new plots

This commit is contained in:
dan
2025-12-14 17:30:01 +03:00
parent cfee72470c
commit 5cac173b2f
4 changed files with 116 additions and 117 deletions

View File

@@ -1,144 +1,143 @@
import sqlite3
from pathlib import Path
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from statsmodels.nonparametric.smoothers_lowess import lowess
sns.set_theme(style="whitegrid")
plt.rcParams["figure.figsize"] = (10, 5)
plt.rcParams["figure.figsize"] = (10, 6)
project_root = Path(__file__).resolve().parent.parent
sys.path.append(str(project_root / "preanalysis_old_bad"))
import eda_utils as eda # noqa: E402
db_path = project_root / "dataset" / "ds.sqlite"
conn = sqlite3.connect(db_path)
df = pd.read_sql_query("select * from communications", conn, parse_dates=["business_dt"])
conn.close()
DB_PATH = project_root / "dataset" / "ds.sqlite"
OUT_DIR = project_root / "main_hypot"
X_COL = "avg_imp_per_day"
Y_COL = "orders_amt_total"
X_MAX = 18 # обрезаем длинный хвост по показам, чтобы облака было легче читать
SCATTER_COLOR = "#2c7bb6"
for cols, name in [
(eda.ACTIVE_IMP_COLS, "active_imp_total"),
(eda.PASSIVE_IMP_COLS, "passive_imp_total"),
(eda.ACTIVE_CLICK_COLS, "active_click_total"),
(eda.PASSIVE_CLICK_COLS, "passive_click_total"),
(eda.ORDER_COLS, "orders_amt_total"),
]:
df[name] = df[cols].sum(axis=1)
df["imp_total"] = df["active_imp_total"] + df["passive_imp_total"]
df["click_total"] = df["active_click_total"] + df["passive_click_total"]
contact_days = df.groupby("id")["business_dt"].nunique().rename("contact_days")
client = (
df.groupby("id")
.agg(
imp_total=("imp_total", "sum"),
click_total=("click_total", "sum"),
orders_amt_total=("orders_amt_total", "sum"),
age=("age", "median"),
gender_cd=("gender_cd", lambda s: s.mode().iat[0]),
device_platform_cd=("device_platform_cd", lambda s: s.mode().iat[0]),
def load_client_level(db_path: Path) -> pd.DataFrame:
"""Собирает агрегаты по клиентам без усреднения по x."""
conn = sqlite3.connect(db_path)
df = pd.read_sql_query("select * from communications", conn, parse_dates=["business_dt"])
conn.close()
for cols, name in [
(eda.ACTIVE_IMP_COLS, "active_imp_total"),
(eda.PASSIVE_IMP_COLS, "passive_imp_total"),
(eda.ACTIVE_CLICK_COLS, "active_click_total"),
(eda.PASSIVE_CLICK_COLS, "passive_click_total"),
(eda.ORDER_COLS, "orders_amt_total"),
]:
df[name] = df[cols].sum(axis=1)
df["imp_total"] = df["active_imp_total"] + df["passive_imp_total"]
client = (
df.groupby("id")
.agg(
imp_total=("imp_total", "sum"),
orders_amt_total=("orders_amt_total", "sum"),
contact_days=("business_dt", "nunique"),
)
.reset_index()
)
.merge(contact_days, on="id", how="left")
.reset_index()
)
client["order_rate"] = eda.safe_divide(client["orders_amt_total"], client["imp_total"]) # orders / impressions
client["order_rate_pct"] = 100 * client["order_rate"] # чтобы шкала была человеческая
client["avg_imp_per_day"] = eda.safe_divide(client["imp_total"], client["contact_days"])
# Mean absolute orders for each exact avg_imp_per_day (no bins), sorted ascending
stats_imp = (
client.groupby("avg_imp_per_day", as_index=False)
.agg(
orders_mean=("orders_amt_total", "mean"),
n_clients=("id", "count"),
client[X_COL] = eda.safe_divide(client["imp_total"], client["contact_days"])
client[Y_COL] = client["orders_amt_total"]
client = client[["id", X_COL, Y_COL]].dropna()
in_range = client[client[X_COL] <= X_MAX].copy()
print(f"Loaded {len(client)} clients; {len(in_range)} within x<={X_MAX} kept for plotting.")
return in_range
def remove_outliers(df: pd.DataFrame, iqr_k: float = 1.5) -> pd.DataFrame:
"""Убирает выбросы по IQR отдельно по x и y."""
def bounds(series: pd.Series) -> tuple[float, float]:
q1, q3 = series.quantile([0.05, 0.95])
iqr = q3 - q1
return q1 - iqr_k * iqr, q3 + iqr_k * iqr
