrgXrVqlfj7+0vhwoXl3r17Fn+ujx05ckSqV68uixYtklu3bsmQIUPo9gYAAAAAAAAAAAD+AQrggAcdPXpUvL29pWDBgjbLO0GCBNKgQQO5cuWK7NixQ1q0aCEhISFy7NixP80LBwAAAAAAAAAAAPDXKIADHvDo0SOJFy+eFcC1wO3M8b5//75FoNerV0+mT59ur2vdurUkTZrUXk8RHAAAAAAAAAAAAHh6tJcCHqDFbPXWW2/Jtm3bZNmyZfaxl5eXqxCuXeHJkiWzf/p6LYbTAQ4AAAAAAAAAAAA8PTrAAQ+qWLGi1KpVS/r37y93796VSpUq2bxvPz8/K3znypXrT0VzAAAAAAAAAAAAAE8n3iNtMwXgMZcuXZIJEybInDlzJHny5JI6dWpJkSKFzJo1yzrCiT0HAAAAAAAAAAAAng0FcCAKPHjwQIKDg+XYsWOSJk0aKVWqlM0F18fjxyeYAQAAAAAAAAAAAHgWFMCBaOLhw4dWBAcAAAAAAAAAAADwbCiAAwAAAAAAAAAAAABiheei+hsAAAAAAAAAAAAAACAiUAAHAAAAAAAAAAAAAMQKFMABAAAAAAAAAAAAALECBXAAAAAAAAAAAAAAQKxAARwAAAAAAAAAAAAAECtQAAcAAAAAAAAAAAAAxAoUwAEAAAAAAAAAAAAAsQIFcAAAAAAAAAAAAABArEABHAAAAAAAAAAAAAAQK1AABwAAAAAAAAAAAADEChTAAQAAAAAAAAAAAAASG/w/ApVPOtkgSqMAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
"source": [
"# Создание subplot в несколько строк\n",
"numeric_cols = df.select_dtypes(include=['number']).columns\n",
@@ -1438,15 +323,23 @@
"plt.tight_layout()\n",
"plt.subplots_adjust(top=0.95) # Добавляем место для заголовка\n",
"plt.show()"
- ]
+ ],
+ "outputs": [],
+ "execution_count": null
},
{
"cell_type": "markdown",
+ "id": "7c2b1102-0114-48de-a88b-f442812b70d6",
+ "metadata": {},
+ "source": "смотря на эти графики хочется плакать, но ничего, попробуем посчитать сколько конкретно у нас ненулевых значений (т.е. заказов)"
+ },
+ {
+ "cell_type": "code",
"id": "33d8e762-c154-4ece-9558-e63a99b8dafa",
"metadata": {},
- "source": [
- "смотря на эти графики хочется плакать, но ничего, попробуем посчитать сколько конкретно у нас ненулевых значений (т.е. заказов)"
- ]
+ "source": "fix, axes = plt.subplot",
+ "outputs": [],
+ "execution_count": null
},
{
"cell_type": "code",
@@ -1543,12 +436,7 @@
"output_type": "display_data"
}
],
- "source": [
- "for field in fieldsToCount:\n",
- " df.loc[df[field] > 0, field] = 1\n",
- "\n",
- "countsOfOrdersByCategories()"
- ]
+ "source": ""
},
{
"cell_type": "code",
@@ -1581,10 +469,10 @@
}
],
"source": [
- "age_check = df['age'].describe(percentiles=[0.01, 0.25, 0.5, 0.75, 0.99])\n",
- "age_outliers = df[(df['age'] < 14) | (df['age'] > 100)]\n",
- "print(age_check)\n",
- "print('Outlier share:', len(age_outliers) / len(df))"
+ "for field in fieldsToCount:\n",
+ " df.loc[df[field] > 0, field] = 1\n",
+ "\n",
+ "countsOfOrdersByCategories()"
]
},
{
@@ -1610,13 +498,10 @@
}
],
"source": [
- "cnt_by_date = df.groupby('business_dt').size().reset_index(name='n_records')\n",
- "fig, ax = plt.subplots(figsize=(12, 4))\n",
- "sns.lineplot(data=cnt_by_date, x='business_dt', y='n_records', ax=ax)\n",
- "ax.set_title('Количество записей по датам')\n",
- "ax.set_ylabel('N')\n",
- "plt.xticks(rotation=45)\n",
- "plt.tight_layout()"
+ "age_check = df['age'].describe(percentiles=[0.01, 0.25, 0.5, 0.75, 0.99])\n",
+ "age_outliers = df[(df['age'] < 14) | (df['age'] > 100)]\n",
+ "print(age_check)\n",
+ "print('Outlier share:', len(age_outliers) / len(df))"
]
},
{
@@ -1642,10 +527,8 @@
}
],
"source": [
- "fig, axes = plt.subplots(1, 1, figsize=(10, 4))\n",
- "sns.boxplot(data=df, y='age')\n",
- "axes.set_title('Возраст (boxplot)')\n",
- "plt.tight_layout()"
+ "categoricals = {col: df[col].value_counts(dropna=False) for col in CAT_COLS}\n",
+ "categoricals"
]
},
{
@@ -1668,10 +551,13 @@
}
],
"source": [
- "SAVE_CLEANED = True\n",
- "if SAVE_CLEANED:\n",
- " df.to_parquet('dataset/ds_clean.parquet', engine=\"fastparquet\", index=False)\n",
- " print('Saved dataset/ds_clean.parquet')"
+ "cnt_by_date = df.groupby('business_dt').size().reset_index(name='n_records')\n",
+ "fig, ax = plt.subplots(figsize=(12, 4))\n",
+ "sns.lineplot(data=cnt_by_date, x='business_dt', y='n_records', ax=ax)\n",
+ "ax.set_title('Количество записей по датам')\n",
+ "ax.set_ylabel('N')\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.tight_layout()"
]
},
{
@@ -1680,7 +566,33 @@
"id": "5b9e3d6a-9624-4a11-9984-de5b1a44b04d",
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "fig, axes = plt.subplots(1, 1, figsize=(10, 4))\n",
+ "sns.boxplot(data=df, y='age')\n",
+ "axes.set_title('Возраст (boxplot)')\n",
+ "plt.tight_layout()"
+ ]
+ },
+ {
+ "metadata": {},
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null,
+ "source": [
+ "SAVE_CLEANED = True\n",
+ "if SAVE_CLEANED:\n",
+ " df.to_parquet('dataset/ds_clean.parquet', index=False)\n",
+ " print('Saved dataset/ds_clean.parquet')"
+ ],
+ "id": "89d49461c63a71bf"
+ },
+ {
+ "metadata": {},
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null,
+ "source": "",
+ "id": "283fc5c684b10f2d"
}
],
"metadata": {