{ "cells": [ { "cell_type": "markdown", "id": "4d7d3347", "metadata": {}, "source": [ "# Спам-гипотеза: плотность показов vs CTR/CR\n", "\n", "Цель: проверить, что высокая плотность показов на контактный день снижает CTR и CR (спам-эффект)." ] }, { "cell_type": "code", "execution_count": null, "id": "7acbd1c8", "metadata": {}, "outputs": [], "source": [ "import sqlite3\n", "from pathlib import Path\n", "import sys\n", "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "from scipy import stats\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.impute import SimpleImputer\n", "from sklearn.metrics import roc_auc_score\n", "\n", "sns.set_theme(style=\"whitegrid\")\n", "plt.rcParams[\"figure.figsize\"] = (10, 5)\n", "\n", "project_root = Path.cwd().resolve()\n", "while not (project_root / \"preanalysis\").exists() and project_root.parent != project_root:\n", " project_root = project_root.parent\n", "sys.path.append(str(project_root / \"preanalysis\"))\n", "import eda_utils as eda\n", "\n", "db_path = project_root / \"dataset\" / \"ds.sqlite\"\n", "conn = sqlite3.connect(db_path)\n", "df = pd.read_sql_query(\"select * from communications\", conn, parse_dates=[\"business_dt\"])\n", "conn.close()\n", "\n", "for cols, name in [\n", " (eda.ACTIVE_IMP_COLS, \"active_imp_total\"),\n", " (eda.PASSIVE_IMP_COLS, \"passive_imp_total\"),\n", " (eda.ACTIVE_CLICK_COLS, \"active_click_total\"),\n", " (eda.PASSIVE_CLICK_COLS, \"passive_click_total\"),\n", " (eda.ORDER_COLS, \"orders_amt_total\"),\n", "]:\n", " df[name] = df[cols].sum(axis=1)\n", "\n", "df[\"imp_total\"] = df[\"active_imp_total\"] + df[\"passive_imp_total\"]\n", "df[\"click_total\"] = df[\"active_click_total\"] + df[\"passive_click_total\"]\n", "\n", "contact_days = df.groupby(\"id\")[\"business_dt\"].nunique().rename(\"contact_days\")\n", "client = df.groupby(\"id\").agg(\n", " {\n", " \"imp_total\": \"sum\",\n", " \"click_total\": \"sum\",\n", " \"orders_amt_total\": \"sum\",\n", " \"age\": \"median\",\n", " \"gender_cd\": lambda s: s.mode().iat[0],\n", " \"device_platform_cd\": lambda s: s.mode().iat[0],\n", " }\n", ").merge(contact_days, on=\"id\", how=\"left\").reset_index()\n", "\n", "client[\"ctr_all\"] = eda.safe_divide(client[\"click_total\"], client[\"imp_total\"])\n", "client[\"cr_click2order\"] = eda.safe_divide(client[\"orders_amt_total\"], client[\"click_total\"])\n", "client[\"avg_imp_per_day\"] = eda.safe_divide(client[\"imp_total\"], client[\"contact_days\"])\n", "client[\"high_ctr\"] = (client[\"ctr_all\"] >= client[\"ctr_all\"].quantile(0.75)).astype(int)\n", "client[\"has_order\"] = (client[\"orders_amt_total\"] > 0).astype(int)\n" ] }, { "cell_type": "markdown", "id": "94eb2d26", "metadata": {}, "source": [ "## Базовые статистики" ] }, { "cell_type": "code", "execution_count": null, "id": "287a09b4", "metadata": {}, "outputs": [], "source": [ "summary = client[[\"imp_total\", \"click_total\", \"orders_amt_total\", \"contact_days\", \"avg_imp_per_day\", \"ctr_all\", \"cr_click2order\"]].describe().T\n", "missing = client.isna().mean().sort_values(ascending=False)\n", "summary, missing.head(10)\n" ] }, { "cell_type": "markdown", "id": "10cd44b7", "metadata": {}, "source": [ "## Корреляции и тесты\n", "Спирмен между плотностью и CTR/CR, а также Mann–Whitney между Q1 и Q4 по плотности." ] }, { "cell_type": "code", "execution_count": null, "id": "88714a03", "metadata": {}, "outputs": [], "source": [ "corr_ctr = stats.spearmanr(client[\"avg_imp_per_day\"], client[\"ctr_all\"])\n", "corr_cr = stats.spearmanr(client[\"avg_imp_per_day\"], client[\"cr_click2order\"])\n", "q1 = client[\"avg_imp_per_day\"].quantile(0.25)\n", "q4 = client[\"avg_imp_per_day\"].quantile(0.75)\n", "low = client.loc[client[\"avg_imp_per_day\"] <= q1, \"ctr_all\"].dropna()\n", "high = client.loc[client[\"avg_imp_per_day\"] >= q4, \"ctr_all\"].dropna()\n", "wu = stats.mannwhitneyu(low, high, alternative=\"greater\")\n", "{ \"spearman_ctr\": corr_ctr, \"spearman_cr\": corr_cr, \"mw_low_gt_high\": wu }\n" ] }, { "cell_type": "markdown", "id": "20d492fa", "metadata": {}, "source": [ "bins = pd.qcut(client[\"avg_imp_per_day\"], 10, duplicates=\"drop\")\n", "stats_bin = client.groupby(bins, observed=False).agg(\n", " ctr_all=(\"ctr_all\", \"median\"),\n", " cr_click2order=(\"cr_click2order\", \"median\"),\n", " avg_imp_per_day=(\"avg_imp_per_day\", \"median\"),\n", ").reset_index()\n", "stats_bin[\"bin_label\"] = stats_bin[\"avg_imp_per_day\"].round(2).astype(str)\n", "fig, ax1 = plt.subplots(figsize=(12, 5))\n", "ax2 = ax1.twinx()\n", "sns.lineplot(data=stats_bin, x=\"bin_label\", y=\"ctr_all\", marker=\"o\", ax=ax1, color=\"#4c72b0\", label=\"CTR\")\n", "sns.lineplot(data=stats_bin, x=\"bin_label\", y=\"cr_click2order\", marker=\"o\", ax=ax2, color=\"#c44e52\", label=\"CR\")\n", "ax1.set_ylabel(\"CTR\")\n", "ax2.set_ylabel(\"CR click→order\")\n", "plt.xticks(rotation=35)\n", "ax1.set_title(\"CTR и CR по децилям avg_imp_per_day\")\n", "fig.tight_layout()\n", "plt.show()\n", "stats_bin[[\"bin_label\", \"ctr_all\", \"cr_click2order\"]]\n" ] }, { "cell_type": "code", "execution_count": null, "id": "943f0d4b", "metadata": {}, "outputs": [], "source": [ "bins = pd.qcut(client[\"avg_imp_per_day\"], 10, duplicates=\"drop\")\n", "stats_bin = client.groupby(bins).agg({\"ctr_all\": \"median\", \"cr_click2order\": \"median\", \"avg_imp_per_day\": \"median\"}).reset_index()\n", "stats_bin[\"bin_label\"] = stats_bin[\"avg_imp_per_day\"].round(2).astype(str)\n", "fig, ax1 = plt.subplots(figsize=(12, 5))\n", "ax2 = ax1.twinx()\n", "sns.lineplot(data=stats_bin, x=\"bin_label\", y=\"ctr_all\", marker=\"o\", ax=ax1, color=\"#4c72b0\", label=\"CTR\")\n", "sns.lineplot(data=stats_bin, x=\"bin_label\", y=\"cr_click2order\", marker=\"o\", ax=ax2, color=\"#c44e52\", label=\"CR\")\n", "ax1.set_ylabel(\"CTR\")\n", "ax2.set_ylabel(\"CR click→order\")\n", "plt.xticks(rotation=35)\n", "ax1.set_title(\"CTR и CR по децилям avg_imp_per_day\")\n", "fig.tight_layout()\n", "plt.show()\n", "stats_bin[[\"bin_label\", \"ctr_all\", \"cr_click2order\"]]\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.13" } }, "nbformat": 4, "nbformat_minor": 5 }