x_low, x_high = bounds(df[X_COL])
y_low, y_high = bounds(df[Y_COL])
filtered = df[
df[X_COL].between(max(0, x_low), x_high)
& df[Y_COL].between(max(0, y_low), y_high)
].copy()
print(f"Outlier cleaning: {len(df)} -> {len(filtered)} points (IQR k={iqr_k}).")
return filtered
def plot_density_scatter(
df: pd.DataFrame,
title: str,
out_name: str,
with_trend: bool = False,
alpha: float = 0.08,
) -> None:
fig, ax = plt.subplots(figsize=(10, 6))
sns.scatterplot(
data=df,
x=X_COL,
y=Y_COL,
color=SCATTER_COLOR,
s=20,
alpha=alpha,
linewidth=0,
ax=ax,
)
.sort_values("avg_imp_per_day")
)
K_MULT = 2 # "в разы" -> 5x. Поменяй на 3/10 если хочешь
ABS_DY_MIN = 1
X_MAX = 16
if with_trend:
trend = lowess(df[Y_COL], df[X_COL], frac=0.3, return_sorted=True)
ax.plot(trend[:, 0], trend[:, 1], color="red", linewidth=2.5, label="LOWESS тренд")
ax.legend()
stats_imp = stats_imp.sort_values("avg_imp_per_day").reset_index(drop=True)
ax.set_xlim(0, X_MAX)
ax.set_ylim(bottom=0)
ax.set_xlabel("Среднее число показов в день")
ax.set_ylabel("Число заказов за период (сумма)")
ax.set_title(title)
ax.grid(alpha=0.3)
# 1) cut by x
stats_f = stats_imp[stats_imp["avg_imp_per_day"] <= X_MAX].copy().reset_index(drop=True)
OUT_DIR.mkdir(parents=True, exist_ok=True)
out_path = OUT_DIR / out_name
fig.tight_layout()
fig.savefig(out_path, dpi=150)
plt.close(fig)
print(f"Saved {out_path}")
# 2) detect vertical outliers by dy logic
before = len(stats_f)
y = stats_f["orders_mean"]
abs_dy = y.diff().abs()
prev3_mean = abs_dy.shift(1).rolling(window=3, min_periods=3).mean()
ratio = abs_dy / (prev3_mean.replace(0, np.nan)) # avoid inf when prev mean == 0
def main() -> None:
client = load_client_level(DB_PATH)
is_outlier = (abs_dy >= ABS_DY_MIN) & (ratio >= K_MULT) | (y > 5)
# первые точки не могут нормально иметь "3 предыдущих дельты"
is_outlier = is_outlier.fillna(False)
plot_density_scatter(
client,
title="Облако: заказы vs средние показы в день (все клиенты)",
out_name="orders_vs_avg_imp_scatter.png",
)
stats_f = stats_f.loc[~is_outlier].copy().reset_index(drop=True)
after = len(stats_f)
cleaned = before - after
cleaned = remove_outliers(client)
plot_density_scatter(
cleaned,
title="Облако без выбросов (IQR) заказы vs средние показы в день",
out_name="orders_vs_avg_imp_scatter_clean.png",
)
print(f"{before} - {after}, cleaned: {cleaned}")
plot_density_scatter(
cleaned,
title="Облако без выбросов + тренд",
out_name="orders_vs_avg_imp_scatter_trend.png",
with_trend=True,
alpha=0.1,
)
# --- smoothing (rolling mean on remaining points) ---
w = max(7, int(len(stats_f) * 0.05))
if w % 2 == 0:
w += 1
stats_f["orders_smooth"] = (
stats_f["orders_mean"]
.rolling(window=w, center=True, min_periods=1)
.mean()
)
# --- cost line (linear expenses) ---
# нормируем так, чтобы масштаб был сопоставим с заказами
c = stats_f["orders_smooth"].max() / stats_f["avg_imp_per_day"].max()
stats_f["cost_line"] = c * stats_f["avg_imp_per_day"]
# plot
plt.figure(figsize=(10, 8))
plt.plot(
stats_f["avg_imp_per_day"],
stats_f["orders_mean"],
marker="o",
linewidth=1,
alpha=0.3,
label="Среднее число заказов"
)
plt.plot(
stats_f["avg_imp_per_day"],
stats_f["orders_smooth"],
color="red",
linewidth=2.5,
label="Сглаженный тренд заказов"
)
plt.plot(
stats_f["avg_imp_per_day"],
stats_f["cost_line"],
color="black",
linestyle="--",
linewidth=2,
label="Линейные расходы на показы"
)
plt.xlabel("Среднее число показов в день")
plt.ylabel("Среднее число заказов")
plt.title("Зависимость заказов от интенсивности коммуникаций")
plt.legend()
plt.grid(alpha=0.3)
plt.tight_layout()
plt.savefig(
project_root / "main_hypot" / "orders_vs_avg_imp_with_costs.png",
dpi=150
)
print("Saved orders_vs_avg_imp_with_costs.png")
if __name__ == "__main__":
main()