import sqlite3 from pathlib import Path import sys import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from scipy import stats sns.set_theme(style="whitegrid") plt.rcParams["figure.figsize"] = (10, 5) project_root = Path(__file__).resolve().parent.parent sys.path.append(str(project_root / "preanalysis_old_bad")) import eda_utils as eda # noqa: E402 db_path = project_root / "dataset" / "ds.sqlite" conn = sqlite3.connect(db_path) df = pd.read_sql_query("select * from communications", conn, parse_dates=["business_dt"]) conn.close() for cols, name in [ (eda.ACTIVE_IMP_COLS, "active_imp_total"), (eda.PASSIVE_IMP_COLS, "passive_imp_total"), (eda.ACTIVE_CLICK_COLS, "active_click_total"), (eda.PASSIVE_CLICK_COLS, "passive_click_total"), (eda.ORDER_COLS, "orders_amt_total"), ]: df[name] = df[cols].sum(axis=1) df["imp_total"] = df["active_imp_total"] + df["passive_imp_total"] df["click_total"] = df["active_click_total"] + df["passive_click_total"] contact_days = df.groupby("id")["business_dt"].nunique().rename("contact_days") client = ( df.groupby("id") .agg( imp_total=("imp_total", "sum"), click_total=("click_total", "sum"), orders_amt_total=("orders_amt_total", "sum"), age=("age", "median"), gender_cd=("gender_cd", lambda s: s.mode().iat[0]), device_platform_cd=("device_platform_cd", lambda s: s.mode().iat[0]), ) .merge(contact_days, on="id", how="left") .reset_index() ) client["ctr_all"] = eda.safe_divide(client["click_total"], client["imp_total"]) client["cr_click2order"] = eda.safe_divide(client["orders_amt_total"], client["click_total"]) client["avg_imp_per_day"] = eda.safe_divide(client["imp_total"], client["contact_days"]) client["high_ctr"] = (client["ctr_all"] >= client["ctr_all"].quantile(0.75)).astype(int) client["has_order"] = (client["orders_amt_total"] > 0).astype(int) # Summary summary = client[["imp_total", "click_total", "orders_amt_total", "contact_days", "avg_imp_per_day", "ctr_all", "cr_click2order"]].describe().T print("Summary\n", summary) missing = client.isna().mean().sort_values(ascending=False) print("Missing\n", missing.head(10)) # Correlations and Mann-Whitney corr_ctr = stats.spearmanr(client["avg_imp_per_day"], client["ctr_all"]) corr_cr = stats.spearmanr(client["avg_imp_per_day"], client["cr_click2order"]) q1 = client["avg_imp_per_day"].quantile(0.25) q4 = client["avg_imp_per_day"].quantile(0.75) low = client.loc[client["avg_imp_per_day"] <= q1, "ctr_all"].dropna() high = client.loc[client["avg_imp_per_day"] >= q4, "ctr_all"].dropna() wu = stats.mannwhitneyu(low, high, alternative="greater") print({"spearman_ctr": corr_ctr, "spearman_cr": corr_cr, "mw_low_gt_high": wu}) # Bin stats and dual-axis plot bins = pd.qcut(client["avg_imp_per_day"], 10, duplicates="drop") stats_bin = client.groupby(bins, observed=False)[["ctr_all", "cr_click2order"]].median().reset_index().rename(columns={"index": "bin"}) stats_bin["avg_imp_per_day"] = client.groupby(bins, observed=False)["avg_imp_per_day"].median().values stats_bin["bin_label"] = stats_bin["avg_imp_per_day"].round(2).astype(str) fig, ax1 = plt.subplots(figsize=(12, 5)) ax2 = ax1.twinx() ax1.plot(stats_bin["bin_label"], stats_bin["ctr_all"], marker="o", color="#4c72b0", label="CTR") ax2.plot(stats_bin["bin_label"], stats_bin["cr_click2order"], marker="s", color="#c44e52", label="CR") ax1.set_ylabel("CTR") ax2.set_ylabel("CR click→order") ax1.set_xlabel("avg_imp_per_day bins") plt.xticks(rotation=35) ax1.set_title("CTR и CR по децилям avg_imp_per_day") fig.tight_layout() plt.savefig(project_root / "main_hypot" / "stat_bins.png", dpi=150) print("Saved plot stat_bins.png")