145 lines
4.4 KiB
Python
145 lines
4.4 KiB
Python
import sqlite3
|
||
from pathlib import Path
|
||
import sys
|
||
import numpy as np
|
||
import pandas as pd
|
||
import seaborn as sns
|
||
import matplotlib.pyplot as plt
|
||
|
||
sns.set_theme(style="whitegrid")
|
||
plt.rcParams["figure.figsize"] = (10, 5)
|
||
|
||
project_root = Path(__file__).resolve().parent.parent
|
||
sys.path.append(str(project_root / "preanalysis_old_bad"))
|
||
import eda_utils as eda # noqa: E402
|
||
|
||
db_path = project_root / "dataset" / "ds.sqlite"
|
||
conn = sqlite3.connect(db_path)
|
||
df = pd.read_sql_query("select * from communications", conn, parse_dates=["business_dt"])
|
||
conn.close()
|
||
|
||
for cols, name in [
|
||
(eda.ACTIVE_IMP_COLS, "active_imp_total"),
|
||
(eda.PASSIVE_IMP_COLS, "passive_imp_total"),
|
||
(eda.ACTIVE_CLICK_COLS, "active_click_total"),
|
||
(eda.PASSIVE_CLICK_COLS, "passive_click_total"),
|
||
(eda.ORDER_COLS, "orders_amt_total"),
|
||
]:
|
||
df[name] = df[cols].sum(axis=1)
|
||
|
||
df["imp_total"] = df["active_imp_total"] + df["passive_imp_total"]
|
||
df["click_total"] = df["active_click_total"] + df["passive_click_total"]
|
||
contact_days = df.groupby("id")["business_dt"].nunique().rename("contact_days")
|
||
client = (
|
||
df.groupby("id")
|
||
.agg(
|
||
imp_total=("imp_total", "sum"),
|
||
click_total=("click_total", "sum"),
|
||
orders_amt_total=("orders_amt_total", "sum"),
|
||
age=("age", "median"),
|
||
gender_cd=("gender_cd", lambda s: s.mode().iat[0]),
|
||
device_platform_cd=("device_platform_cd", lambda s: s.mode().iat[0]),
|
||
)
|
||
.merge(contact_days, on="id", how="left")
|
||
.reset_index()
|
||
)
|
||
client["order_rate"] = eda.safe_divide(client["orders_amt_total"], client["imp_total"]) # orders / impressions
|
||
client["order_rate_pct"] = 100 * client["order_rate"] # чтобы шкала была человеческая
|
||
client["avg_imp_per_day"] = eda.safe_divide(client["imp_total"], client["contact_days"])
|
||
|
||
# Mean absolute orders for each exact avg_imp_per_day (no bins), sorted ascending
|
||
stats_imp = (
|
||
client.groupby("avg_imp_per_day", as_index=False)
|
||
.agg(
|
||
orders_mean=("orders_amt_total", "mean"),
|
||
n_clients=("id", "count"),
|
||
)
|
||
.sort_values("avg_imp_per_day")
|
||
)
|
||
|
||
K_MULT = 2 # "в разы" -> 5x. Поменяй на 3/10 если хочешь
|
||
ABS_DY_MIN = 1
|
||
X_MAX = 16
|
||
|
||
stats_imp = stats_imp.sort_values("avg_imp_per_day").reset_index(drop=True)
|
||
|
||
# 1) cut by x
|
||
stats_f = stats_imp[stats_imp["avg_imp_per_day"] <= X_MAX].copy().reset_index(drop=True)
|
||
|
||
# 2) detect vertical outliers by dy logic
|
||
before = len(stats_f)
|
||
y = stats_f["orders_mean"]
|
||
abs_dy = y.diff().abs()
|
||
|
||
prev3_mean = abs_dy.shift(1).rolling(window=3, min_periods=3).mean()
|
||
ratio = abs_dy / (prev3_mean.replace(0, np.nan)) # avoid inf when prev mean == 0
|
||
|
||
is_outlier = (abs_dy >= ABS_DY_MIN) & (ratio >= K_MULT) | (y > 5)
|
||
# первые точки не могут нормально иметь "3 предыдущих дельты"
|
||
is_outlier = is_outlier.fillna(False)
|
||
|
||
stats_f = stats_f.loc[~is_outlier].copy().reset_index(drop=True)
|
||
after = len(stats_f)
|
||
cleaned = before - after
|
||
|
||
print(f"{before} - {after}, cleaned: {cleaned}")
|
||
|
||
# --- smoothing (rolling mean on remaining points) ---
|
||
w = max(7, int(len(stats_f) * 0.05))
|
||
if w % 2 == 0:
|
||
w += 1
|
||
|
||
stats_f["orders_smooth"] = (
|
||
stats_f["orders_mean"]
|
||
.rolling(window=w, center=True, min_periods=1)
|
||
.mean()
|
||
)
|
||
# --- cost line (linear expenses) ---
|
||
# нормируем так, чтобы масштаб был сопоставим с заказами
|
||
c = stats_f["orders_smooth"].max() / stats_f["avg_imp_per_day"].max()
|
||
stats_f["cost_line"] = c * stats_f["avg_imp_per_day"]
|
||
|
||
# plot
|
||
plt.figure(figsize=(10, 8))
|
||
|
||
plt.plot(
|
||
stats_f["avg_imp_per_day"],
|
||
stats_f["orders_mean"],
|
||
marker="o",
|
||
linewidth=1,
|
||
alpha=0.3,
|
||
label="Среднее число заказов"
|
||
)
|
||
|
||
plt.plot(
|
||
stats_f["avg_imp_per_day"],
|
||
stats_f["orders_smooth"],
|
||
color="red",
|
||
linewidth=2.5,
|
||
label="Сглаженный тренд заказов"
|
||
)
|
||
|
||
plt.plot(
|
||
stats_f["avg_imp_per_day"],
|
||
stats_f["cost_line"],
|
||
color="black",
|
||
linestyle="--",
|
||
linewidth=2,
|
||
label="Линейные расходы на показы"
|
||
)
|
||
|
||
plt.xlabel("Среднее число показов в день")
|
||
plt.ylabel("Среднее число заказов")
|
||
plt.title("Зависимость заказов от интенсивности коммуникаций")
|
||
|
||
plt.legend()
|
||
plt.grid(alpha=0.3)
|
||
plt.tight_layout()
|
||
|
||
plt.savefig(
|
||
project_root / "main_hypot" / "orders_vs_avg_imp_with_costs.png",
|
||
dpi=150
|
||
)
|
||
|
||
print("Saved orders_vs_avg_imp_with_costs.png")
|