Files
dano2025/preanalysis/eda_utils.py
2025-12-16 01:51:05 +03:00

166 lines
7.4 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from __future__ import annotations
"""Утилиты для предварительного EDA: загрузка CSV, нормализация признаков и агрегации."""
from pathlib import Path
from typing import Dict, Iterable, List
import numpy as np
import pandas as pd
# Пути и группировки колонок, которые используются во всех агрегациях
DATA_PATH = Path("dataset/ds.csv")
CATEGORIES: List[str] = ["ent", "super", "transport", "shopping", "hotel", "avia"]
ACTIVE_IMP_COLS = [f"active_imp_{c}" for c in CATEGORIES]
PASSIVE_IMP_COLS = [f"passive_imp_{c}" for c in CATEGORIES]
ACTIVE_CLICK_COLS = [f"active_click_{c}" for c in CATEGORIES]
PASSIVE_CLICK_COLS = [f"passive_click_{c}" for c in CATEGORIES]
ORDER_COLS = [f"orders_amt_{c}" for c in CATEGORIES]
NUMERIC_COLS = (
ACTIVE_IMP_COLS
+ PASSIVE_IMP_COLS
+ ACTIVE_CLICK_COLS
+ PASSIVE_CLICK_COLS
+ ORDER_COLS
+ ["age"]
)
CAT_COLS = ["gender_cd", "device_platform_cd"]
def safe_divide(numerator: pd.Series | float, denominator: pd.Series | float) -> pd.Series:
"""Деление с защитой от нулей, чтобы не получить inf/NaN."""
if isinstance(denominator, pd.Series):
denom = denominator.replace(0, np.nan)
else:
denom = np.nan if float(denominator) == 0 else denominator
return numerator / denom
def normalize_gender(series: pd.Series) -> pd.Series:
# Приводим строковые значения пола к единому набору кодов
cleaned = series.fillna("UNKNOWN").astype(str).str.strip().str.upper()
mapping = {"M": "M", "MALE": "M", "F": "F", "FEMALE": "F"}
return cleaned.map(mapping).fillna("UNKNOWN")
def normalize_device(series: pd.Series) -> pd.Series:
# Схлопываем варианты платформ в читаемые подписи
cleaned = series.fillna("unknown").astype(str).str.strip()
lowered = cleaned.str.lower().str.replace(" ", "").str.replace("_", "")
mapping = {"android": "Android", "ios": "iOS", "ipados": "iPadOS", "ipad": "iPadOS"}
mapped = lowered.map(mapping)
fallback = cleaned.str.title()
return mapped.fillna(fallback)
def add_age_group(df: pd.DataFrame) -> pd.DataFrame:
# Делим пользователей по возрастным корзинам для срезов
bins = [0, 25, 35, 45, 55, np.inf]
labels = ["<25", "25-34", "35-44", "45-54", "55+"]
df["age_group"] = pd.cut(df["age"], bins=bins, labels=labels, right=False)
return df
def add_totals(df: pd.DataFrame) -> pd.DataFrame:
# Считаем суммарные показы/клики/заказы и CTR/CR метрики
df["active_imp_total"] = df[ACTIVE_IMP_COLS].sum(axis=1)
df["passive_imp_total"] = df[PASSIVE_IMP_COLS].sum(axis=1)
df["active_click_total"] = df[ACTIVE_CLICK_COLS].sum(axis=1)
df["passive_click_total"] = df[PASSIVE_CLICK_COLS].sum(axis=1)
df["orders_amt_total"] = df[ORDER_COLS].sum(axis=1)
df["click_total"] = df["active_click_total"] + df["passive_click_total"]
df["imp_total"] = df["active_imp_total"] + df["passive_imp_total"]
df["active_ctr"] = safe_divide(df["active_click_total"], df["active_imp_total"])
df["passive_ctr"] = safe_divide(df["passive_click_total"], df["passive_imp_total"])
df["ctr_all"] = safe_divide(df["click_total"], df["imp_total"])
df["cr_click2order"] = safe_divide(df["orders_amt_total"], df["click_total"])
df["cr_imp2order"] = safe_divide(df["orders_amt_total"], df["imp_total"])
return df
def add_flags(df: pd.DataFrame) -> pd.DataFrame:
# Создаём бинарные флаги наличия коммуникаций и заказов по клиенту
df["has_active_comm"] = (df[ACTIVE_IMP_COLS + ACTIVE_CLICK_COLS].sum(axis=1) > 0).astype(int)
df["has_passive_comm"] = (df[PASSIVE_IMP_COLS + PASSIVE_CLICK_COLS].sum(axis=1) > 0).astype(int)
df["has_any_order"] = (df[ORDER_COLS].sum(axis=1) > 0).astype(int)
df["order_categories_count"] = (df[ORDER_COLS] > 0).sum(axis=1)
return df
def load_data(path: Path | str = DATA_PATH) -> pd.DataFrame:
# Базовая загрузка CSV: приводим даты/категориальные поля и добавляем сводные метрики
df = pd.read_csv(path)
df["business_dt"] = pd.to_datetime(df["business_dt"])
df["gender_cd"] = normalize_gender(df["gender_cd"])
df["device_platform_cd"] = normalize_device(df["device_platform_cd"])
df = add_age_group(df)
df = add_totals(df)
df = add_flags(df)
return df
def describe_zero_share(df: pd.DataFrame, cols: Iterable[str]) -> pd.DataFrame:
# Формируем компактную статистику по выбранным числовым столбцам
stats = []
for col in cols:
series = df[col]
stats.append(
{
"col": col,
"count": series.count(),
"mean": series.mean(),
"median": series.median(),
"std": series.std(),
"min": series.min(),
"q25": series.quantile(0.25),
"q75": series.quantile(0.75),
"max": series.max(),
"share_zero": (series == 0).mean(),
"p95": series.quantile(0.95),
"p99": series.quantile(0.99),
}
)
return pd.DataFrame(stats)
def build_daily(df: pd.DataFrame) -> pd.DataFrame:
# Агрегируем метрики по дням, добавляя суммарные показатели и день недели
agg_cols = ACTIVE_IMP_COLS + PASSIVE_IMP_COLS + ACTIVE_CLICK_COLS + PASSIVE_CLICK_COLS + ORDER_COLS
daily = df.groupby("business_dt")[agg_cols].sum().reset_index()
daily = add_totals(daily)
daily["day_of_week"] = daily["business_dt"].dt.day_name()
return daily
def build_client(df: pd.DataFrame) -> pd.DataFrame:
# Строим клиентские агрегаты и метаданные (мода по кат. полям, медиана возраста)
agg_spec: Dict[str, str] = {col: "sum" for col in ACTIVE_IMP_COLS + PASSIVE_IMP_COLS + ACTIVE_CLICK_COLS + PASSIVE_CLICK_COLS + ORDER_COLS}
meta_spec: Dict[str, str | callable] = {
"age": "median",
"gender_cd": lambda s: s.mode().iat[0] if not s.mode().empty else "UNKNOWN",
"age_group": lambda s: s.mode().iat[0] if not s.mode().empty else np.nan,
"device_platform_cd": lambda s: s.mode().iat[0] if not s.mode().empty else "Other",
}
agg_spec.update(meta_spec)
client = df.groupby("id").agg(agg_spec).reset_index()
contact_days = df.groupby("id")["business_dt"].nunique().rename("contact_days")
imp_day = df.copy()
imp_day["imp_day_total"] = imp_day[ACTIVE_IMP_COLS + PASSIVE_IMP_COLS].sum(axis=1)
max_imp_day = imp_day.groupby("id")["imp_day_total"].max().rename("max_impressions_per_day")
client = add_totals(client)
client = add_flags(client)
client = client.merge(contact_days, on="id", how="left")
client = client.merge(max_imp_day, on="id", how="left")
client = add_contact_density(client)
return client
def add_contact_density(df: pd.DataFrame) -> pd.DataFrame:
# contact_days must already be present
if "contact_days" in df.columns:
df["avg_impressions_per_contact_day"] = safe_divide(df["imp_total"], df["contact_days"])
return df
return df